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Brief Preamble

* Focus on algorithmic/complexity issues in consistent updates in Software Defined Networks (SDNs)
o Not so much on system etc. issues respectively SDNs themselves

* Two “bigger” connections to classic distributed computing halfway-in
o Proof Labeling Schemes
o Distributed Control Plane
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Network Updates

* The Internet: Designed for selfish participants
o Often inefficient (low utilization of links), but robust

* But what if eg the Wide-Area Network is controlled by a single entity?
o Examples: Microsoft & Amazon & Google ...
> They spend hundreds of millions of dollars per year
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Networks, for ISPs etc

®
Network Updates Eg update link capacity at runtime?* o
. NORTH AMERICA Dublin
Seattle FITR D)

New York

Los Angeles

Hong Kong Miami

Think: Google, Amazon, Microsoft

*:RADWAN: Rate Adaptive Wide Area Network. R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, P. Gill. ACM SIGCOMM 2018
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2 N A Note: There is also a lot of (prior) research on consistency
Lvr\}l\e/re]rsnat before SDNs — can’t cover everything in this tutorial

® ® See history section in:
c o o Survey of Consistent Software-Defined Network Updates
SOftwa re DEfIﬂEd Networklng Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
e Possible solution: IEEE Communications Surveys & Tutorials, 21(2), 2019

o Software-Defined Networking (SDNs)

* General Idea: Separate data & control plane in a network

* Centralized controller updates networks rules for optimization
o Controller (control plane) updates the switches/routers (data plane)

Virtual Services <4 Controller 4=mm) Physical Network

* Logically centralized controller (eg implemented with replication)
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new network
rules
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new network
rules

old network
rules
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old network
rules

new network
rules

possible solution: be fast! But they deviated from that a
bit in the B4 2018 version...

P

e.g., B4 (Google, 2013)"
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new network
rules

old network
rules

Alternative: Be consistent!
e Algorithms with guarantees
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Toy Example
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Toy Example

Link should not be used anymore
eg repair, congestion, policy change etc
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Update!
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Appears in Practice
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Old and new states exist simultaneously in a limbo state
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Ordering Solution: Go backwards through the new routing tree
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Ordering Solution: Go backwards through the new routing tree

Update!
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Ordering Solution: Go backwards through the new routing tree

(D (D v : O O
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Ordering Solution: Go backwards through the new routing tree

(D (D v : O O
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(D (D v : O O
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Ordering Solution: Go backwards through the new routing tree

(D (D v : O O

Round 0 (old) Round 1 Round 2 (new)

* Always works for single-destination rules
o Also for multi-destination with sufficient memory (“split)

o
* Schedule length: tree depth (up to Q(n) ) o
o Optimal scheduling algorithms?

More on scheduling multiple policies:

Basta et al: Efficient Loop-Free Rerouting of
Multiple SDN Flows. ToN 2018
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Greedy? Update as many as possible per round
* Always works ©
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greedy maximal update
a & b update - all others wait
2 nodes update

network updates
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greedy maximal update
a & b update - all others wait
2 nodes update

network updates
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maximum update
a waits—> all others update
all but 1 update
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network updates

greedy maximal update maximum update
a & b update - all others wait a waits—> all others update
2 nodes update all but 1 update

33



Find maximum update?

* Let’s go more general
* Delete all cycles in a graph
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Find maximum update?

* Let’s go more general
* Delete all cycles in a graph

* NP-hard to approximate
— Feedback Arc Set
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Let’s go more general
Delete all cycles in a graph

NP-hard to approximate
— Feedback Arc Set

And it’s (essentially) equivalent ®
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Find maximum update?

Let’s go more general
Delete all cycles in a graph

NP-hard to approximate
— Feedback Arc Set

And it’s (essentially) equivalent ®
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B LﬂlVQI‘Slt&t Also NP-hard for any o(n) for 2-destination policies:
wien F., Wattenhofer, ICCCN 2016

Greedy? Update as many as possible per round

* Always works ©
o

* Maximizing is NP-hard ®
o Transiently Consistent SDN Updates: Being Greedy is Hard. S. Akhoondian Amiri, A. Ludwig, J. Marcinkowski, S. Schmid. In: SIROCCO 2016

o The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. K.-T. Foerster, R. Wattenhofer. In: ICCCN 2016
o

* Single greedy update: O(1) rounds = Q(n) rounds ® ®

o Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

* In general: Does a 3-round schedule exist? NP-hard @ ® ®

o Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018
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Scheduling Loop-free Network Updates: It's Good to Relax! [Ludwigetal., PODC 2015]

Two key ideas:
1. destinatien-d-based source-destination pairs<s,d> - ¢ @ On its own:

Makes 2-round updates

2. re-forwardingltoeps no loops between <s,d> sl 2 sl [V e bar

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 41
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 42
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Round 1
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

* Relaxed? Round 1
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

* Relaxed?

Round 1
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed?

Round 2
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

Round 3

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 47



Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

° |In general: O(log n) rounds (“Peacock”)

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: [EEE/ACM Trans. Netw. 2018
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(b) After two rounds with Peacock, isomorphic to G in Fig. 10c. (c) The graph Go with 8 nodes. 0/8 to 4/8 is the next shortcut.

-
-

6/8  ty T7/8

(3 3/8

0/8 1/8

15/16

(e) The resulting updated graph, expanded into 16 nodes again.
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Scheduling Loop-free Network Updates: It's Good to Relax!

* Non-relaxed? Q(n) rounds

e Relaxed? Just 3 rounds

° |In general: O(log n) rounds (“Peacock”)
o But: Peacock instances with Q(log n) rounds

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018
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Some Open Questions for scheduling loop free updates:

* For both models: Approximation algorithms for #rounds?

Relaxed:

* Optimal #rounds: NP-hard or in P? More open questions and specifgs:

Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefgno Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

* What is the real lower bound?

Non-relaxed:
* NP-hard for O(1) < k < Q(n) rounds?

Eg Congestion?
Network functions?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 51
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So Far Everything Was Sort of Centralized...

e ...can we make it more distributed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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{

Decentralized Updates for ,Tree-Ordering’

* So far: every round:
o Controller computes and sends out updates
o Switches implement them and send acks
o Controller receives acks

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralized Updates for ,Tree-Ordering’

* So far: every round:
o Controller computes and sends out updates
o Switches implement them and send acks
o Controller receives acks

* Alternative: Use dualism to so-called proof labeling schemes

Centralized Controller
(Prover)

Eg P4 switch
(Verifier)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Deciding vs Checki
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Modular elliptic curves
and
Fermat’s Last Theorem

By ANDREW WILES*

For Nada, Clare, Kate and Olivia

Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos ejusdem nominis fas est dividere: cujus rei
demonstrationem mirabilem sane detexi. Hanc marginis eviguitas
non caperet.

Pierre de Fermat

Introduction

An elliptic curve over Q is said to be modular if it has a finite covering by
a modular curve of the form Xo(N). Any such elliptic curve has the property
that its Hasse-Weil zeta function has an analytic continuation and satisfies a
functional equation of the standard type. If an elliptic curve over Q with a
given j-invariant is modular then it is easy to see that all elliptic curves with
the same j-invariant are modular (in which case we say that the j-invariant
is modular). A well-known conjecture which grew out of the work of Shimura.
and Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q
is modular. However, it only became widely known through its publication in a
paper of Weil in 1967 [We] (as an exercise for the interested reader!), in which,
moreover, Weil gave conceptual evidence for the conjecture. Although it had
been numerically verified in many cases, prior to the results described in this
paper it had only been known that finitely many j-invariants were modular.

In 1985 Frey made the remarkable observation that this conjecture should
imply Fermat’s Last Theorem. The precise mechanism relating the two was
formulated by Serre as the e-conjecture and this was then proved by Ribet in
the summer of 1986. Ribet’s result only requires one to prove the conjecture
for semistable elliptic curves in order to deduce Fermat's Last Theorem.

*The work on this paper was supported by an NSF grant.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Brief Selected Background

* [Naor and Stockmeyer, STOC 1993]:
What can be computed locally?

* [Korman et al., PODC 2005]:
Proof Labeling Schemes (PLS)

* [G6ds and Suomela, PODC 2011]:
Locally Checkable Proofs (LCP)

* [Fraigniaud et al., FOCS 2011,...]:
Nondeterministic Local Decision (NLD)

* And many more recent works, e.g., on approximation, randomization etc.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 57
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Example

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example

Model
* Each of the n nodes O is a computer, connected by links

* Synchronous rounds
o Simplified: unlimited message size & computational power, unique identifiers for nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

59



Lniversitat
wien

Example

* |sn even?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example

* Isn even?
* (J(n) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example

* Isn even?
* O(n) rounds
* What if | tell you it is even? Why should you trust me ©

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example (U

* |sn even? @
* (A(n) rounds

e Prover assigns 1 bit?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example

* |sn even? Q

* (A(n) rounds

* 2rover assigns 1 bit ->2erify in 1 round

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Example (U Q
(1 Q

Is n even? O
Q(n) rounds
2Zrover assigns 1 bit ->2erify in 1 round W

Other way to think of it: 1 bit of non-determinism

General question: How many bits necessary/sufficient?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Accepting a proof (D Q

* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Accepting a proof (D Q
(0} (0

Q

@»
&

* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

o Prover chose the wrong proof

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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* Every node outputs Yes -> Proof accepted

* One node outputs No -> Proof rejected

o 2rover chose the wrong proof
> Property does not hold Back to SDNs: Switch from a proof to another

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralizec

When should | update?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralizec

Once my parent updates!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralizec

Once my parent updates!

Send parent ID

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralized Updates for , Tree-Ordering“

W | updated W

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralizec

I‘ll update too!

W | updated W

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Decentralized Updates for “Tree-Ordering”
+0Only one controller-switch interaction per route change
+New route changes can be pushed before old ones done (include “version#”)

+Incorrect updates can be locally detected (include depth in tree, prevents loops)

+/- Speed benefit/penalty depends on update scenario and topology

- Requires switch-to-switch communication e.g., [Nguyen et al., SOSR 2017]

K.-T. Foerster, T. Luedi, J. Seidel, R. Wattenhofer: Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDNs . In: Theoret. Comput. Sci. 2018
K.-T. Foerster, S. Schmid: Distributed Consistent Network Updates in SDNs: Local Verification for Global Guarantees. Under submission.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Can we also make the initial computation decentralized?

* Classic setting of distributed computing (e.g. LOCAL or CONGEST model)
o Possible benefit in SDNs:

- We do not need to compute from scratch!

* In wired networks, problems depend on a subset of the network
- Leverage Preprocessing

* Further explored in eg:
o Exploiting Locality in Distributed SDN Control. S. Schmid, J. Suomela, HotSDN 2013

o On the Power of Preprocessing in Decentralized Network Optimization. K.-T. Foerster, J. Hirvonen, S. Schmid, J. Suomela, INFOCOM 2019
o BA: Does Preprocessing help under Congestion? K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, PODC 2019

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Coloring of rings (LOCAL model)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Coloring of rings (LOCAL model)

* 2-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds
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Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring:
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Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring: ' ‘
> Needs non-constant time
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Coloring of rings (LOCAL model)

* 2-coloring:
o Needs Q(n) rounds

* 3-coloring: ' ‘
> Needs non-constant time

* Cannot improve in the LOCAL model ®
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Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:

* 3-coloring:
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Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:
> 0 rounds ©

* 3-coloring: . ‘
> 0 rounds ©
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Coloring of rings (LOCAL model) — with Preprocessing

* 2-coloring:
> 0 rounds ©

* 3-coloring:
> 0 rounds ©
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

P | P

I I
N
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

I I
K P ) P
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

* With preprocessing: fast!

I I
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?

* Local model: runtime does not change

RN

* With preprocessing: fast!
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid

* What are further application scenarios?
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Coloring of rings (LOCAL model) — with Preprocessing & Subgraphs

* How about a coloring of a subgraph?
* Local model: runtime does not change

* With preprocessing: fast!
o Coloring remains valid

* What are further application scenarios?

* What else can we do with the SUPPORT of Preprocessing?
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Practical Motivation for Preprocessing
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Practical Motivation for Preprocessing

* Decentralization aids scalability
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Practical Motivation for Preprocessing

* Decentralization aids scalability
o But: Many problems are not “local” (e.g., coloring)
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Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms
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Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
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Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios
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Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios

o Often we just react to events, physical topology in wired networks does not grow suddenly
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Practical Motivation for Preprocessing

* Decentralization aids scalability
o But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios
o Often we just react to events, physical topology in wired networks does not grow suddenly

* Example: Software-Defined Networking, single (logically centralized) controller does not scale
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Practical Motivation for Preprocessing

* Decentralization aids scalability

o But: Many problems are not “local” (e.g., coloring)
- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

* Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
o Unknown network state too strong assumption for many scenarios
o Often we just react to events, physical topology in wired networks does not grow suddenly

* Example: Software-Defined Networking, single (logically centralized) controller does not scale
o Create many local controllers that can react quickly, that control small set of “dumb” nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 101



The SUPPORTED Model
* Extends the LOCAL model (w. unique IDs) with preprocessing
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN

* Two phases:
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

RN

* Two phases:
1. Preprocessing: compute any function on H and store output locally
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

* Two phases:

1. Preprocessing: compute any function on H and store output locally
2. Solve problem on G in LOCAL model with preprocessed outputs

N

N

RN
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The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

* Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G in LOCAL model with preprocessed outputs
- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)

N

N

N
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RN
The SUPPORTED Model

* Extends the LOCAL model (w. ug\ique IDs) with preprocessing
N

* Original structure given as the SUPPORT graph H=(V(H),E(H))
* Problem instance is a subgraph G=(V,E) of H

N

* Two phases: c

1. Preprocessing: compute any function on H and store output locally et variant: allow to
2. Solve problem on G in LOCAL model with preprocessed outputs. o communicate on support H

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)
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Does the SUPPORTED Model make everything easy?

* Task: Leader election (O(diameter) runtime in LOCAL model)

-

o Easy if G=H: precompute leader, O rounds
o But for different G:
- We need to compute a leader for each connected component of G!
* Component has no leader? Re-elect ®
« Component has multiple leaders? Re-elect ®
« Components can have asymptotically same diameter ®

* SUPPORTED model does not provide a “silver bullet”
o Not even for the active variant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Maybe even useless in general?
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Maybe even useless in general?
* Let the support graph H be a complete graph
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Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
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Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
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Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 116



g7 Lniversitat
< wilen

Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

* For example, if a SUPPORTED algorithm has polylogarithmic runtime
o 3 LOCAL algorithm with constant factor overhead
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Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?
o Problem: G can be arbitrary

* For example, if a SUPPORTED algorithm has polylogarithmic runtime
o 3 LOCAL algorithm with constant factor overhead

o

© 0

Idea: simulate that support graph H is a
complete graph

/X\
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Maybe even useless in general?
* Let the support graph H be a complete graph

* What sort of meaningful information (for G) can we precompute?
o Upper bound on ID-space / network size...?

. In active model:
o Problem: G can be arbitrary

Congested Clique

* For example, if a SUPPORTED algorithm has polylogarithmic runtime

o 3 LOCAL algorithm with constant factor overhead
o O O

Idea: simulate that support graph H is a
complete graph

/X\
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But: Restricted Graph Families are Useful ©

* Real topologies are usually not complete graphs

 Case study: planar graphs
o Remain planar under edge deletions
o Are 4-colorable

»,Geloeste und ungeloeste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html
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Case Study: Dominating Set

* Task: Find subset D of nodes s.t. every node
o Has a neighbor in D orisin D ‘

* Can we pre-compute?
o A bad one yes: everyone in D!
o But not an optimal one!
- Graph can look very different

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 121
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Case Study: Minimum Dominating Set in Planar Graphs
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm:
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm:
> Find weight-appropriate pseudo-forest [constant time ©)]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo—foorest [constant time ©)]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo—foorest [constant time ©)]
o 3-color pseudo-forest [non-constant time ®]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®]
o Run clustering/optimization algorithms on components of constant size [constant time ©]
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SUPPORTED speed-up:
1) precompute 4-coloring
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds

o Find weight-appropriate pseud%j‘
O

o 3-color pseudo-forest [non-constant time ®]

o Run clustering/optimization algorithms on components of constant size [constant time ©]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 130
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

 Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]
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Case Study: Minimum Dominating Set in Planar Graphs

* (1+08)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
o But maybe in the SUPPORTED model?

* Let’s analyze their LOCAL algorithm: &

o Find weight-appropriate pseudo-forest [constant time ©]
o 3-color pseudo-forest [non-constant time ®][constant time SUPPORTED model ©]
o Run clustering/optimization algorithms on components of constant size [constant time ©]

* Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]
o Also for planar graphs for maximum independent set & maximum matching
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Further Results in the Active SUPPORTED Model
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Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model
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Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model
* Connection to SLOCAL model [Ghaffari et al., STOC 2017]
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Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model

* Connection to SLOCAL model [Ghaffari et al., STOC 2017]
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
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Use all edges of H
for communication

o O

Further Results in the Active SUPPORTED Model Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] = 20W/logn)

., O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
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Polylogarithmic-Time Deterministic Network Decomposition
and Distributed Derandomization

Use all edges of

. . Vaclav Rozhon Mohsen Ghaffari*
for communicatic ETH Zurich ETH Zurich
rozhonv@student.ethz.ch ghaffari@inf.ethz.ch
o O
Abstract

Further Results in the Aci‘ive SUPPORTE

e Connection to SLOCAL model [Ghaffari et al., STO(
- SLOCAL(t) can be simulated in SUPPORTED(O(t*pol

We present a simple polylogarithmic-time deterministic distributed algorithm for network
decomposition. This improves on a celebrated 20(VI%6™)_time algorithm of Panconesi and Srini-
vasan [STOC’93] and settles one of the long-standing and central questions in distributed graph
algorithms. It also leads to the first polylogarithmic-time deterministic distributed algorithms
for numerous other graph problems, hence resolving several open problems, including Linial’s
well-known question about the deterministic complexity of maximal independent set [FOCS’87].

Put together with the results of Ghaffari, Kuhn, and Maus [STOC’17| and Ghaffari, Har-
ris, and Kuhn [FOCS’18], we get a general distributed derandomization result that implies
P-RLOCAL = P-LOCAL. That is, for any distributed problem whose solution can be checked in
polylogarithmic-time, any polylogarithmic-time randomized algorithm can be derandomized to
a polylogarithmic-time deterministic algorithm.

By known connections, our result leads also to substantially faster randomized algorithms for
a number of fundamental problems including (A + 1)-coloring, MIS, and Lovész Local Lemma.

937v1 [cs.DS] 25 Jul 2019

Through known connections, this general derandomization leads to better deterministic and
randomized distributed algorithms for numerous problems. A sampling of end-results includes
poly(log n)-round deterministic algorithms for MIS, A + 1 coloring, the Lovasz Local Lemma®, hy-
pergraph splitting, and defective coloring. These also lead to substantially improved randomized al-
gorithms, including a poly(log log n)-time randomized A+ 1 coloring [CLP18] and a poly(log log n)-
time randomized algorithm for Lovéasz Local Lemma in constant degree graphs [GHK18§].
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Use all edges of H
for communication

o O

Further Results in the Active SUPPORTED Model Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] = 20W/logn)

., O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20(logn)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O
e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20Wlos™)
e
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question
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Use all edges of H
for communication

e
, O
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20Wlos™)
e
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
é;g. network size, restricted H, known inputs..

<

—
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

e
, O
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:

* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20(logn)

o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)
o Set of size (a(G)-€)n in O(log,,. n), respectively (1+€) approximation if maximum degree A constant
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Also works in passive model:
SLOCAL(t) >SUPPORTED(A°)

Use all edges of H
for communication

O

e
Further Results in the Active SUPPORTED Model O Best LOCAL algorithm:
* Connection to SLOCAL model [Ghaffari et al., STOC 2017] O 5 20W/logm)
o O
- SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)a): e.g. MIS in SUPPORTED(poly log n)
- Converse not true, respectively open question

o @)
ég. network size, restricted H, known inputs..

* Locally Checkable Labelings LCL: B
o LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model ,© O

Also works without
the active model

* Optimization problem: Maximum Independent Set, of size a(G)
o Set of size (a(G)-€)n in O(log,,. n), respectively (1+€) approximation if maximum degree A constant
o Cannot be approximated by o(A/log A) in time o(log, n) in the active SUPPORTED model
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Bigger Open Question/Opportunity

How to efficiently leverage such
preprocessing/distributed computing
to efficiently scale controllers (and network updates)?

So let’s get back things we know about ©
So far largely unexplored Congestion and network functions?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 151
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 0
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1

Round 2
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 2
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 2
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 3
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 3
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Congestion?

* “Stronger” consistency constraint: also do not violate link capacities
o Flow size: 1, 1

Round 4
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Complexity of Avoiding Congestion?
* NP-hard already for 2 unit size flows on general graphs

* Also NP-hard on acyclic graphs for k flows

> But can be FPT characterized for k flows on acyclic graphs: 0(2°( 108 k)| G|)
- In other words, linear runtime for constant k on DAGs

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19
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* Also NP-hard on acyclic graphs for 6 flows
> But can be FPT characterized for k flows on acyclic graphs: 0(2°( 108 k)| G|)

- In other words, linear runtime for constant k on DAGs

* For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
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Which forwarding rule to update first?
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However: If packets must either take
the new or the old path (and no mix),
then polynomial-time solvable
(Cerny et al., DISC 2016)

Satisfy both & @ ?

NP-hard!

Transiently Secure Network Updates. A. Ludwig, S. Dudycz, M. Rost, S. Schmid. SIGMETRICS 2016.
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Different model: “tagged” Flows

* |Identified by a “tag” in the packet header, update via
o Install new tag‘ rules
o Switch from tag to tag’ at source

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 184
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If we move a flow, will there be congestion?
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If we move a flow, will there be congestion?

* How do we move a flow F? Usually: 2-phase commit: [Rreitblatt et al., SIGCOMM’12]

O——0O

F
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If we move a flow, will there be congestion? F
* How do we move a flow F? Usually: 2-phase commit: 277N
’ 4 DS
o Deploy new flow rules F / N
F
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If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’
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If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’

Can also be implemented by
proof-labeling techniques

Go backwards with
distance information

Central Control over Distributed Asynchronc® ks and Consistent Network Updates, 19-08-02 189
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If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’
o Clean-up of old rules
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If we move a flow, will there be congestion? F

* How do we move a flow F? Usually: 2-phase commit:
o Deploy new flow rules F’
o Change packet tag at source from F to F’
o Clean-up of old rules

* First check:
° |s the new network state without congestion?

o . . [ ‘
Easy © (flow size versus capacity) [ R Ty o

labeling techniques

° |s that it?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 191
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A Small Sample Network

Unit size flows and capacities
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Unit size flows and capacities
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Unit size flows and capacities
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This would work

Unit size flows and capacities
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Unit size flows and capacities
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But Red is a bit Slow..
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Unit size flows and capacities
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Unit size flows and capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 198



» Lniversitat
Jwien

So lets go Back ...

Round 0 (old)

Unit size flows and capacities
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Round 1

Unit size flows and capacities
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Round 2

Unit size flows and capacities
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Round 3

Unit size flows and capacities
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Unit size flows and capacities
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How hard is this (feasibility)? : ><24

[

Flows may only take old or new paths:
e NP-hard via reduction from Partition &
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How hard is this (feasibility)? : :

Flows may only take old or new paths:

 NP-hard via reduction from Partition O O

Intermediate flow allocations not restricted to old and new:

* NP-hard already for just 2 unit size flows

Hardness intuition: find

intermediate path for “storage”

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)
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How hard is this (feasibility)?

Flows may only take old or new paths:

 NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

* NP-hard already for just 2 unit size flows

Some flows might need to move

° back and forth repeatedly® ®

* |s the problem at least in NP? . e

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)
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How hard is this (feasibility)?

Flows may only take old or new paths:

* NP-hard via reduction from Partition How about splittable flows?

Intermediate flow allocations not restricted to old and new: °

* NP-hard already for just 2 unit size flows

Not clear if the problem is in NP! (It is known to be in EXPTIME)

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 207



Captures Asynchrony

Consistent Migration of Splittable Flows o

Idea: Flows can be on the old or new route w.r.t. an update
For all edges: ),y max (old, new) < capacity.

No ordering exists (2/3 +2/3 > 1)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 208



Consistent Migration of Splittable Flows

Approach of SWAN*: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

*: Achieving High Utilization with Software-Driven WAN, SIGCOMM 2013
Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 209
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 1 of 2
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 1 of 2 @
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack x (i.e., %)
Herex = 1/3
Move slack x = [1/x] — 1 staged partial moves

Update 2 of 2 @

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 212
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Consistent Migration of Splittable Flows

No slack on flow edges?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 213
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Consistent Migration of Splittable Flows

Alternate routes?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 214



Consistent Migration of Splittable Flows

Think: variable swappingof b & g
l.x:=b,2.b:=g,3. g :=x
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Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...
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SWAN: LP-approach with binary search
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Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search
O®(1/e) updates ®

&

i
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Consistent Migration of Splittable Flows

Can we decide in (polynomial) time?

Flow migration “Halting Problem”
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To Slack or not to Slack?

Slack of x on all flow edges?
|1/x] — 1 updates
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To Slack or not to Slack?

What if not?

Try to create slack
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To Slack or not to Slack?

Combinatorial approach
Augmenting paths
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Combinatorial Approach

Move single commodities at a time
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Combinatorial Approach

Where to increase flow?
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Combinatorial Approach

Where to push back flow?
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Combinatorial Approach

Resulting residual network
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Combinatorial Approach

We found an augmenting path = create slack on e

puEENNEENmg,
‘I- ...
L 4

N\
\\
\ LN
R
00
| I
1 [
[ [
[ [
I [
I 4
-..;l ,'ﬁt
V4
¥
¥ 4
,/

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

229



High-level Algorithm Idea

* No slack on flow edges? Find augmenting paths
o On both initial and desired state (updates can be performed in reverse)
o Success? Use SWAN method to migrate

* Can’t create slack on some flow edge?

o Consistent migration impossible
By contradiction (else augmenting paths would create slack)

* Runtime: 0(Fm3)

o (F being #commodities, m being #edges)
On Consistent Migration of Flows in SDNs. S. Brandt, K.-T. Foerster, R. Wattenhofer, INFOCOM 2016
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wien If the new flows fit in somehow,

we can migrate consistently!

Open problems for scheduling flow migration O

* What happens when we can pick the new paths? °

o |dea: Fit the flows in, does not matter where
. . . . . .
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017
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size of each flow: 1
capacity of links: 1
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size of flows: 1, 2,1, 1
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size of flows: 1+3=4, 2,1, 1
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* Flows end up at the wrong destination!

* So let’s stick with augmenting flows that don’t mix destinations
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“it is unlikely that similar techniques can be developed
for constructing multicommodity flows”
[Hu, 1963]
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0 LniverSitét Maybe surprisingly:
wien If the new flows fit in somehow,
‘ we can migrate consistently!

Open Problems for scheduling flow migration O

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

. . . . . .
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?
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we can migrate consistently!

Open Problems for scheduling flow migration O

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

. . . . . .
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019
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we can migrate consistently!

Open Problems for scheduling flow migration O °

* What happens when we can pick the new paths?
o |dea: Fit the flows in, does not matter where

. . . . . .
- Only studied so far for a single destination and multiple sources (srand, Foerster, wattenhofer, Pmc 2017

* Unsplittable flow migration: Maybe further deveIOpment
needs better understanding of
o In general: NP-, PSPACE-, or EXPTIME-complete?

- (recall: flows might need to switch back and forth repeatedly)

o "Interesting” polynomial cases?

augmenting flows?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates

« What habpbens when considering Link Latencv? Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
PP g y: IEEE Communications Surveys & Tutorials, 21(2), 2019
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The Impact of Latency (in Testbed)
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The Impact of Latency (in Testbed)
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The Impact of Latency (in Testbed)
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Because there is also work that
focuses on better

The Impact of Latency (in Testbed) notably ,;';’,}f,fz':::fzna,

https://sites.google.com/site/timedsdn
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Even holds without
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CDF of the Congestion Duration

100 -

80

60 -

CDF

40

20 -

0_

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 261



g% Lniversitat
. wilen

Recap

 Common (coarse-grained) model:
o Sum for all flows: Max( old flow rules, new flow rules ) does not violate capacity [SWAN, SIGCOMM’13]
o Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows

* Does not capture congestion due to flows congesting themselves!
o How hard?
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How hard?
* Unit latencies and splittable flow of unit size:
o Already NP-hard for a single flow! Find a temporary path to

offload parts of the flow
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Recap of the last few slides

 Common (coarse-grained) model:

o Sum for all flows: Max( old flow rules, new flow rules ) does not violate capacity [SWAN, SIGCOMM’13]

o Decidable in polynomial time [Brandt et al., INFOCOM’16]
- For unsplittable flows: NP-hard already for 2 flows

* Does not capture congestion due to flows congesting themselves!
o How hard?

- NP-hard for unit size/latency and splittable flows ®

* How to fix?
o Treat old and new flow rules as separate flows?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 264
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Old and New as Different Entities

* ldea: We can handle interplay between different flows
o Handle old and new as different flows?
- Prevents such congestion in popular approaches, eg SWAN, Dionysus, zUpdate etc.
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Relax for Polynomial-Time Lossless Updates

* |dea: Relax the problem formulation

o Be congestion-free for any set of latencies
- (l.e., adversary may change latencies at any time)

Achieved by spreading
the network load

* Now congestion-free intermediate steps become reversible

* Rough structure of the algorithm (for splittable flows):

o Take old (new) state, reach intermediate state where critical set of edges have spare capacity
- Not possible? No congestion-free migration possible.
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How to extend beyond

Recap of the last few slides a single destination?

 Common (coarse-grained) model:

o Sum for all flows: Max( old flow rules , new flow rules ) does not violate capacity [SWAN, SIGCOMM’13] ®

o Decidable in polynomial time [Brandt et al., INFOCOM’16]
- For unsplittable flows: NP-hard already for 2 flows ®

* Does not capture congestion due to flows congesting themselves!
o NP-hard for unit size/latency and splittable flows ®

But requires non-fixed
e By relaxing latency constraints: TR BL [FEAE
o Again polynomial-time decidable

* Interestingly: Augmenting flow idea still works even without relaxing latency constraints!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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Open Problems and Outlook in General

* Various algorithmic and complexity questions for a centralized controller
o See recent survey

* First connections to more classic distributed computing topics are made
o Proof-labeling
- Very basic right now, how to build more complex/efficient systems?

* Maybe the bigger question: How to properly distribute the centralized controller
o Opportunity: The SUPPORTED model / preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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