Lniversitat

Central Control over Distributed Asynchronous Systems:
A Tutorial on Software-Defined Networks and Consistent Network Updates

Klaus-T. Foerster

A e i il S s il ot e i ST

= : ; o
4 ' y
=
: 714 | IRES
:
J Le=hl

g2 Lniversitat
< Jwien

Brief Preamble

* Focus on algorithmic/complexity issues in consistent updates in Software Defined Networks (SDNs)
o Not so much on system etc. issues respectively SDNs themselves

* Two “bigger” connections to classic distributed computing halfway-in
o Proof Labeling Schemes
o Distributed Control Plane

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 2

> Lniversitat
Jwien

Network Updates

* The Internet: Designed for selfish participants
o Often inefficient (low utilization of links), but robust

* But what if eg the Wide-Area Network is controlled by a single entity?
o Examples: Microsoft & Amazon & Google ...
> They spend hundreds of millions of dollars per year

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

> Lniversitat -
wien Also relevant in eg Data Center

Networks, for ISPs etc

®
Network Updates Eg update link capacity at runtime?* o
. NORTH AMERICA Dublin
Seattle FITR D)

New York

Los Angeles

Hong Kong Miami

Think: Google, Amazon, Microsoft

*:RADWAN: Rate Adaptive Wide Area Network. R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, P. Gill. ACM SIGCOMM 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 4

2 N A Note: There is also a lot of (prior) research on consistency
Lvr\}l\e/re]rsnat before SDNs — can’t cover everything in this tutorial

® ® See history section in:
c o o Survey of Consistent Software-Defined Network Updates
SOftwa re DEfIﬂEd Networklng Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
e Possible solution: IEEE Communications Surveys & Tutorials, 21(2), 2019

o Software-Defined Networking (SDNs)

* General Idea: Separate data & control plane in a network

* Centralized controller updates networks rules for optimization
o Controller (control plane) updates the switches/routers (data plane)

Virtual Services <4 Controller 4=mm) Physical Network

* Logically centralized controller (eg implemented with replication)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 5

wien

new network
rules

:v N : .‘_7 : ..‘47'” e FEr .'
old network network updates
rules

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Lniversitat
wien

new network
rules

old network
rules

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Lniversitat
wien

old network
rules

new network
rules

possible solution: be fast! But they deviated from that a
bit in the B4 2018 version...

P

e.g., B4 (Google, 2013)"

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

wien

new network
rules

old network
rules

Alternative: Be consistent!
e Algorithms with guarantees

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

g “® Lniversitat
./ wien

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

10

Lniversitat
wien

Toy Example

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 11

Lniversitat
wien

Toy Example

Link should not be used anymore
eg repair, congestion, policy change etc

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 12

Lniversitat
wien

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 13

Update!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 14

Lniversitat
wien

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 15

Lniversitat
wien

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 16

Lniversitat
wien

Appears in Practice

3 T T T T
w Dataplane %
o 2.5 ~Controlplane s S
& |
§ 20 %
B % D
E 15| e
IS o X %é&""""‘
8 1r 5
] Xk
SR N R B
0 20 40 60 80 100
Flow ID 1 !
“Data plane updates may fall behind the control 0.8 _’]
plane acknowledgments and may be even reordered.” o6 d a
. IE 0
Kuzniar et al., PAM 2015 Soal - |
0.2 | .. Control]
. : (D) ¢ Q—
0 i i 1 L |
0 5 10 15 20 25 30

“some switches can ‘straggle,’ taking substantially more time

Time (second)

200

50

inbound delay(ms)

“...the inbound latency is quite variable with a
[...] standard deviation of 31.34ms...

than average (e.g., 10-100x) to apply an update”
Jin et al., SIGCOMM 2014

150 |-
100 ¢

+
£ T
+ 4 .

0

¥, +
§ &
0 .ﬁt ?“ﬂ:‘*ﬂ? +* +ﬁ+¥*+

200 400 600 800 1000

flow #

He et al., SOSR 2015

”

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

17

= Lniversitat
_Jwilen

Old and new states exist simultaneously in a limbo state

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 18

Lniversitat
wien

Ordering Solution: Go backwards through the new routing tree

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 19

= universitat
Jwien

Ordering Solution: Go backwards through the new routing tree

Update!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 20

Ordering Solution: Go backwards through the new routing tree

(D (D v : O O

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 21

Lniversitat
wien

&

)

&S &
7 DN
) e o =
2 2
Z =
=\

-
o=

Ordering Solution: Go backwards through the new routing tree

(D (D v : O O

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 22

g0 Lniversitat
~wien

(D (D v : O O

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 23

Ordering Solution: Go backwards through the new routing tree

(D (D v : O O

Round 0 (old) Round 1 Round 2 (new)

* Always works for single-destination rules
o Also for multi-destination with sufficient memory (“split)

o
* Schedule length: tree depth (up to Q(n)) o
o Optimal scheduling algorithms?

More on scheduling multiple policies:

Basta et al: Efficient Loop-Free Rerouting of
Multiple SDN Flows. ToN 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 24

Greedy? Update as many as possible per round
* Always works ©

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 25

26

network updates

27

Oo—0O
=0 -

network updates

O
>

-

-

-
A ,/,
Ol

28

Oo—0O

< R ——

a

network updates

O
>

-

-

-
A ,/,
Ol

29

network updates

O
>

-

-
A ,/,
Ol

30

Oo—0O

greedy maximal update
a & b update - all others wait
2 nodes update

network updates

O
>

-
- 7
-
A ,/,
7’

O

31

greedy maximal update
a & b update - all others wait
2 nodes update

network updates

O
>

- A

-~ 71
e ’ | S So

s 1

7’

’ 1

1

[]

OE

maximum update
a waits—> all others update
all but 1 update

32

network updates

greedy maximal update maximum update
a & b update - all others wait a waits—> all others update
2 nodes update all but 1 update

33

Find maximum update?

* Let’s go more general
* Delete all cycles in a graph

Find maximum update?

* Let’s go more general
* Delete all cycles in a graph

Find maximum update?

* Let’s go more general
* Delete all cycles in a graph

* NP-hard to approximate
— Feedback Arc Set

Find maximum update?

Let’s go more general
Delete all cycles in a graph

NP-hard to approximate
— Feedback Arc Set

And it’s (essentially) equivalent ®

IR

37

Find maximum update?

Let’s go more general
Delete all cycles in a graph

NP-hard to approximate
— Feedback Arc Set

And it’s (essentially) equivalent ®

o
(1
o

IR

B LﬂlVQI‘Slt&t Also NP-hard for any o(n) for 2-destination policies:
wien F., Wattenhofer, ICCCN 2016

Greedy? Update as many as possible per round

* Always works ©
o

* Maximizing is NP-hard ®
o Transiently Consistent SDN Updates: Being Greedy is Hard. S. Akhoondian Amiri, A. Ludwig, J. Marcinkowski, S. Schmid. In: SIROCCO 2016

o The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. K.-T. Foerster, R. Wattenhofer. In: ICCCN 2016
o

* Single greedy update: O(1) rounds = Q(n) rounds ® ®

o Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

* In general: Does a 3-round schedule exist? NP-hard @ ® ®

o Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 39

Scheduling Loop-free Network Updates: It's Good to Relax! [Ludwigetal., PODC 2015]

Two key ideas:
1. destinatien-d-based source-destination pairs<s,d> - ¢ @ On its own:

Makes 2-round updates

2. re-forwardingltoeps no loops between <s,d> sl 2 sl [V e bar

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 41

g0 Lniversitat
~Jwien

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 42

L wilen

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 43

L wilen

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

* Relaxed? Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 44

© Lniversitat
’wilen

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

* Relaxed?

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-De(Tﬁéd Networks and Consistent Network Updates, 19-08-02 Page 45

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Round 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 46

% universitat
.y wilen

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

Round 3

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 47

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

° |In general: O(log n) rounds (“Peacock”)

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: [EEE/ACM Trans. Netw. 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 48

Lniversitat
wien

._-_._._-_-....-_-‘_._.;,:-f-\._-.._-‘._.__-.._----_.'._._., T eTaTLTIeT T S e W e Te ettt ke e

15/16

(b) After two rounds with Peacock, isomorphic to G in Fig. 10c. (c) The graph Go with 8 nodes. 0/8 to 4/8 is the next shortcut.

-
-

6/8 ty T7/8

(3 3/8

0/8 1/8

15/16

(e) The resulting updated graph, expanded into 16 nodes again.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 49

Lniversitat
Jwien

Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

° |In general: O(log n) rounds (“Peacock”)
o But: Peacock instances with Q(log n) rounds

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 50

7% universitat
wien

Some Open Questions for scheduling loop free updates:

* For both models: Approximation algorithms for #rounds?

Relaxed:

* Optimal #rounds: NP-hard or in P? More open questions and specifgs:

Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefgno Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

* What is the real lower bound?

Non-relaxed:
* NP-hard for O(1) < k < Q(n) rounds?

Eg Congestion?
Network functions?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 51

7% universitat
wien

So Far Everything Was Sort of Centralized...

e ...can we make it more distributed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

52

> Lniversitat
wien

{

Decentralized Updates for ,Tree-Ordering’

* So far: every round:
o Controller computes and sends out updates
o Switches implement them and send acks
o Controller receives acks

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

53

“% niversitat
wien

{

Decentralized Updates for ,Tree-Ordering’

* So far: every round:
o Controller computes and sends out updates
o Switches implement them and send acks
o Controller receives acks

* Alternative: Use dualism to so-called proof labeling schemes

Centralized Controller
(Prover)

Eg P4 switch
(Verifier)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

54

|

C“\)'(/‘a

INTERMISSION

~./

Proof-Labeling Schemes

. 6- P

Deciding vs Checki

Lniversitat
wien

Atithmeticorum Lib, I1. 85
teruallo quadratorum, t&muldn&-ahnm,nnmfo-
QUAESTIO VL,

funieft,

RoPosiTVM quadrarum

divider in duos quadratos.
lmyermm fic ve 16. dividarur
in duos quadratos. Ponatur

us 1 Q. Oportee igitur 16
l—’?mlzq(hnpga'e quadrato.
Fingo quadratum 3 numeris
‘quotquor libuerit, cum defe-
&u tor ynitatum quor conti-
nee laeus ipfvs 16. efto 3 2 N.
= 4. ipfe igitur quadratus eric
4 Q.+ 16.-16 N. hxc zqua-
buneur ynicatibus 16 - 1 C.L
Communisadiiciatur

in |l e fi

rantur fimilia, enq ua-
Tes 16 N. & fie 1 N, (Lq
r almquuimomm "’

ONM
quhlu‘ll

o A aam ..m,...

apayares.

’
dg 157 Acld l\n-.'m»:Mi’n;
@D ’4'“’9- madaw wdyn
vorSim 5. doun o 2elA -
i i omﬂ')n'rn‘p w\h-
d Xw o ﬁ & aime

"~ foute. & i uadrarus
‘& "1“ A

wﬂm))lrm %-ﬂm:

ars mwrl-

P prad mm‘mﬂm é@hnmmﬁlm;mud’n
eixassmyuia 7ok povddieg 15 xad tn ixlopos mpe @ i
QVASTIO IX

R RsVs oporteat quadra-

tum 16. dividere in duos
quadratos. Ponatur rurfus pri~
mi laws 1 N. altetius verd
Tammqne numerorum cum
efectu tor ynitatum , quiot
conftac latus dividendi. Eftoi-
faque 2 N. - 4. crunt quadrati,
hic quidem 1 Q.jlle verd 4 Q.
= 16.~ 16 N. Czterum volo
virumque fimul zquari voita-
tibus 16. Igitur § Q. —+16.-16
N- xquatur vnitatibus 16. & fit
aN. % erit ergo primi latus ¥\

EST‘] iy 1 g
;amrlwm a;hnnFa;a—
Vo nﬁa?m i i % ey
wobopd ¢'cids, i 3§ iny rF oy
J)‘mM\]Ay. o i & ey
Mﬂﬂx wAA/y fwdh 5 1) AJ«
w* . doorry oi mpzwm b
Suvduews puas, o a & Juwd-
waor & 15 Ael4 5 157 B 2o
M'Hmnwlrwmmm it
@u :rd‘uumx;ngt y I
0y tfmzua . u,)m-m

o Smuar. i i pﬂp wpumu mAdest 15 mipdar.
H

Annals of Mathematics, 142 (1995), 443-551

Modular elliptic curves
and
Fermat’s Last Theorem

By ANDREW WILES*

For Nada, Clare, Kate and Olivia

Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos ejusdem nominis fas est dividere: cujus rei
demonstrationem mirabilem sane detexi. Hanc marginis eviguitas
non caperet.

Pierre de Fermat

Introduction

An elliptic curve over Q is said to be modular if it has a finite covering by
a modular curve of the form Xo(N). Any such elliptic curve has the property
that its Hasse-Weil zeta function has an analytic continuation and satisfies a
functional equation of the standard type. If an elliptic curve over Q with a
given j-invariant is modular then it is easy to see that all elliptic curves with
the same j-invariant are modular (in which case we say that the j-invariant
is modular). A well-known conjecture which grew out of the work of Shimura.
and Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q
is modular. However, it only became widely known through its publication in a
paper of Weil in 1967 [We] (as an exercise for the interested reader!), in which,
moreover, Weil gave conceptual evidence for the conjecture. Although it had
been numerically verified in many cases, prior to the results described in this
paper it had only been known that finitely many j-invariants were modular.

In 1985 Frey made the remarkable observation that this conjecture should
imply Fermat’s Last Theorem. The precise mechanism relating the two was
formulated by Serre as the e-conjecture and this was then proved by Ribet in
the summer of 1986. Ribet’s result only requires one to prove the conjecture
for semistable elliptic curves in order to deduce Fermat's Last Theorem.

*The work on this paper was supported by an NSF grant.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

56

ge7% Lniversitat
. wien

Brief Selected Background

* [Naor and Stockmeyer, STOC 1993]:
What can be computed locally?

* [Korman et al., PODC 2005]:
Proof Labeling Schemes (PLS)

* [G6ds and Suomela, PODC 2011]:
Locally Checkable Proofs (LCP)

* [Fraigniaud et al., FOCS 2011,...]:
Nondeterministic Local Decision (NLD)

* And many more recent works, e.g., on approximation, randomization etc.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 57

Lniversitat
wien

Example

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

58

“» universitat
wien

Example

Model
* Each of the n nodes O is a computer, connected by links

* Synchronous rounds
o Simplified: unlimited message size & computational power, unique identifiers for nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

59

Lniversitat
wien

Example

* |sn even?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

60

Lniversitat
wien

Example

* Isn even?
* (J(n) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

61

> Lniversitat
wien

Example

* Isn even?
* O(n) rounds
* What if | tell you it is even? Why should you trust me ©

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

62

Example (U

* |sn even? @
* (A(n) rounds

e Prover assigns 1 bit?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

63

Lniversitat
wien

Example

* |sn even? Q

* (A(n) rounds

* 2rover assigns 1 bit ->2erify in 1 round

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

64

“® universitat
wien

Example (U Q
(1 Q

Is n even? O
Q(n) rounds
2Zrover assigns 1 bit ->2erify in 1 round W

Other way to think of it: 1 bit of non-determinism

General question: How many bits necessary/sufficient?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

65

Lniversitat
wien

Accepting a proof (D Q

* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

66

“® universitat
wien

Accepting a proof (D Q
(0} (0

Q

@»
&

* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

o Prover chose the wrong proof

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

67

* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

o 2rover chose the wrong proof
> Property does not hold Back to SDNs: Switch from a proof to another

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

68

Lniversitat
wien

Decentralizec

When should | update?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

69

Decentralizec

Once my parent updates!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

70

Lniversitat
wien

Decentralizec

Once my parent updates!

Send parent ID

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

71

 Lniversitat
Jwien

Decentralized Updates for , Tree-Ordering“

W | updated W

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

72

Lniversitat
wien

Decentralizec

I‘ll update too!

W | updated W

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

73

g% Lniversitat
. wilen

Decentralized Updates for “Tree-Ordering”
+0Only one controller-switch interaction per route change
+New route changes can be pushed before old ones done (include “version#”)

+Incorrect updates can be locally detected (include depth in tree, prevents loops)

+/- Speed benefit/penalty depends on update scenario and topology

- Requires switch-to-switch communication e.g., [Nguyen et al., SOSR 2017]

K.-T. Foerster, T. Luedi, J. Seidel, R. Wattenhofer: Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDNs . In: Theoret. Comput. Sci. 2018
K.-T. Foerster, S. Schmid: Distributed Consistent Network Updates in SDNs: Local Verification for Global Guarantees. Under submission.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

74

g0 Lniversitat
ey Wieln

Can we also make the initial computation decentralized?

* Classic setting of distributed computing (e.g. LOCAL or CONGEST model)
o Possible benefit in SDNs:

- We do not need to compute from scratch!

* In wired networks, problems depend on a subset of the network
- Leverage Preprocessing

* Further explored in eg:
o Exploiting Locality in Distributed SDN Control. S. Schmid, J. Suomela, HotSDN 2013

o On the Power of Preprocessing in Decentralized Network Optimization. K.-T. Foerster, J. Hirvonen, S. Schmid, J. Suomela, INFOCOM 2019
o BA: Does Preprocessing help under Congestion? K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, PODC 2019

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

75

> Lniversitat
Jwien

Coloring of rings (LOCAL model)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

76

Lniversitat
wien

Coloring of rings (LOCAL model)

* 2-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

77

Lniversitat
wien

&

)

&S &
7 DN
) e o =
2 2
Z =
=\

-
o=

Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

78

% Lniversitat
L wien

Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

79

Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring: ' ‘
> Needs non-constant time

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

80

7% Lniversitat
< wien

Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring: ' ‘
> Needs non-constant time

* Cannot improve in the LOCAL model ®

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

81

75 niversitat
2y wilen

Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:

* 3-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

82

7 wniversitat
<« wilen

Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:
> 0 rounds ©

* 3-coloring: . ‘
> 0 rounds ©

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

83

75 niversitat
2y wilen

Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:
> 0 rounds ©

* 3-coloring:
> 0 rounds ©

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

84

Iversitat

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

P | P

I I
N

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

85

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

I I
K P) P

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

86

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

* With preprocessing: fast!

I I

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

87

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

RN

* With preprocessing: fast!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

88

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

89

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

90

770 niversitat
. wien

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid

* What are further application scenarios?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

91

Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid

* What are further application scenarios?

* What else can we do with the SUPPORT of Preprocessing?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 92

Lniversitat
wien

Practical Motivation for Preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

93

 Lniversitat
Jwien

Practical Motivation for Preprocessing

* Decentralization aids scalability

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

94

> Lniversitat
_Jwien

Practical Motivation for Preprocessing

* Decentralization aids scalability
o But: Many problems are not “local” (e.g., coloring)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

95

Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

96

g2 Lniversitat
. wilen

Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

97

g2 Lniversitat
. wilen

Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

98

ge7% Lniversitat
_Jwilen

Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios

o Often we just react to events, physical topology in wired networks does not grow suddenly

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

99

g2 Lniversitat
< Jwien

Practical Motivation for Preprocessing

* Decentralization aids scalability
o But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios
o Often we just react to events, physical topology in wired networks does not grow suddenly

* Example: Software-Defined Networking, single (logically centralized) controller does not scale

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 100

g2 Lniversitat
< Jwien

Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios
o Often we just react to events, physical topology in wired networks does not grow suddenly

* Example: Software-Defined Networking, single (logically centralized) controller does not scale
o Create many local controllers that can react quickly, that control small set of “dumb” nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 101

The SUPPORTED Model
* Extends the LOCAL model (w. unique IDs) with preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 102

The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 103

(5308 [}) o e
_}-,* RN

A=y

o] b R A

Z =l O =]

X 7 Wlel

7 &,

{fﬂfll"

The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 104

(7203 L] [e e
KSF b, N

PN

gl S 50 N2

Z (S YRR 2

Z s MY I

7. VLY

{Ignis

RN
The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 105

(7203 L] [e e
KSF b, N
PN
gl S 50 N2
Z (S YRR 2
Z s MY I
7. VLY
{Ignis

RN
The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN

* Two phases:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 106

g2 Lniversitat
ey wilen

RN
The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN

* Two phases:
1. Preprocessing: compute any function on H and store output locally

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 107

ge7% Lniversitat
_Jwilen

The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

* Two phases:

1. Preprocessing: compute any function on H and store output locally
2. Solve problem on G in LOCAL model with preprocessed outputs

N

N

RN

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

108

g2 Lniversitat
< Jwien

The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

* Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G in LOCAL model with preprocessed outputs
- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)

N

N

N

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

109

g2 Lniversitat
< Jwien

RN
The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

N

* Two phases: c

1. Preprocessing: compute any function on H and store output locally et variant: allow to
2. Solve problem on G in LOCAL model with preprocessed outputs. o communicate on support H

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 110

(o308 . . o
A AT

e G ITONGS

e -\

= M

z] per

7 LE/s

{Ignis

Does the SUPPORTED Model make everything easy?

* Task: Leader election (O(diameter) runtime in LOCAL model)

-

o Easy if G=H: precompute leader, O rounds
o But for different G:
- We need to compute a leader for each connected component of G!
* Component has no leader? Re-elect ®
« Component has multiple leaders? Re-elect ®
« Components can have asymptotically same diameter ®

* SUPPORTED model does not provide a “silver bullet”
o Not even for the active variant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Page 111

Lniversitat
wien

Maybe even useless in general?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 112

“% niversitat
wien

Maybe even useless in general?
* Let the support graph H be a complete graph

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 113

g=7% Lniversitat
< wien

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 114

ge7» Lniversitat
</ wien

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 115

ge7» Lniversitat
</ wien

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 116

g7 Lniversitat
< wilen

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

* For example, if a SUPPORTED algorithm has polylogarithmic runtime
o 3 LOCAL algorithm with constant factor overhead

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 117

g2 Lniversitat
< Jwien

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

* For example, if a SUPPORTED algorithm has polylogarithmic runtime
o 3 LOCAL algorithm with constant factor overhead

o

© 0

Idea: simulate that support graph H is a
complete graph

/X\

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 118

g2 Lniversitat
< Jwien

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?

. In active model:
o Problem: G can be arbitrary

Congested Clique

* For example, if a SUPPORTED algorithm has polylogarithmic runtime

o 3 LOCAL algorithm with constant factor overhead
o O O

Idea: simulate that support graph H is a
complete graph

/X\

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 119

Lniversitat
wien

But: Restricted Graph Families are Useful ©

* Real topologies are usually not complete graphs

 Case study: planar graphs
o Remain planar under edge deletions
o Are 4-colorable

»,Geloeste und ungeloeste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 120

® Lniversitat
’ wilen

Case Study: Dominating Set

* Task: Find subset D of nodes s.t. every node
o Has a neighbor in D orisin D ‘

* Can we pre-compute?
o A bad one yes: everyone in D!
o But not an optimal one!
- Graph can look very different

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 121

 Lniversitat
Jwien

Case Study: Minimum Dominating Set in Planar Graphs

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 122

% Lniversitat
Jwien

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 123

5 Lniversitat
Jwien

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 124

Z % wniversitat
< wien

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 125

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm:
> Find weight-appropriate pseudo-forest [constant time ©)]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 126

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo—foorest [constant time ©)]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

127

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo—foorest [constant time ©)]
o 3-color pseudo-forest [non-constant time ®]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

128

(7203 L] [e e
AT TR
oyt)N
o= =)
= -\ A
z] per
7. Ll/ey
{Ignis

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 129

g s wniversitat
. wien

SUPPORTED speed-up:
1) precompute 4-coloring
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds

o Find weight-appropriate pseud%j‘
O

o 3-color pseudo-forest [non-constant time ®]

o Run clustering/optimization algorithms on components of constant size [constant time ©]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 130

(o308 . . o
KSF b, N
7 // . 76 m Ive S I tat
o= =) I
= [k -\ A
z] per
X 7 wilen
7 /%
{Ignis

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 131

g2 Lniversitat
< Jwien

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

 Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

132

g2 Lniversitat
e 7 wilen

Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

* Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]
o Also for planar graphs for maximum independent set & maximum matching

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

133

g Lniversitat
. wilen

Further Results in the Active SUPPORTED Model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 134

e universitat
wien

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 135

S Lniversitat
Jwien

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model
* Connection to SLOCAL model [Ghaffari et al., STOC 2017]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 136

7% Lniversitat
< wien

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model

* Connection to SLOCAL model [Ghaffari et al., STOC 2017]
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 138

ge7» Lniversitat
</ wien

Use all edges of H
for communication

o O

Further Results in the Active SUPPORTED Model Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] = 20W/logn)

., O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 139

Lniversitat
wien

Polylogarithmic-Time Deterministic Network Decomposition
and Distributed Derandomization

Use all edges of

. . Vaclav Rozhon Mohsen Ghaffari*
for communicatic ETH Zurich ETH Zurich
rozhonv@student.ethz.ch ghaffari@inf.ethz.ch
o O
Abstract

Further Results in the Aci‘ive SUPPORTE

e Connection to SLOCAL model [Ghaffari et al., STO(
- SLOCAL(t) can be simulated in SUPPORTED(O(t*pol

We present a simple polylogarithmic-time deterministic distributed algorithm for network
decomposition. This improves on a celebrated 20(VI%6™)_time algorithm of Panconesi and Srini-
vasan [STOC’93] and settles one of the long-standing and central questions in distributed graph
algorithms. It also leads to the first polylogarithmic-time deterministic distributed algorithms
for numerous other graph problems, hence resolving several open problems, including Linial’s
well-known question about the deterministic complexity of maximal independent set [FOCS’87].

Put together with the results of Ghaffari, Kuhn, and Maus [STOC’17| and Ghaffari, Har-
ris, and Kuhn [FOCS’18], we get a general distributed derandomization result that implies
P-RLOCAL = P-LOCAL. That is, for any distributed problem whose solution can be checked in
polylogarithmic-time, any polylogarithmic-time randomized algorithm can be derandomized to
a polylogarithmic-time deterministic algorithm.

By known connections, our result leads also to substantially faster randomized algorithms for
a number of fundamental problems including (A + 1)-coloring, MIS, and Lovész Local Lemma.

937v1 [cs.DS] 25 Jul 2019

Through known connections, this general derandomization leads to better deterministic and
randomized distributed algorithms for numerous problems. A sampling of end-results includes
poly(log n)-round deterministic algorithms for MIS, A + 1 coloring, the Lovasz Local Lemma®, hy-
pergraph splitting, and defective coloring. These also lead to substantially improved randomized al-
gorithms, including a poly(log log n)-time randomized A+ 1 coloring [CLP18] and a poly(log log n)-
time randomized algorithm for Lovéasz Local Lemma in constant degree graphs [GHK18§].

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 140

ge7» Lniversitat
</ wien

Use all edges of H
for communication

o O

Further Results in the Active SUPPORTED Model Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] = 20W/logn)

., O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 141

g77% Lniversitat
</ wien

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20(logn)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 142

g2 Lniversitat
. wilen

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20Wlos™)
e
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 143

g2 Lniversitat
. wilen

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

e
, O
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20Wlos™)
e
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
é;g. network size, restricted H, known inputs..

<

—

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 144

g2 Lniversitat
. wilen

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

e
, O
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20(logn)

o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 145

g2 Lniversitat
< Jwien

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 146

g2 Lniversitat
< Jwien

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 147

g2 Lniversitat
< Jwien

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 148

g2 Lniversitat
< Jwien

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)
o Set of size (a(G)-€)n in O(log,,. n), respectively (1+€) approximation if maximum degree A constant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 149

ge7% Lniversitat
_Jwilen

Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)
o Set of size (a(G)-€)n in O(log,,. n), respectively (1+€) approximation if maximum degree A constant
o Cannot be approximated by o(A/log A) in time o(log, n) in the active SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 150

Lniversitat
Jwien

Bigger Open Question/Opportunity

How to efficiently leverage such
preprocessing/distributed computing
to efficiently scale controllers (and network updates)?

So let’s get back things we know about ©
So far largely unexplored Congestion and network functions?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 151

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 153

g0 Lniversitat
ey Wieln

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 154

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 0

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 155

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 156

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 0

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 157

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 158

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 159

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 0

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 160

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 161

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 162

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 0

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 163

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 164

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 165

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 3

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 166

Lniversitat

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 3

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 167

> Lniversitat
Jwien

Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 4

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 168

g7 Lniversitat
U wilen

Complexity of Avoiding Congestion?
* NP-hard already for 2 unit size flows on general graphs

* Also NP-hard on acyclic graphs for k flows

> But can be FPT characterized for k flows on acyclic graphs: 0(2°(108 k)| G|)
- In other words, linear runtime for constant k on DAGs

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 169

Lniversitat
5 wilen

Complexity of Avoiding Congestion?

* NP-hard already for 2 unit size flows on general graphs

Block1 vl § Block2 v2 Block3 v3

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 170

versitat
en

m dependency
~a L "

Block1 vl § Block2 v2 Block3 v3

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 171

> Lniversitat
Jwien

Complexity of Avoiding Congestion?

* NP-hard already for 2 unit size flows on general graphs

* Also NP-hard on acyclic graphs for 6 flows
> But can be FPT characterized for k flows on acyclic graphs: 0(2°(108 k)| G|)

- In other words, linear runtime for constant k on DAGs

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 172

Lniversitat
wien

Which forwarding rule to update first?

-
-~ - N
- - N
-~ P N N
- - \ N
- P \ \
/’, P S \4
<) <4
:)
a 4
o
R _ r\ Phd
_, \5—,

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 173

Lniversitat
wien

.- _=>< ~
-~ - N N
-
- P \ \
-’
- - \ \
-, - <4 'y
< [T -
s >u = Iw
a &
b
R _ r\ Phd
_, \5—,

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 174

Lniversitat
wien

&
£S5
2

\7

[
=
'z
=\

Page 175

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Lniversitat
wien

&
£S5
-

\7

[
=
'z
=\

Page 176

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Lniversitat
wien

—~ -
-~ P N N
- \
- - \
- P \ \
- - \
-~ \
-’ - <4 <
< e b)
s >u = Iw
a 4
o
R _ r\ Phd
_, \5—,

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 177

Lniversitat
wien

-~ -
- ,’ N \
- \
-~ -~ \
- Phe \ \
- P \
-~ P \
-’ <4 <
< o -
s >u = Iw
a &
o
R _ r\ Phd
_, \5—,

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 178

Lniversitat
wien

&
£S5
-

\7

[
=
'z
=\

Page 179

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Lniversitat
wien

—~ -
-~ P N N
- \
- - \
- P \ \
- - \
-~ \
-’ - <4 <
< e b)
s >u = Iw
a 4
o
R _ r\ Phd
_, \5—,

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 180

Lniversitat
wien

~ -
-~ P N N
- N\
- - N
- P \ \
- - \
- \
- - < <
<)
s >u = Iw
a 4
o
R _’ Y'\ P
_, \5—’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 181

Lniversitat
wien

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 182

 Lniversitat
Jwien

However: If packets must either take
the new or the old path (and no mix),
then polynomial-time solvable
(Cerny et al., DISC 2016)

Satisfy both & @ ?

NP-hard!

Transiently Secure Network Updates. A. Ludwig, S. Dudycz, M. Rost, S. Schmid. SIGMETRICS 2016.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 183

> Lniversitat
wien

Different model: “tagged” Flows

* |Identified by a “tag” in the packet header, update via
o Install new tag‘ rules
o Switch from tag to tag’ at source

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 184

Iversitat

If we move a flow, will there be congestion?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 185

> Lniversitat
Jwien

If we move a flow, will there be congestion?

* How do we move a flow F? Usually: 2-phase commit: [Rreitblatt et al., SIGCOMM’12]

O——0O

F

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 186

e universitat
s wien

If we move a flow, will there be congestion? F
* How do we move a flow F? Usually: 2-phase commit: 277N
’ 4 DS
o Deploy new flow rules F / N
F

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 187

% Lniversitat
Jwien

If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 188

If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’

Can also be implemented by
proof-labeling techniques

Go backwards with
distance information

Central Control over Distributed Asynchronc® ks and Consistent Network Updates, 19-08-02 189

2% Lniversitat
L wien

If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’
o Clean-up of old rules

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 190

Iversitat

If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’
o Clean-up of old rules

* First check:
° |s the new network state without congestion?

o . . [‘
Easy © (flow size versus capacity) [R Ty o

labeling techniques

° |s that it?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 191

2% Lniversitat
Jwilen

A Small Sample Network

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 192

Lniversitat
wien

«
EEEEEEEEEERN EEEEEEEEEEER

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 193

Lniversitat
wien

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 194

Lniversitat
wien

This would work

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 195

Lniversitat
wien

«
EEEEEEEEEEERN EEEEEEEEEERN EEEEEEEEEEER

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 196

Lniversitat
wien

But Red is a bit Slow..

3
N

B
\
o Y
,
s i I EEEEEEEER EEEEEEEEEEEEER EEEEEEEEEEERN

“

> ,, ~

/
/

Unit size flows and capacities

>
Wt
EEEEEEEEEEERN EEEEEEEEEERN

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 197

Lniversitat
wien

IIIIIIIIIIIIII IIIIIIIIIIII

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 198

» Lniversitat
Jwien

So lets go Back ...

Round 0 (old)

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 199

Round 1

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 200

Lniversitat
wien

Round 2

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 201

Lniversitat
wien

<
EEEEEEEEEEER EEEEEEEEEEER EEEEEEEEEEER

Round 3

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 202

Round 3 (hew)

Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 203

How hard is this (feasibility)? : ><24

[

Flows may only take old or new paths:
e NP-hard via reduction from Partition &

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 204

 Lniversitat
Jwien

How hard is this (feasibility)? : :

Flows may only take old or new paths:

 NP-hard via reduction from Partition O O

Intermediate flow allocations not restricted to old and new:

* NP-hard already for just 2 unit size flows

Hardness intuition: find

intermediate path for “storage”

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 205

> Lniversitat
Jwien

How hard is this (feasibility)?

Flows may only take old or new paths:

 NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

* NP-hard already for just 2 unit size flows

Some flows might need to move

° back and forth repeatedly® ®

* |s the problem at least in NP? . e

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 206

> Lniversitat
Jwien

How hard is this (feasibility)?

Flows may only take old or new paths:

* NP-hard via reduction from Partition How about splittable flows?

Intermediate flow allocations not restricted to old and new: °

* NP-hard already for just 2 unit size flows

Not clear if the problem is in NP! (It is known to be in EXPTIME)

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 207

Captures Asynchrony

Consistent Migration of Splittable Flows o

Idea: Flows can be on the old or new route w.r.t. an update
For all edges:),y max (old, new) < capacity.

No ordering exists (2/3 +2/3 > 1)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 208

Consistent Migration of Splittable Flows

Approach of SWAN*: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

*: Achieving High Utilization with Software-Driven WAN, SIGCOMM 2013
Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 209

G iniversitat
o wien

Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 1 of 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 210

<y N . .
g,\ f:.' j’ .. ~\J\¢J_-y)
= (2 AR TE)S
e wilen
e oY)
{Ianis

Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 1 of 2 @

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 211

Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 2 of 2 @

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 212

(5308 [} L] L}
A AL

= P = A=\

=z RS i 2

= (311 A)5

= wien

7 g'.“.:; =y b,
: IIanis

Consistent Migration of Splittable Flows

No slack on flow edges?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 213

S0 Lniversitat
L wien

Consistent Migration of Splittable Flows

Alternate routes?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 214

Consistent Migration of Splittable Flows

Think: variable swappingof b & g
l.x:=b,2.b:=g,3. g :=x

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 215

Consistent Migration of Splittable Flows

Think: variable swappingof b & g
l.x:=b,2.b:=g,3. g :=x

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 216

Consistent Migration of Splittable Flows

Think: variable swappingof b & g
l.x:=b,2.b:=g,3. g :=x

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 217

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 218

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

1 update? 2 updates? 4 updates? ...

@

i

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 219

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search
O®(1/e) updates ®

&

i

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 220

Consistent Migration of Splittable Flows

Can we decide in (polynomial) time?

Flow migration “Halting Problem”

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 221

“» Lniversitat
7 wien

To Slack or not to Slack?

Slack of x on all flow edges?
|1/x] — 1 updates

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 222

To Slack or not to Slack?

What if not?

Try to create slack

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 223

g7 universitat
. wien

To Slack or not to Slack?

Combinatorial approach
Augmenting paths

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 224

Combinatorial Approach

Move single commodities at a time

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 225

Combinatorial Approach

Where to increase flow?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 226

(o308 . . o
A AT
e G ITONGS
e -\
= M
z] per
7 LE/s
{Ignis

Combinatorial Approach

Where to push back flow?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 227

Je7 Lniversitat
L wien

Combinatorial Approach

Resulting residual network

\
e 4 l N
Y 4 | \
/’ ’ lO d\“x AN
/ 7 ~ \
y -’ 4 I S
F .7 v RN
P I N

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 228

g0 Lniversitat
7/ wien

Combinatorial Approach

We found an augmenting path = create slack on e

puEENNEENmg,
‘I- ...
L 4

N\
\\
\ LN
R
00
| I
1 [
[[
[[
I [
I 4
-..;l ,'ﬁt
V4
¥
¥ 4
,/

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

229

High-level Algorithm Idea

* No slack on flow edges? Find augmenting paths
o On both initial and desired state (updates can be performed in reverse)
o Success? Use SWAN method to migrate

* Can’t create slack on some flow edge?

o Consistent migration impossible
By contradiction (else augmenting paths would create slack)

* Runtime: 0(Fm3)

o (F being #commodities, m being #edges)
On Consistent Migration of Flows in SDNs. S. Brandt, K.-T. Foerster, R. Wattenhofer, INFOCOM 2016

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 230

Y Lnivel‘SI’[a’[Maybe surprisingly:
wien If the new flows fit in somehow,

we can migrate consistently!

Open problems for scheduling flow migration O

* What happens when we can pick the new paths? °

o |dea: Fit the flows in, does not matter where
.
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

231

Qe

size of each flow: 1
capacity of links: 1

232

size of each flow: 1
capacity of links: 1 233

size of each flow: 1
capacity of links: 1 234

size of each flow: 1
capacity of links: 1 235

size of each flow: 1
capacity of links: 1 236

size of each flow: 1
capacity of links: 1 237

size of each flow: 1
capacity of links: 1 238

size of each flow: 1
capacity of links: 1 238

size of flows: 1, 2,1, 1
capacity of links: 1 (or marked) 21

size of flows: 1, 2,1, 1
capacity of links: 1 (or marked) 242

size of flows: 1, 2,1, 1
capacity of links: 1 (or marked) 243

size of flows: 1, 2,1, 1
capacity of links: 1 (or marked) 204

size of flows: 1+3=4, 2,1, 1
capacity of links: 1 (or marked) 245

* Flows end up at the wrong destination!

* So let’s stick with augmenting flows that don’t mix destinations

246

size of each flow: 1
capacity of each links: 1 247

size of each flow: 1
capacity of each links: 1 218

O=00—O = 0O0—O0—C
& <44\ o

=0 RO

size of each flow: 1
capacity of each links: 1 249

a /
\\ \ I . '
e \" \ ‘\ Q

size of each flow: 1
capacity of each links: 1 250

O —O—O 00— 00—
A \‘\ \
O\ o
\ \‘\

“it is unlikely that similar techniques can be developed
for constructing multicommodity flows”
[Hu, 1963]

size of each flow: 1
capacity of each links: 1 251

0 LniverSitét Maybe surprisingly:
wien If the new flows fit in somehow,
‘ we can migrate consistently!

Open Problems for scheduling flow migration O

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

.
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 252

™ LniverSitét Maybe surprisingly:
wien If the new flows fit in somehow,
we can migrate consistently!

Open Problems for scheduling flow migration O

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

.
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 253

) Lniversitét Maybe surprisingly:
wien If the new flows fit in somehow,

we can migrate consistently!

Open Problems for scheduling flow migration O °

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

.
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates

« What habpbens when considering Link Latencv? Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
PP g y: IEEE Communications Surveys & Tutorials, 21(2), 2019

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 254

RTT in ms

Iversitat

The Impact of Latency (in Testbed)

g _
ping of old path
o
m —
(o —
capacity =1
ﬂ- —
size=1
>
o - % size=1 ->
ping of new path . J
| x | | l \ -
10 15 20 25 30 o T T—— =
----—--———————‘_——

secC

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 255

RTT in ms

Lniversitat
wien

The Impact of Latency (in Testbed)

N I
| ping of old path

o |
I

= :

© I

| I

I capacity =1

ﬂ- -
I size=1
I |

N - | ———t e
! ping of new path

10 20 25 30

secC

o
(=)
T
|
|
I
I
I
]
I
|
I
I
|
|
i
1
1
I e
I oF
|
|
|
|
1
1
I
vfr

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 256

RTT in ms

Lniversitat
wien

The Impact of Latency (in Testbed)

N 4 [
l ping of old path
= I
I
SEE
. I
I
I capacity =1
ﬂ- —
_I size=1
o - : e size=1 ->
; ping of new path . J
I l I I T —’
10 15 20 25 30 @____ ;@
—-----_--_-_____‘_-————

secC

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 257

RTT in ms

The Impact of Latency (in Testbed)

N
-—

o
—

Lniversitat
wien

'_‘m-‘_‘—"‘"’_.h
I
I
| UDP
I
1
I
I
0
0
L
I I T I
10 15 20 25 30
sec

capacity =1

size=1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 258

Iversitat

The Impact of Latency (in Testbed)

o
N
lg]
-
TCP
)]
o
E2
£
I: capacity =1
o o size=1
size=1
________ -
o

T — T | T S)
10 15 20 25 30 O-

SecC

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 259

Lniversitat
wien

Because there is also work that
focuses on better

The Impact of Latency (in Testbed) notably ,;';’,}f,fz':::fzna,

https://sites.google.com/site/timedsdn

N I
l
= I
]
o 1\ O
= I \ packet loss equivalent to|latency-A
£ ol I\ ,
— I capacity =1
E < I size=1
I el
o - I
i -
I 'I' I I T ___’
10 15 20 25 30 T T ——— T
sec

Even holds without
Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Ug asynchrony 260

https://sites.google.com/site/timedsdn/

= Lniversitat
Jwien

CDF of the Congestion Duration

100 -

80

60 -

CDF

40

20 -

0_

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 261

g% Lniversitat
. wilen

Recap

 Common (coarse-grained) model:
o Sum for all flows: Max(old flow rules, new flow rules) does not violate capacity [SWAN, SIGCOMM’13]
o Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows

* Does not capture congestion due to flows congesting themselves!
o How hard?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 262

Lniversitat
U wilen

How hard?
* Unit latencies and splittable flow of unit size:
o Already NP-hard for a single flow! Find a temporary path to

offload parts of the flow

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 263

‘2 Wniversitat
_/ wien

Recap of the last few slides

 Common (coarse-grained) model:

o Sum for all flows: Max(old flow rules, new flow rules) does not violate capacity [SWAN, SIGCOMM’13]

o Decidable in polynomial time [Brandt et al., INFOCOM’16]
- For unsplittable flows: NP-hard already for 2 flows

* Does not capture congestion due to flows congesting themselves!
o How hard?

- NP-hard for unit size/latency and splittable flows ®

* How to fix?
o Treat old and new flow rules as separate flows?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 264

g7h Lniversitat
. wilen

Old and New as Different Entities

* ldea: We can handle interplay between different flows
o Handle old and new as different flows?
- Prevents such congestion in popular approaches, eg SWAN, Dionysus, zUpdate etc.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 265

dn niversitat
</ wien

Relax for Polynomial-Time Lossless Updates

* |dea: Relax the problem formulation

o Be congestion-free for any set of latencies
- (l.e., adversary may change latencies at any time)

Achieved by spreading
the network load

* Now congestion-free intermediate steps become reversible

* Rough structure of the algorithm (for splittable flows):

o Take old (new) state, reach intermediate state where critical set of edges have spare capacity
- Not possible? No congestion-free migration possible.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 267

o niversitat
wien

How to extend beyond

Recap of the last few slides a single destination?

 Common (coarse-grained) model:

o Sum for all flows: Max(old flow rules , new flow rules) does not violate capacity [SWAN, SIGCOMM’13] ®

o Decidable in polynomial time [Brandt et al., INFOCOM’16]
- For unsplittable flows: NP-hard already for 2 flows ®

* Does not capture congestion due to flows congesting themselves!
o NP-hard for unit size/latency and splittable flows ®

But requires non-fixed
e By relaxing latency constraints: TR BL [FEAE
o Again polynomial-time decidable

* Interestingly: Augmenting flow idea still works even without relaxing latency constraints!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

268

ge7% Lniversitat
_Jwilen

Open Problems and Outlook in General

* Various algorithmic and complexity questions for a centralized controller
o See recent survey

* First connections to more classic distributed computing topics are made
o Proof-labeling
- Very basic right now, how to build more complex/efficient systems?

* Maybe the bigger question: How to properly distribute the centralized controller
o Opportunity: The SUPPORTED model / preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

269

Lniversitat
wien

ome References

. Survey of Consistent Software-Defined Network Updates. Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. IEEE Communications Surveys and Tutorials (COMST), Volume 21, Issue 2, pp. 1435-1461, secondquarter 2019.
N Brief Does ing Help under Congestion? Klaus-Tycho Foerster, Janne Korhonen, Joel Rybicki, and Stefan Schmid. ACM Symposium on Principles of Distributed Computing (PODC), Toronto, Ontario, Canada, July 2019.
. On Polynomial-Time Congestion-Free Software-Defined Network Updates. Saeed Akhoondian Amiri, Szymon Dudycz, Mahmoud Parham, Stefan Schmid, and Sebastian Wiederrecht. IFIP Networking, Warsaw, Poland, May 2019.

. Latency and Consistent Flow Migration: Relax for Lossless Updates. Klaus-Tycho Foerster, Laurent Vanbever, and Roger 18th IFIP Conference (IFIP ing), Warsaw, Poland, May 2019.
. On the Power of ing in ized Network O| Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. 39th EEE International Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
. RADWAN: Rate Adaptive Wide Area Network. Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), Budapest, Hungary, August 2018.
. Congestion-Free Rerouting of Flows on DAGs. Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht. 45th International Colloquium on Automata, Languages, and Programming (ICALP), Prague, Czech Republic, July 2018
. Loop-Free Route Updates for Software-Defined Networks. Klaus-Tycho Foerster, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. IEEE/ACM Transactions on Networking (ToN), Volume 26, Issue 1, pp. 328-341, February 2018.
. Efficient Loop-Free Rerouting of Multiple SDN Flows. Arsany Basta, Andreas Blenk, Szymon Dudycz, Arne Ludwig, and Stefan Schmid. IEEE/ACM Transactions on Networking (ToN), 2018, - f
. Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDN. Klaus-Tycho Foerster, Thomas Lued, Jochen Seidel, and Roger Wattenhofer. Theoretical Computer Science (TCS), Volume 709, pp. 48-63, January 2018. N Ot a I I’ I so m e a re
L .
. On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds. Klaus-Tycho Foerster. 16th IEEE International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, November 2017. m I s s I n g S h o u I d b e
’
. Augmenting Flows for the Consistent Migration of Multi-Commoity Single-Destination Flows in SDNs. Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. Pervasive and Mobile Computing (PMC), Volume 36, pp. 134-150, April 2017. ° . I - - -
isted on slides directly
. Optimal Consistent Network Updates in Polynomial Time. Pavol Cerny, Nate Foster, Nilesh Jagnik, Jedidiah McClurg. DISC 2016
. The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. Klaus-Tycho Foerster and Roger Wattenhofer. 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, Hi, USA, August 2016.
. Transiently Consistent SDN Updates: Being Greedy is Hard. Saeed Akhoondian Amiri, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. 23rd International Colloguium on Structural Information and Communication Complexity (SIROCCO), Helsinki, Finland, July 2016.
. Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes. Klaus-Tycho Foerster, Ratul Mahajan, and Roger 15th IFIP ing Conference (IFIP ing), Vienna, Austria, May 2016.
. On Consistent Migration of Flows in SDNs. Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. 36th IEEE International Conference on Computer Communications (INFOCOM), San Francisco, California, USA, April 2016.
. Exploiting Locality in Distributed SDN Control. Stefan Schmid and Jukka Suomela. ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Hong Kong, China, August 2013.
. Achieving High Utilization with Software-Driven WAN. Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri and Roger Wattenhofer. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM) 2013.
. Abstractions for network update. Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, David Walker. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM) 2012.
. Fast Distributed Approximations in Planar Graphs : Andrzej Czygrinow, Michal Hanckowiak, Wojciech Wawrzyniak:.. DISC 2008: 78-92
. Multi-Commodity Network Flows. T. C. Hu. Operations Research 11(3):344-360, 1963.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 270

Lniversitat

Central Control over Distributed Asynchronous Systems:
A Tutorial on Software-Defined Networks and Consistent Network Updates

Klaus-T. Foerster

A e i il S s il ot e i ST

= : ; o
4 ' y
=
: 714 | IRES
:
J Le=hl

