Reconfigurable Networks: Enablers, Algorithms, Complexity

Ramakrishnan Durairajan, Klaus-Tycho Forster, Stefan Schmid

Tutorial @ ACM Sigmetrics 2019
Phoenix, Arizona, USA

DarTree: Reconfigurable WAN Multicast

e Multicast transfers: common in WAN

— E.g., multicast traffic of inter-DC traffic from Baidu

* How to support in reconfigurable WANs?
3 — Can change .

Large potential and
interesting optimization
problem: Tmrw @ IWQoS

and

Roadmap

e Last part: WAN, now: Data Center Networks

(DCNs)
— This part: Mostly 1) estimate demand, 2) build topologies, 3) repeat
— Next part: Dynamic settings, demand structures, data structure connections

/

* Focus on Algorithmic Challenges in DCNs

— Technology, system developments etc. would require their own tutorial(

* Paper-based approach
— Selection of papers from 2009 to 2019

Timeline

Reconfiguration time: from
milliseconds to microseconds
(and decentralized).

Survey of Reconfigurable Data Center
Networks. Foerster and Schmid. SIGACT
News, 20109.

2009
2010

2011

2012
2013

2014

2015

2016

2017

2018
2019

=

- Flyways [51]: Steerable antennas (narrow beamwidth at 60 GHz [78]) to serve hotspots 4

Helios [33]/c-Through [98, 99]: Hybrid switch architecture, maximum matching (Edmond’s
algorithm [30]), single-hop reconfigurable connections (O(10)ms reconfiguration time).

Proteus [21, 89]: k reconfigurable connections per ToR, multi-hop path stitching, multi-hop
reconfigurable connections (weighted b-matching [69], edge-exchanges for connectivity [72], wavelength
assignment via edge-coloring [67] on multigraphs)

Extension of Flyways [51] to better handle practical concerns such as stability and interference for
60GHz links, along with greedy heuristics for dynamic link placement [45]

Mirror Mirror on the ceiling [106]: 3D-beamforming (60 Ghz wireless), signals bounce off the ceiling
Mordia [31, 32, 77): Traffic matrix scheduling, matrix decomposition (Birkhoff-von-Neumann
(BvN) [18, 97]), fiber ring structure with wavelengths (O(10)us reconfiguration time)

SplayNets [6, 76, 82]: Fine-grained and online reconfigurations in the spirit of self-adjusting
datastructures (all links are reconfigurable), aiming to strike a balance between short route lengths
and reconfiguration costs

REACToR [56]: Buffer burst of packets at end-hosts until circuit provisioned, employs [77]

Firefly [14] Combination of Free Space Optics and Galvo/switchable mirrors (small fan-out)

Solstice [57]: Greedy perfect matching based hybrid scheduling heuristic that outperforms BvN [77]
Designs for optical switches with a reconfiguration latency of O(10)ns [3]

ProjecToR [39]: Distributed Free Space Optics with digital micromirrors (high fan-out) [38] (Stable
Matching [26]), goal of (starvation-free) low latency

Eclipse [95, 96]: (1 —1/e'~%))-approximation for throughput in traffic matrix scheduling (single-hop

reconfigurable connections, hybrid switch architecture), outperforms heuristics in [57]

DAN [7, 8, 11, 12]: Demand-aware networks based on reconfigurable links only and optimized for a
demand snapshot, to minimized average route length and/or minimize load

MegaSwitch [23]: Non-blocking circuits over multiple fiber rings (stacking rings in [77] doesn’t suffice)
Rotornet [63]: Oblivious cyclical reconfiguration w. selector switches [64] (Valiant load balancing [94])
Tale of Two Topologies [105]: Convert locally between Clos [24] topology and random graphs [87, 88]
DeepConf [81]/xWeaver [102]: Machine learning approaches for topology reconfiguration

Complexity classifications for weighted average path lengths in reconfigurable topologies [34, 35, 36]

- ReNet [13] and Push-Down-Trees [9] providing statically and dynamically optimal reconfigurations

DisSplayNets [75]: fully decentralized SplayNets

Opera [60]: Maintaining expander-based topologies under (oblivious) reconfiguration

Today’s Data Center Topologies

From: Al-Fares et al. 2008

e Often Clos-based (e.g. Fat-tree)

— Goal: optimize for all-to-all communication

* Idea: Obtain good bisection bandwidth

Today’s Data Center Topologies

From: Al-Fares et al. 2008

........

:v‘ 10.4.1.1 10.4.1.2 10.4.2.1 H
: m RM ; -

e Often Clos-based (e.g. Fat-tree)

— Goal: optimize for all-to-all communication
* Idea: Obtain good bisection bandwidth

® Aggregation

Edge

* However, traffic is growing at unprecedented rates Traffic generated by srvers in our datacenters
— What can we do?

— Exponentially bigger networks?

A

e

E Aggregate traffic -

Time —»
Jul*08 Jun‘09 May ‘10 Apr‘ll Mar‘12 Feb‘13 Dec‘13 Nov‘l4

From Google’s Datacenter Network. Singh at al., SIGCOMM’15

Data Center Traffic # Uniform

However, DCN traffic is often not all-to-all

To Top of Rack Switch

ffffffff

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Halperin et al., SIGCOMM’11

Data Center Traffic # Uniform

However, DCN traffic is often not all-to-all

“Data reveal that 46-99% of the rack
pairs exchange no traffic at all”

To Top of Rack Switch

- -t
- - =
-
- = -

From Top of Rack Switch

Traffic demands (normalized) between ToR
Halperin et al., SIGCOMM’11

switches.

Source rack

1.0

0.8
0.6

0.4

0.2

S er 1T T ED:
SETE

0

25 50 75 100

Destination rack

Source rack
=
o
(@]
o

0.0

10#0.8

~{llo.4

O‘.‘l

0

Ghobadi et al., SIGCOMM’16

1000 2000
Destination rack

Heatmap of rack to rack traffic. Color intensity is log-scale and normalized.

1.0

0.6

0.2
0.0

Enablers for Reconfigurable DCNs

Core

switch
Aggregate
switch
Electrical
ToR
switch Network
. Optical
Network
Servers| | etwor

Reconfigurable
optical paths

c-Through

Ceiling mirror
JII I 9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.9.0.0.0.4
N\ ol

FSO reconf

Traffic
Patterns

FireFly
| Controller

Rule
change

Steerable
FSOs

Rack 1 Rack r Rack N
FireFly

Programmable Physical Layer

Mirror assembly

Received beam

Array of Micromirrors

ProjecToR

(a) Rotorswitch

[T VAV T T

TTTTTTTT

Rotornet

a:flattree

Flat-tree

Vo= Ne
matchings

of (V! possible

(b) N,, Rotor switches,
— N =[(Ne-1)/N..]
e —

Optical Switching Matrix

x

il
Riiindiinl
WO U ey

ot Ny
uplinks

Proteus/OSA

Core Switches

Pods 10G Copper —
i 10G Fiber —
206 Superlink

Helios

“rate free”, at the cost of reconfiguration times & point-point connectivity

Images taken from the respective paper:

10

Overview of Technological
Enablers

* Microelectromechanical systems (MEMS)

— In 3D: 2N mirrors can connect N input to N output ports
— In 2D: Less connectivity, but faster

https://www.laserfocusworld.com/optics/article/16556781/many-
approaches-taken-for-alloptical-switching (Hecht, 2001)

https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching
https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching

11

Overview of Technological
Enablers

* Microelectromechanical systems (MEMS)

— In 3D: 2N mirrors can connect N input to N output ports
— In 2D: Less connectivity, but faster

https://www.laserfocusworld.com/optics/article/16556781/many-
approaches-taken-for-alloptical-switching (Hecht, 2001)

4wv‘
@

 (Beamformed) Wireless ’5& 4 and Free-Space Optics

Flyways

Images taken from the respective papers

https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching
https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching

12

Overview of Technological
Enablers

* Microelectromechanical systems (MEMS)

— In 3D: 2N mirrors can connect N input to N output ports
— In 2D: Less connectivity, but faster

https://www.laserfocusworld.com/optics/article/16556781/many-
approaches-taken-for-alloptical-switching (Hecht, 2001)

[gov‘
@

 (Beamformed) Wireless "}} 4 and Free-Space Optics
k 5

Flyways

FireFly

* Connection medium can also often be shared, e.g., different wavelengths

Images taken from the respective papers

https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching
https://www.laserfocusworld.com/optics/article/16556781/many-approaches-taken-for-alloptical-switching

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

B

13

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

— Difference: Not all-to-all switch

* E.g.just 1 connection per node o

B

14

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

— Difference: Not all-to-all switch

* E.g.just 1 connection per node o

B

15

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

— Difference: Not all-to-all switch

* E.g.just 1 connection per node o

B

16

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

— Difference: Not all-to-all switch

* E.g.just 1 connection per node o

B

17

18

It‘s a Match(ing)!

Reconfigurable Switch
* |dea: Create “physical” connections

— Difference: Not all-to-all switch
* E.g.just 1 connection per node
* Ormany more than1
* Orseparated sender/receiver

* Basic connectivity often by static topology
— Hybrid: Static+Reconfigurable

Helios/c-Through

(Farrington et al. / Wang et al. @SIGCOMM 2010)

* Layout:
— DCN-Topology + optical circuit switch (OCS, ~O(10)ms)

Mux Mux :\\
v = " 1
N Y |

Helios

19

20

Helios/c-Through

(Farrington et al. / Wang et al. @SIGCOMM 2010)

e Algorithmic Idea:
— Estimate demand between racks/pods
— Pose as matching problem (throughput/volume per epoch as weights)
* Unidirectional in Helios = .

Elephant flow?

— Compute maximum matching (eg with Edmond’s)

Images taken from the respective papers (@) Wk ¥ s (]

Helios/c-Through
(Farrington et al. / Wang et al. @SIGCOMM 2010)
e Algorithmic Idea:

— Estimate demand between racks/pods

— Pose as matching problem (throughput/volume per epoch as weights)
* Unidirectional in Helios

— Compute maximum matching (eg with Edmond’s)

 Example from Helios with 4 pods and link capacity of 4

Demand Matrixi Circuit Switch 1

1 2 3 4 In Out

B[4

74 1
1 N
3 0

NIW I O|—
—= | OoO|lW|—-
A WN =
A WN =

A W N =

Images taken from the respective papers

Helios/c-Through
(Farrington et al. / Wang et al. @SIGCOMM 2010)
e Algorithmic Idea:

— Estimate demand between racks/pods

— Pose as matching problem (throughput/volume per epoch as weights)
* Unidirectional in Helios

— Compute maximum matching (eg with Edmond’s)

 Example from Helios with 4 pods and link capacity of 4

Demand Matrix i Circuit Switch i Demand Matrix i+1 Circuit Switch i+1
1 2 3 4 In Out 1 2 3 4 In Out
MO0 1|13 1 1 1M0|1(1]0 1 1
2(741 0] 3|1 2 2 2|74 0] 0|1 2 2
31T 13| 0|9y 3 3 3117100 |9 3 3
413121110 4 4 410(2|1]0 4 4

Images taken from the respective papers

Helios/c-Through
(Farrington et al. / Wang et al. @SIGCOMM 2010)
e Algorithmic Idea:

— Estimate demand between racks/pods

— Pose as matching problem (throughput/volume per epoch as weights)
* Unidirectional in Helios
— Compute maximum matching (eg with Edmond’s)

 Example from Helios with 4 pods and link capacity of 4

Demand Matrixi Circuit Switch 1 Demand Matrix i+1 Circuit Switch i1+1 Demand Matrix i+2 Circuit Switch 1+2
1 2 3 4 In Out 1 2 3 4 In Out 1 2 3 4 In Out
MO |1 [1(3] |1 1 1M0|1(1]0 1 1 1101100 1 1
2|70 (31 2><2 2|7w| 0|01 2;22 213[0(0]1 2'><12
31T 13| 0|9y 3 3 3117100 |9 3 3 311010 (50 3 3
3211 (0] |4 4 o210 4 4 sfololT]o 4><4

Images taken from the respective papers

Helios/c-Through
(Farrington et al. / Wang et al. @SIGCOMM 2010)
e Algorithmic Idea:

— Estimate demand between racks/pods

— Pose as matching problem (throughput/volume per epoch as weights)
* Unidirectional in Helios
— Compute maximum matching (eg with Edmond’s)

e Performance example 1
c
1 H 2 sl
for data-intensive tasks: 3§
% 0.6
a2
o
2 04f
s &
E 0.2 —o— Electrical network(40:1 over-subscribed)
8 ’ —— c-Through (buf:100MB, reconfig:1.0s)
= = =Full bisection bandwidth network
% 2600 40b0 6600 BObO 10600 12600 14600 16600

Job Completion Time (s)

c-Through: Hadoop Gridmix tasks

Images taken from the respective papers

24

25

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Eugene, OR

Vienna, Austria

26

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Eugene, OR

Vienna, Austria

27

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

|| g

pgeicmb it oo AN S

Phoenix, AZ

Eugene, OR

Vienna, Austria

28

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Eugene, OR

Vienna, Austria

29

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Eugene, OR

Vienna, Austria

30

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Phoenix, AZ

Eugene, OR

Combmatlons7‘
g
=

COMPUTER'SAYSINO*

&

Vienna, Austria

31

Routing Policy Restrictions

* So far: Routing options restricted to single-hop

Eugene, OR

How about:
* Multi-hop routing
e Mix static and reconfigurable

T

Vienna, Austria

32

Flyways

(Kandula et al., HotNets 2009/SIGCOMM 2011)

Idea: Tackle hotspots by adding so-called flyways

— Directional wireless (60GHz) [or also 802.11n/new static links]
~0(10)ms (also propose the use of phased arrays, delay in microseconds)

To Top of Rack Switch

From Top of Rack Switch

0.4
0.2 o e
"‘\v"" -
/’\
L /A
N0 3

Images taken from the respective papers

Flyways
(Kandula et al., HotNets 2009/SIGCOMM 2011)
Idea: Tackle hotspots by adding so-called flyways

— Directional wireless (60GHz) [or also 802.11n/new static links]

How to choose new links?
— Three preliminary different strategies proposed w.r.t. completion time:

* Optimization program
— downside: intractable

» Stragglers: help biggest demands on bottleneck links
— downside: might not help much per bottleneck, fan-out/in of

demands

* Allow transit on straggler links

— helps, but not optimized for it

33

34
Flyways
(Kandula et al., HotNets 2009/SIGCOMM 2011)
* Final strategy: Greedy with transit

— Consider bottleneck link connected to ToR
e Take flyway link that helps most w.r.t.
— deviating traffic from bottleneck link + allowing transit

(%2}

[0} (7}

8 1 H - 8 1+
= 08}, S 08

_8 1 ko)

g 0.6 r, é 0.6 |

o | No OverSubscription - - - o))

o 1:2 OverSubscribed o -~ Greedy

3 0.2 : 5 42 Transit - - -
i W 0 Straggler -~
a 0 = ‘ ! ! : 5 ‘ ‘ ’ ‘ ‘
O 1 12 14 16 18 2 1 12 14 16 182

Normalized CTD Normalized CTD

Beats other tractable strategies with one device per ToR

Images taken from the respective papers

Mirror Mirror on the Ceiling
(Zhou et al., SIGCOMM 2012)

Problem in Flyways: Limited any-to-any connections

— Transmission might be blocked by obstacles (already 2.5mm is bad)
— Radio interference between links

— In combination limits many possible flyway configurations

35

Mirror Mirror on the Ceiling
(Zhou et al., SIGCOMM 2012)

Problem in Flyways: Limited any-to-any connections

— Transmission might be blocked by obstacles (already 2.5mm is bad)
— Radio interference between links

— In combination limits many possible flyway configurations

Approach from Zhou et al.: Go from 2D to 3D

36

Mirror Mirror on the Ceiling
(Zhou et al., SIGCOMM 2012)

* Algorithmic/technical idea:
— Leverage multiple radios per rack and multiple 60GHz frequency channels
— Keep Signal-to-Interference-Noise-Ratio (SINR) in mind for conflicts
* Greedily schedule requests ordered by conflict degrees
— No preemption, no multi-hop

37

38

FireFly

(Hamedazimi et al., SIGCOMM 2012)

* Even beamformed wireless still suffers from interference/range

e |dea: Use Free-Space Optics (FSO)
— 0(10)ms steering, O(10) fan-out

ToR switch

Roughly 20m
W|th Link length (up to 1 Wired
aaaaaa SFP pOFtS 20m tested) l] [et 08 | L[?b o
SFP ~4mm 7 C i
connector \ N u & 0.6 |
-
Optical fiber ~— Laser beam 04
[shart) Laser beam Colllmatmg Iens focu'sed back
Focal Iength on fiber 02 |
divergesin (diam.=~3cm) _ ~3cm
free space 0 w
8400 8600 8800 9000 9200 9400
Throughput (Mbps)
(a) FSO link design

(b) DC set up

(¢) TCP throughput

Images taken from the respective papers

FireFly

(Hamedazimi et al., SIGCOMM 2012)

* Bring concept from Mirror, Mirror to FSO

* Core algorithmic idea:
— Periodically recompute topology for throughput (optim. formulation)

— Greedily augment current matching to shorten routes for eg new§Qy
(don’t disconnect)

—e Ceiling mirror
A‘A‘A’A’A‘A‘A’A‘A‘A‘A’A‘A’A’A’A’A’A’A’A‘A’A’A’A
FSO reconf I

FireFly
Controller
Rule

change §

Images taken from the respective papers

39

40

FireFly

(Hamedazimi et al., SIGCOMM 20

* Bring concept from Mirror, Mirror t@ iy sl s

) . . e Distributed algorith
e Core a|g0r|thm|c |dea: o Iv:icrrcl>s::cond fecr:)nfri‘;urations
— Periodically recompute topology for thra!

o Programmable mirrors
)) e 0(1000) fan-out

— Greedily augment current matchingto s

* (don’t disconnect)

- Ceiling mirror
Traffic
Patterns

FireFly
Controller

Images taken from the respective papers

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

More thoughts on all-reconfigurable:
— What if traffic is extremely dynamic?
Prior studies show: Usually somewhat stable for many DCN applications
— Recall:
* Need multi-hop connections

41

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

More thoughts on all-reconfigurable:
— What if traffic is extremely dynamic?

e Prior studies show: Usually somewhat stable for many DCN applications
— Recall:

* Need multi-hop connections

Multi-hop and single connection to OCS?
— Not so good in all-reconfigurable setting
* No connectivity (even with 2: requires Hamiltonian Cycle)
* No scaling of link capacities

42

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

Creating connectivity:

Multiple connections per rack

Optical Switching Matrix ‘

43

44

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

* Creating connectivity:

* Scaling link capacities
— Multiple connections per rack

— Allow “parallel” links

‘ Optical Switching Matrix ‘

Images taken from the respective papers

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

e Algorithmic idea:
— Optimize for @, make® feasible

45

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

e Algorithmic idea:
— Optimize for @, make® feasible

1.®For b connections per rack, leverage b-matching algorithms
a. Estimated demands as weights (Poly-time solvable, efficient heuristics exist)

46

47

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

e Algorithmic idea:
— Optimize for @, make® feasible

1.®For b connections per rack, leverage b-matching algorithms
a. Estimated demands as weights (Poly-time solvable, efficient heuristics exist)

2.*Use link-exchanges to make topology connected
a. Heuristic: Connect 2 components by removing low weight links

48

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

e Algorithmic idea:
— Optimize for @, make® feasible

1.®For b connections per rack, leverage b-matching algorithms
a. Estimated demands as weights (Poly-time solvable, efficient heuristics exist)

2.*Use link-exchanges to make topology connected
a. Heuristic: Connect 2 components by removing low weight links

3. Deploy routing (eg shortest paths)

49

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

e Algorithmic idea:
— Optimize for @, make® feasible

1.®For b connections per rack, leverage b-matching algorithms
a. Estimated demands as weights (Poly-time solvable, efficient heuristics exist)

2.*Use link-exchanges to make topology connected

a. Heuristic: Connect 2 components by removing low weight links
3. Deploy routing (eg shortest paths)
4 @Assign wavelengths along links to distribute capacity

a. Eachlink at least one wavelength color, no color connected twice to a node
b. Solved by link-coloring on multigraphs (efficient heuristics exist)

Proteus/OSA

(Singla et al., HotNets 2010/NSDI 2012/ ToN 2014)

Impact of degree on hop-counts (0SA uses k=4 in most evaluations)
Using Mapreduce-demands with 80 ToRs

1

=2

50.8 Blk=4

= k=8

206 -
(@]
5

50.4r 1
@
L

0.2} ' :

0

0 1 2 3 4 5 6 7 8
Number of hops traversed

Images taken from the respective papers

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

e So far: Optimizing for throughput
— Recall last slide: short paths are desired
e Also used in FireFly for new elephants
— Respectively: “bandwidth tax” (Mellette et al., 2019)

51

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

e So far: Optimizing for throughput
— Recall last slide: short paths are desired
e Also used in FireFly for new elephants
— Respectively: “bandwidth tax” (Mellette et al., 2019)

* Different objective:
— Minimize (weighted) average path length
— Popular in many fields, e.g., OSPF

52

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

e So far: Optimizing for throughput
— Recall last slide: short paths are desired
e Also used in FireFly for new elephants
— Respectively: “bandwidth tax” (Mellette et al., 2019)

* Different objective:
— Minimize (weighted) average path length
— Popular in many fields, e.g., OSPF

* How difficult from an algorithmic perspective?

53

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

* In model from Helios/c-Through? = wwue
— Recall: packet switched network XOR single-hop reconfigurable (eg OCS)

54

(é)

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

* In model from Helios/c-Through? - -

— Recall: packet switched network XOR smgle hop reconflgurable (eg OCS)

* Good algorithmic news:
— Efficiently polynomial-time solvable (weighted matching algorithms)
— Also for many connections per node to the OCS

Images taken from the respective papers

55

.

.

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

* In model from Helios/c-Through? -

— Recall: packet switched network XOR smgle hop reconflgurable (eg OCS)

Good algorithmic news:
— Efficiently polynomial-time solvable (weighted matching algorithms)
— Also for many connections per node to the OCS

Bad algorithmic news:
— Such arestriction is self-imposed and hurts performance

Images taken from the respective papers

56

57

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

(QE? * How hard to be optimal after lifting restrictions?

\' — Already “simple” settings are NP-hard

E.g., each route may use at most one reconfigurable link

58

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

— Already “simple” settings are NP-hard
* E.g., each route may use at most one reconfigurable link

° How hard to be optimal after lifting restrictions?
\)
¥

{é) » But: We can lift Dijkstra’s algorithm into this setting- B
=

— Each reconfigurable switch traversed at most once per flow

*Assuming that for each reconfigurable switch holds: its link weights uphold the triangle equality, e.g., being identical

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

59

60

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

1. Add all still possible reconfigurable links as static links

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

1. Add all still possible reconfigurable links as static links

/I\
havd
/

N/

61

1.
2.

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

Add all still possible reconfigurable links as static links
Run standard Dijkstra from source S

_g____

T

62

63

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

1. Add all still possible reconfigurable links as static links
2. Run standard Dijkstra from source S
3. Add newly used links on shortest path to T to the matchings

64

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

1. Add all still possible reconfigurable links as static links
2. Run standard Dijkstra from source S . o matching links already exis
3. Add newly used links on shortest path to T to the matchlngs

Also works if some

)
e

Average Path Length

(Foerster et al., ANCS 2018, SIGCOMM CCR 2019, Networking 2019)

Leverage for greedy heuristics (eggreedily run Dijkstra:-)

single hop matching baseline (optimal w.r.t. restricted segregated routing)

Performance Computation Time
—— Demand First (directed)
5x10°- — Gafn Demand (f:llrected) 104 -
Gain Update (directed)
—— Greedy Links (directed))
i Heuristics Segregated (directed) 10° -
4x10% - —— gtatic Only S
& 102-
v (o)
2 3x10° - £
.5 ; 10! -
o))
@) S R
2x10° - 3 10°:
()
x
w q
s 107 —— Demand First (directed)
—— Gain Demand (directed)
10-2 Gain Update (directed)
—— Greedy Links (directed)
0- X Heuristics Segregated (directed)
' ' .) ' 1077 -
20 i’ 60 80 100 20 40 60 80 100
Leaves # Leaves

Traffic from recent dataset, in fat-tree + OCS setting

65

Mordia

(Porter et al., SIGCOMM 2014)

Back to the throughput objective

66

Mordia

(Porter et al., SIGCOMM 2014)

* Back to the throughput objective

 What if reconfiguration time goes

from milliseconds
to microseconds?

Image from “Toward Optical Switching in the Data Center”, Mellette et al., HPSR 2018

PR
Optical Rlng
Amp Bandpass Add/Drop Passive
5% 111 Drop coupler
— |

10%

Diagn:
Port

onnections

Mordia

(Porter et al., SIGCOMM 2014)

* Back to the throughput objective

Opt;[Ring 3
* What if reconfiguration time goes My SNl
. . Diafg)(r;;)tstic .- “\
— from milliseconds Lael T
— to microseconds? o=

 Can’t really compute well at microsecond scale?

Image from “Toward Optical Switching in the Data Center”, Mellette et al., HPSR 2018

Mordia

(Porter et al., SIGCOMM 2014)

* Back to the throughput objective

< Tt

Optical Ring
* What if reconfiguration time goes

— from milliseconds
— to microseconds?

 Can’t really compute well at microsecond scale?

Extended to multi-ring in
Megaswitch (Chen et al., NSDI 2017)

Image from “Toward Optical Switching in the Data Center”, Mellette et al., HPSR 2018

Mordia

(Porter et al., SIGCOMM 2014)

Key idea:
— Instead of a single reconfiguration...
— ... compute a traffic matrix schedule (TMS)!

Schedule
Detailed schedules are to be updated

Go to schedule for: Monday, Tuesday, Wednesday, Thursday, Friday
Download the conference program in PDF format (TBA)

Monday, June 24th, 2019 (Tutorials)

Time Tutorials

08:15 Continental Breakfast

09:00 Reconfigurable Networks: Enablers, Algorithms,

09:30 Complexity (ReNets) The Power of SOAP Scheduling
Ramakrishnan Durairajan, Klaus-T. Foerster, and Mor Harchol-Balter and Ziv Scully

10:00 Stefan Schmid (Room 104B)

10:30 (Room 104A)

11:00 Break

11:20 FCRC Keynote:

12:00 James E. Smith

12:30

13:00 Lunch

13:30

14:00

Two-Sided Marketplaces: An Algorithmic Viewpoint
14:30 Sid Bannerjee and Yang Cai

70

Mordia

(Porter et al., SIGCOMM 2014)

Traffic Matrix Scheduling
— Look at all possible matchings
— How much time to spend in each?

71

72

Mordia

(Porter et al., SIGCOMM 2014)

° Trafﬂc Matrix Scheduhng Step 1. Gather traffic matrix M Step 2. Scale M into M’
— Look at all possible matchings [M] [M]
— How much time to spend in each? oL
Step 3. Decompose M into schedule /
. . e . Pl Pz Pk
* ldea: Single-hop, ideally fully utilize all links : .th [] i []
. 1 2 - k ([
— Scale matrix s.t. is admissible & doubly-stochastic
° USe S|nkh0rn’s algonthm, then Step 4. Execute schedule in hardware l

 decompose with Birkhoff von
Neumann decomposition (~*O(n?) runtime)

Y

Images taken from the respective papers

73

Mordia

(Porter et al., SIGCOMM 2014)

° Trafﬂc Matrix Scheduhng Step 1. Gather traffic matrix M Step 2. Scale M into M’
— Look at all possible matchings [M] [M]
— How much time to spend in each? oL
Step 3. Decompose M into schedule /
: . . : P, P, Py
* ldea: Single-hop, ideally fully utilize all links : .th [] i []
. 1 2 - k ([
— Scale matrix s.t. is admissible & doubly-stochastic
° USe S|nkh0rn’s algonthm, then Step 4. Execute schedule in hardware l

 decompose with Birkhoff von
Neumann decomposition (~*O(n?) runtime)

Y

* Problem: Some slots extremely brief, up to O(n?) many
— Approximate by longest first, recompute after cut-off, tail into static
network

Images taken from the respective papers

Solstice

(Liu et al., CONEXT 2015)

So far: TMS does not take static network into account
— Also not the reconfiguration time

Receivers

S
Must Be Scheduled \ e 13 10 70 4
Demand D = n 14 12 69
(measured by d | 65 s .12 14
an accumulator) e | 15 33 2 .11
r|12 7 3 1 .
s
_________________ Scheduling
Algorithm
N Output Ports (our contribution)
Circuit " [
Switch ’ A S P R |
. . . ¢ 1 . . . 1 . . 6 2
Schedule go| 1| eee 10| 1 2 L2
= Al s 1 s & s Al L s s & s 5 1 2 .
1 1 . . d . 1 . . . 1 4 . 3
| Duration Circuit Configuration Duration Circuit Configuration : Leftover Demand
Hybrid Switch
Circuit Switch Packet Switch

Network Model Images taken from the respective papers SChedUIing oVerVieW

75

Solstice

(Liu et al., CONEXT 2015)

Rough heuristic idea: Greedily schedule perfect matchings
— Maximize minimum element in matching, repeat (outperforms BvN up to 2.9x)
* About 14% away from optimal utilization, but runtime in ~O(n3)

Receivers

.13 10 70 4
s . 14 12 69
65 . .12 14
15- 33 2 .11
12 7 3 1 .
_________________ Scheduling
o % Algorithm
/ \ N Output Ports (our contribution)

Must Be Scheduled \
Demand D =

(measured by
an accumulator)

»=~0Q>0W0n

Circuit " [|

Switch ’ A S R .03 .1 4
. . . ¢ 1 . . . 1 . . . 6 2 .
Schedule go| 1| eee 10| 1 2 .. 2 4
= A s 1 s & 3 Al L s s & s 5 1 2 i

1 1 . . d . 1 . . . 1 4 . 3

| Duration Circuit Configuration Duration Circuit Configuration Leftover Demand
" Hybrid Switch @ @
Circuit Switch Packet Switch

Network Model Images taken from the respective papers SChedUIing OVerVieW

76

Solstice

(Liu et al., CONEXT 2015)

Rough heuristic idea: Greedily schedule perfect matchings
— Maximize minimum element in matching, repeat (outperforms BvN up to 2.9x)
* About 14% away from optimal utilization, but runtime in ~O(n3)

Receivers

S
‘lust Be Scheduled e .13 10 706 4
T, DemandD= | . . 14 12 69
(measured by d | 65 . .12 14
an accumulator) e [15 33 2 .1

_________________ Scheduling
! ™ Algorithm
(our contribution)

Circuit
Switch . 3 1 4
" . 6 2 .
2 . 2 4
5 1 2 s :
1 4 . 3

Leftover Demand

\ 1
\ ' '
\ ' f
\ /
\ ' '
\ / g
\ /

Circuit Switch Packet Switch

Network MOdel Images taken from the respective papers Scheduling Overview

Eclipse

(Venkatakrishnan et al., SIGMETRICS 2016 / Queuing Syst. 2018)

Provides theoretical guarantees for TMS
— hybrid switch model, reconfig. delay 0

Images taken from the respective papers

sending ports

—m
= [port1 f——
Virtual —m i
Output —; | port 2 [%\
Queues Y
e 111

Circuit Switch

Packet Switch |~

,
/
v
i
/
S

/

~N

receiving ports

7

Eclipse

(Venkatakrishnan et al., SIGMETRICS 2016 / Queuing Syst. 2018)

~N

receiving ports

. . sending ports
Provides theoretical guarantees for TMS P ot ——)
— hybrid switch model, reconfig. delay 0 gl = [T Ciruit switch

Queues

/3 port 2

Problem has submodular structure

,
/
v
i
/
S

1 ’ ’
VA 0 %

— Allows for (1-1/e)="~0.63 approximation via

Packet Switch |~

thresholding/max. weight matchings

Images taken from the respective papers

8

~

9

Eclipse

(Venkatakrishnan et al., SIGMETRICS 2016 / Queuing Syst. 2018)

. . sending ports receiving ports
* Provides theoretical guarantees for TMS " L port1]
— hybrid switch model, reconfig. delay 0 it ﬁm/cmsmh

Queues S

,
/
v
i
/
S

* Problem has submodular structure
— Allows for (1-1/e)="~0.63 approximation via
thresholding/max. weight matchings

Packet Switch |~

* Theoretically similar computation time to Solstice, performance for window W:

« 09t 1 ——Ecli
T
’ . . B ——Bv
Sparse £ 07 Different sparsity and skew g o7
Skewed =Rl ' in submatrices E e
2 os} 1 5
100 ports £ o4l . 200 ports 5 04
5 0.3 1 § 0.3
S 02t —-—gcllipse] § 02
= ——Solstice
- 01— BWN 1 O-; : : :
0 " ") o 0 0.01 0.02 0.03 0.04
10 10 10 10 Images taken from the respective papers /W

o1l W

[]
But no theoretical guarantees for E C | I p S e

multi-hop routing!
et al., SIGMETRICS 2016 / Queuing Syst. 2018)

. . sending ports receiving ports
* Provides theoretical ggprantees for TMS " L port1]
— hybrid switch model, reconfig. delay 0 e im/ Circuit Switch

. Queues:mJ N 4 “ /, 5 /

* Problem has submodular structure,
— Allows for (1-1/e)="0.63 approximation via
thresholding/max. weight matchings

Packet Switch |~

* Theoretically similar computation time to Solstice, performance for window W:

+« 09} ——FEcli
o
. 1 H » °f ——BV|
Sparse £ o7} Different sparsity and skew g orf
Skewed = Z: in submatrices % ol
€ o5} 5 o5
100 ports 5 04} 200 ports 5 04}
5 o3t S o3l
E 0.2} —o—gcllipse § 0.2}
= —+—Solstice |
& 01H L BWN 0'2) ‘ : :
0)) 4 0 0.01 0.02 0.03 0.04
10 10 10 10 Images taken from the respective papers /W

o1l W

Computation Times

* Trade-off: Computation time and efficiency
— How to scale to larger networks?
— Especially with micro-/nano-second switching times?

81

Computation Times

* Trade-off: Computation time and efficiency
— How to scale to larger networks?
— Especially with micro-/nano-second switching times?

* Algorithmic idea #1: Distributed Control Plane
— E.g. ProjecToR (Ghobadi et al., 2016)&&9
* Next part of the tutorial

82

Computation Times

* Trade-off: Computation time and efficiency
— How to scale to larger networks?
— Especially with micro-/nano-second switching times?

* Algorithmic idea #1: Distributed Control Plane
— E.g. ProjecToR (Ghobadi et al., 2016)&&9
* Next part of the tutorial

e Algorithmic idea #2: Oblivious Reconfiguration
— Combine topology design and cyclic reconfiguration schedule

83

Rotornet
(Mellette et al., SIGCOMM 2017)

* Cycle through exponentially many matchings?
— Observe: O(n) matchings suffice for connectivity
an

 Also allows for faster¢/ and cheaper § hardware
* Provision 10%-20% as packet switching for ultra low latency traffic

Images taken from the respective papers

84

Rotornet
(Mellette et al., SIGCOMM 2017)

Parallel less flexible switches to be even faster
— Distribute matchings over rotor switches
* E.g. 2048 racks: 16 different matchings with 128 switches
— Reconfig in microseconds, serve trafficin O(1)ms
— Also: No single point of failure

Np packet
switches

Images taken from the respective papers

85

Rotornet
(Mellette et al., SIGCOMM 2017)

For uniform traffic: great behaviour with single-hop

For skewed traffic: leverage Valiant’s routing
— Buffer indirect traffic on per-rack basis
* Don’t hinder direct traffic: distributed offer-accept protocol

Np packet
switches

Eal TRa |
[TTT [TTT

Rack 1 Rack 2 Rack 3 Rack 4

ToR 2
[TTT

Images taken from the respective papers

86

Even More Oblivious: Static
Networks

e (Observation:

— Random graphs are great for throughput via multi-hop
* Build data centers randomly (Singla et al., Jellyfish, NSDI 2012)

87

88

Even More Oblivious: Static
Networks

Observation:

— Random graphs are great for throughput via multi-hop
* Build data centers randomly (Singla et al., Jellyfish, NSDI 2012)

G 0] d eterm i N isti C Wit h Expa N d @IS:. Beyond fat-trees without antennae, mirrors, and disco-balls

Simon Kassing Asaf Valadarsky Gal Shahaf
ETH Zirich Hebrew University of Jerusalem Hebrew University of Jerusalem

Algorithmica (2017) 78:1225-1245 simon.kassing@inf.ethz.ch asaf.valadarsky @mail huji.ac.il gal.shahaf@mail huji.ac.il
DOI 10.1007/s00453-016-0269-x

Michael Schapira Ankit Singla

Hebrew University of Jerusalem ETH Zirich
schapiram@huji.ac.il ankit.singla@inf.ethz.ch
SIGCOMM’17

Explicit Expanding Expanders .
e e e Xpander: Towards Optimal-Performance Datacenters
Michael Dinitz! - Michael Schapira?® -

2
Asaf Valadarsky Asaf Valadarsky* Gal Shahaff Michael Dinitz*
asaf.valadarsky@mail.huji.ac.il gal.shahaf@mail.huji.ac.il mdinitz@cs.jhu.edu

Michael Schapira*

schapiram@huji.ac.il CoNEXT '16

89

Flat-Tree

(Xia et al, SIGCOMM 2017)

 Flat-Tree (note: not oblivious)
— Locally convert between random graphs and Clos topologies
— Use extremely cheap 4/6-port converter switches

?@k«{\‘(

a: flat-tree

Images taken from the respective papers

Opera

(Mellette et al, arXiv 2019)

* Extend Rotornet to cycle through Expanders
— Delay-tolerant traffic can wait for direct connections

— Other traffic can use the expander networks
* Low “bandwidth tax”

— (Valiant 2-hop routing also possible)

Circuit
switches

ToRs |

(a) Indirect path (b) Direct path

Images taken from the respective papers

90

91

Future (Algorithmic) Work Directions

* Single-hop reconfigurable “XOR” routing is sort of
well-understood

— But mixing with static network parts in general?

e Leveraging multi-hop connections?
— Efficient heuristics exist, general theoretical framework?

* Speeding up the control plane
— Oblivious is clearly very fast :-)
— More distributed approaches

92

References

Long Luo, Klaus-Tycho Foerster, Stefan Schmid, Hongfang Yu: DaRTree: deadline-aware multicast transfers in reconfigurable wide-area networks. IWQoS 2019
Survey of Reconfigurable Data Center Networks. Foerster and Schmid. SIGACT News, 2019.

Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat: A scalable, commodity data center network architecture. SIGCOMM 2008

Arjun Singh et al.: Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network. SIGCOMM 2015

Srikanth Kandula, Jitendra Padhye, Paramvir Bahl: Flyways To De-Congest Data Center Networks. HotNets 2009

Manya Ghobadi et al.: ProjecToR: Agile Reconfigurable Data Center Interconnect. SIGCOMM 2016

Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, David Wetherall: Augmenting data center networks with multi-gigabit wireless links. SIGCOMM 2011
Nathan Farrington et al.: Helios: a hybrid electrical/optical switch architecture for modular data centers. SIGCOMM 2010

Guohui Wang et al.: c-Through: part-time optics in data centers. SIGCOMM 2010

Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping Zhang: Proteus: a topology malleable data center network. HotNets 2010

Kai Chen et al.: OSA: An Optical Switching Architecture for Data Center Networks With Unprecedented Flexibility. IEEE/ACM Trans. Netw. 22(2): 498-511 (2014)
Ankit Singla, Atul Singh, Yan Chen: OSA: An Optical Switching Architecture for Data Center Networks with Unprecedented Flexibility. NSDI 2012

Navid Hamed Azimi et al.: FireFly: a reconfigurable wireless data center fabric using free-space optics. SIGCOMM 2014

Yiting Xia et al.: A Tale of Two Topologies: Exploring Convertible Data Center Network Architectures with Flat-tree. SIGCOMM 2017

Xia Zhou et al.: Mirror mirror on the ceiling: flexible wireless links for data centers. SIGCOMM 2012

Klaus-Tycho Foerster, Manya Ghobadi, Stefan Schmid: Characterizing the algorithmic complexity of reconfigurable data center architectures. ANCS 2018

T. Fenz, K.-T. Foerster, S. Schmid, A. Villedieu: Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks. IFIP Networking 2019

K.-T. Foerster et al.: On the Complexity of Non-Segregated Routing in Reconfigurable Data Center Architectures. ACM SIGCOMM CCR 49(2): 3-8 (2019)

George Porter et al: Integrating microsecond circuit switching into the data center. SIGCOMM 2013

Li Chen et al.: Enabling Wide-Spread Communications on Optical Fabric with MegaSwitch. NSDI 2017

William M. Mellette et al.: RotorNet: A Scalable, Low-complexity, Optical Datacenter Network. SIGCOMM 2017

He Liu et al.: Scheduling techniques for hybrid circuit/packet networks. CONEXT 2015

Shaileshh Bojja Venkatakrishnan et al.::Costly circuits, submodular schedules and approximate Carathéodory Theorems. SIGMETRICS 2016

Shaileshh Bojja Venkatakrishnan et al.: Costly circuits, submodular schedules and approximate Carathéodory Theorems. Queueing Syst. 88(3-4): 311-347 (2018)
William M. Mellette et al.: Expanding across time to deliver bandwidth efficiency and low latency. arXiv:1903.12307

Reconfigurable Networks: Enablers, Algorithms, Complexity

Ramakrishnan Durairajan, Klaus-Tycho Forster, Stefan Schmid

Tutorial @ ACM Sigmetrics 2019

Phoenix, Arizona, USA o3

