How to Support an Unknown Future: Preprocessing for Local Algorithms

Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. To appear @IEEE INFOCOM 2019
Coloring of rings (LOCAL model)
Coloring of rings (LOCAL model)

• 2-coloring:
Coloring of rings (LOCAL model)

• 2-coloring:
 ◦ Needs $\Omega(n)$ rounds
Coloring of rings (LOCAL model)

- 2-coloring:
 - Needs $\Omega(n)$ rounds

- 3-coloring:
Coloring of rings (LOCAL model)

- 2-coloring:
 - Needs $\Omega(n)$ rounds

- 3-coloring:
 - Needs non-constant time
Coloring of rings (LOCAL model)

• 2-coloring:
 ◦ Needs $\Omega(n)$ rounds

• 3-coloring:
 ◦ Needs non-constant time

• Cannot improve in the LOCAL model 😞
Coloring of rings (LOCAL model) – with Preprocessing

• 2-coloring:

• 3-coloring:
Coloring of rings (LOCAL model) – with Preprocessing

- 2-coloring:
 - 0 rounds 😊

- 3-coloring:
 - 0 rounds 😊
Coloring of rings (LOCAL model) – with Preprocessing

- 2-coloring:
 - 0 rounds 😊

- 3-coloring:
 - 0 rounds 😊
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?

• Local model: runtime does not change
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

- How about a coloring of a subgraph?

- Local model: runtime does not change

- With preprocessing: fast!
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
 ◦ Coloring remains valid
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

- How about a coloring of a subgraph?

- Local model: runtime does not change

- With preprocessing: fast!
 - Coloring remains valid

- What are further application scenarios?
Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
 ◦ Coloring remains valid

• What are further application scenarios?
• What else can we do with the SUPPORT of Preprocessing?
Practical Motivation for Preprocessing
Practical Motivation for Preprocessing

- Decentralization aids scalability
Practical Motivation for Preprocessing

- Decentralization aids scalability
 - But: Many problems are not “local” (e.g., coloring)
Practical Motivation for Preprocessing

- Decentralization aids scalability
 - But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms
Practical Motivation for Preprocessing

- Decentralization aids scalability
 - But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms

- Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
Practical Motivation for Preprocessing

• Decentralization aids scalability
 ◦ But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
 ◦ Unknown network state too strong assumption for many scenarios
Practical Motivation for Preprocessing

• Decentralization aids scalability
 ◦ But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
 ◦ Unknown network state too strong assumption for many scenarios
 ◦ Often we just react to events, physical topology in wired networks does not grow suddenly
Practical Motivation for Preprocessing

• Decentralization aids scalability
 ◦ But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
 ◦ Unknown network state too strong assumption for many scenarios
 ◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Case study: Software-Defined Networking, single (logically centralized) controller does not scale
Practical Motivation for Preprocessing

• Decentralization aids scalability
 ◦ But: Many problems are not “local” (e.g., coloring)
 - Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
 ◦ Unknown network state too strong assumption for many scenarios
 ◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Case study: Software-Defined Networking, single (logically centralized) controller does not scale
 ◦ Create many local controllers that can react quickly, that control small set of “dumb” nodes
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 E.g. MAC-address
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing

 E.g. MAC-address

- Original structure given as the SUPPORT graph $H=(V(H),E(H))$
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 - E.g. MAC-address
- Original structure given as the SUPPORT graph $H=(V(H),E(H))$
- Problem instance is a subgraph $G=(V,E)$ of H
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 - E.g. MAC-address

- Original structure given as the SUPPORT graph \(H = (V(H), E(H)) \)

- Problem instance is a subgraph \(G = (V, E) \) of \(H \)

- Two phases:
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
- Original structure given as the SUPPORT graph \(H=(V(H),E(H)) \)
- Problem instance is a subgraph \(G=(V,E) \) of \(H \)

- Two phases:
 1. Preprocessing: compute any function on \(H \) and store output locally
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 - E.g. MAC-address

- Original structure given as the SUPPORT graph \(H=(V(H),E(H)) \)
- Problem instance is a subgraph \(G=(V,E) \) of \(H \)

- Two phases:
 1. Preprocessing: compute any function on \(H \) and store output locally
 2. Solve problem on \(G \) in LOCAL model with preprocessed outputs
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 - E.g. MAC-address

- Original structure given as the SUPPORT graph $H=(V(H),E(H))$

- Problem instance is a subgraph $G=(V,E)$ of H

- Two phases:
 1. Preprocessing: compute any function on H and store output locally
 2. Solve problem on G in LOCAL model with preprocessed outputs
 - Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)
The SUPPORTED Model

- Extends the LOCAL model (w. unique IDs) with preprocessing
 - E.g. MAC-address

- Original structure given as the SUPPORT graph $H=(V(H),E(H))$

- Problem instance is a subgraph $G=(V,E)$ of H

- Two phases:
 1. Preprocessing: compute any function on H and store output locally
 2. Solve problem on G in LOCAL model with preprocessed outputs.
 - Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)
Does the SUPPORTED Model make everything easy?
Does the SUPPORTED Model make everything easy?

- Task: Leader election (Θ (diameter) runtime in LOCAL model)
Does the SUPPORTED Model make everything easy?

- Task: Leader election (Θ(diameter) runtime in LOCAL model)
 - Easy if $G=H$: precompute leader, 0 rounds
Does the SUPPORTED Model make everything easy?

• Task: Leader election (Θ(diameter) runtime in LOCAL model)
 ◦ Easy if G=H: precompute leader, 0 rounds
 ◦ But for different G:
Does the SUPPORTED Model make everything easy?

• Task: Leader election (Θ(diameter) runtime in LOCAL model)
 ◦ Easy if $G=H$: precompute leader, 0 rounds
 ◦ But for different G:
 - We need to compute a leader for each connected component of G!
Does the SUPPORTED Model make everything easy?

- Task: Leader election (Θ(diameter) runtime in LOCAL model)
 - Easy if $G=H$: precompute leader, 0 rounds
 - But for different G:
 - We need to compute a leader for each connected component of G!
 - Component has no leader? Re-elect 😞
Does the SUPPORTED Model make everything easy?

- Task: Leader election (\(\Theta(\text{diameter})\) runtime in LOCAL model)
 - Easy if G=H: precompute leader, 0 rounds
 - But for different G:
 - We need to compute a leader for each connected component of G!
 - Component has no leader? Re-elect 😞
 - Component has multiple leaders? Re-elect 😞
Does the SUPPORTED Model make everything easy?

- Task: Leader election (Θ(diameter) runtime in LOCAL model)
 - Easy if $G=H$: precompute leader, 0 rounds
 - But for different G:
 - We need to compute a leader for each connected component of G!
 - Component has no leader? Re-elect 😞
 - Component has multiple leaders? Re-elect 😞
 - Components can have asymptotically same diameter 😐
Does the SUPPORTED Model make everything easy?

• Task: Leader election (Θ(diameter) runtime in LOCAL model)
 ◦ Easy if $G=H$: precompute leader, 0 rounds
 ◦ But for different G:
 - We need to compute a leader for each connected component of G!
 • Component has no leader? Re-elect ☹
 • Component has multiple leaders? Re-elect ☹
 • Components can have asymptotically same diameter ☹

• SUPPORTED model does not provide a “silver bullet”
Does the SUPPORTED Model make everything easy?

- Task: Leader election (Θ(diameter) runtime in LOCAL model)
 - Easy if G=H: precompute leader, 0 rounds
 - But for different G:
 - We need to compute a leader for each connected component of G!
 - Component has no leader? Re-elect 😞
 - Component has multiple leaders? Re-elect 😞
 - Components can have asymptotically same diameter 😞

- SUPPORTED model does not provide a “silver bullet”
 - Not even for the active variant
Maybe even useless in general?
Maybe even useless in general?

- Let the support graph H be a complete graph
Maybe even useless in general?

- Let the support graph \(H \) be a complete graph
- What sort of meaningful information (for \(G \)) can we precompute?
Maybe even useless in general?

- Let the support graph H be a complete graph
- What sort of meaningful information (for G) can we precompute?
 - Upper bound on ID-space / network size...?
Maybe even useless in general?

- Let the support graph H be a complete graph
- What sort of meaningful information (for G) can we precompute?
 - Upper bound on ID-space / network size...?
 - Problem: G can be arbitrary
Maybe even useless in general?

- L LOCAL algorithm with constant factor overhead

- What sort of meaningful information (for G) can we precompute?
 - Upper bound on ID-space / network size...?
 - Problem: G can be arbitrary

- For example, if a SUPPORTED algorithm has polylogarithmic runtime
 - \exists LOCAL algorithm with constant factor overhead
Maybe even useless in general?

- ℓ LOCAL algorithm with constant factor overhead
- What sort of meaningful information (for G) can we precompute?
 - Upper bound on ID-space / network size...?
 - Problem: G can be arbitrary

- For example, if a SUPPORTED algorithm has polylogarithmic runtime
 - \exists LOCAL algorithm with constant factor overhead

Idea: simulate that support graph H is a complete graph
Maybe even useless in general?

- \(L \) LOCAL algorithm with constant factor overhead
- What sort of meaningful information (for G) can we precompute?
 - Upper bound on ID-space / network size...?
 - Problem: G can be arbitrary
- For example, if a SUPPORTED algorithm has polylogarithmic runtime
 - \(\exists \) LOCAL algorithm with constant factor overhead

Idea: simulate that support graph H is a complete graph

In active model: Congested Clique
But: Restricted Graph Families are Useful 😊

- Real topologies are usually not complete graphs

- Case study: planar graphs
 - Remain planar under edge deletions
 - Are 4-colorable

„Geloeste und ungelöste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html
Case Study: Minimum Dominating Set in Planar Graphs
Case Study: Minimum Dominating Set in Planar Graphs

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
Case Study: Minimum Dominating Set in Planar Graphs

• $(1+\delta)$-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 ◦ But maybe in the SUPPORTED model?
Case Study: Minimum Dominating Set in Planar Graphs

• (1+Δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 ◦ But maybe in the SUPPORTED model?

• Let’s analyze their LOCAL algorithm:
Case Study: Minimum Dominating Set in Planar Graphs

- (1+\delta)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 - But maybe in the SUPPORTED model?

- Let’s analyze their LOCAL algorithm:
 - Find weight-appropriate pseudo-forest [constant time ☺]
Case Study: Minimum Dominating Set in Planar Graphs

- (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 - But maybe in the SUPPORTED model?

- Let’s analyze their LOCAL algorithm:
 - Find weight-appropriate pseudo-forest [constant time 😊]

Max out-degree of 1
Case Study: Minimum Dominating Set in Planar Graphs

• (1+\(\delta\))-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 • But maybe in the SUPPORTED model?

• Let’s analyze their LOCAL algorithm:
 • Find weight-appropriate pseudo-forest [constant time 😊]
 • 3-color pseudo-forest [non-constant time ☹️]
Case Study: Minimum Dominating Set in Planar Graphs

- (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 - But maybe in the SUPPORTED model?
- Let’s analyze their LOCAL algorithm:
 - Find weight-appropriate pseudo-forest [constant time 😊]
 - 3-color pseudo-forest [non-constant time ☹]
 - Run clustering/optimization algorithms on components of constant size [constant time 😊]
Case Study: Minimum Dominating Set in Planar Graphs

- (1+\(\delta\))-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 - But maybe in the SUPPORTED model?

- Let’s analyze their LOCAL algorithm:
 - Find weight-appropriate pseudo-forest [constant time ☺]
 - 3-color pseudo-forest [non-constant time ❁]
 - Run clustering/optimization algorithms on components of constant size [constant time ☺]

SUPPORTED speed-up:
1) precompute 4-coloring
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds
Case Study: Minimum Dominating Set in Planar Graphs

• (1+\(\delta\))-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 ◦ But maybe in the SUPPORTED model?

• Let’s analyze their LOCAL algorithm:
 ◦ Find weight-appropriate pseudo-forest [constant time ☺]
 ◦ 3-color pseudo-forest [non-constant time ☹][constant time SUPPORTED model ☼]
 ◦ Run clustering/optimization algorithms on components of constant size [constant time ☼]
Case Study: Minimum Dominating Set in Planar Graphs

• (1+\(\delta\))-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 ◦ But maybe in the SUPPORTED model?

• Let’s analyze their LOCAL algorithm:
 ◦ Find weight-appropriate pseudo-forest [constant time ☺]
 ◦ 3-color pseudo-forest [non-constant time ☹][constant time SUPPORTED model ☺]
 ◦ Run clustering/optimization algorithms on components of constant size [constant time ☻]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]
Case Study: Minimum Dominating Set in Planar Graphs

• (1+\(\delta\))-approximation not possible in constant time [Czygrinow et al., DISC 2008]
 ◦ But maybe in the SUPPORTED model?

• Let’s analyze their LOCAL algorithm:
 ◦ Find weight-appropriate pseudo-forest [constant time ☺]
 ◦ 3-color pseudo-forest [non-constant time ☹][constant time SUPPORTED model ☺]
 ◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for \(O(1)\)-genus graphs [extending work of Akhoondian Amiri et al.]
 ◦ Also for planar graphs for maximum independent set & maximum matching
Further Results in the *Active SUPPORTED* Model
Further Results in the Active SUPPORTED Model

Use all edges of H for communication
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]

Use all edges of H for communication
Further Results in the **Active SUPPORTED** Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t\cdot poly log n)): e.g. MIS in SUPPORTED(poly log n)

Use all edges of H for communication
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)

Use all edges of H for communication

Best LOCAL algorithm: $2^{O(\sqrt{\log n})}$
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)

Also works in passive model:

SLOCAL(t) \rightarrow \text{SUPPORTED}(\Delta^{O(t)})

Use all edges of H for communication

Best LOCAL algorithm:

\[2^{O(\sqrt{\log n})} \]
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question

Also works in passive model:
SLOCAL(t) → SUPPORTED(Δ^{O(t)})

Use all edges of H for communication

Best LOCAL algorithm:
2^{O(\sqrt{\log n})}
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question
 - e.g. network size, restricted H, known inputs..
Further Results in the Active SUPPORTED Model

- Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question
 - e.g. network size, restricted H, known inputs..
- Locally Checkable Labelings LCL:
Further Results in the Active SUPPORTED Model

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t * poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question
 e.g. network size, restricted H, known inputs..

• Locally Checkable Labelings LCL:
 - LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model
Further Results in the Active SUPPORTED Model

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question
 e.g. network size, restricted H, known inputs..

• Locally Checkable Labelings LCL:
 ◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model.

Use all edges of H for communication

Also works in passive model: SLOCAL(t) → SUPPORTED(Δ^O(t))

Best LOCAL algorithm: \(2^{O(\sqrt{\log n})}\)

Also works without the active model
Further Results in the Active SUPPORTED Model

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question

• Locally Checkable Labelings LCL:
 ◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size $\alpha(G)$

Best LOCAL algorithm: $2^{O(\sqrt{\log n})}$

Also works in passive model: SLOCAL(t) \rightarrow SUPPORTED($\Delta^{O(t)}$)

Also works without the active model

Use all edges of H for communication
Further Results in the Active SUPPORTED Model

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(\(O(t\cdot\text{poly log } n)\)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question
 - e.g. network size, restricted H, known inputs..

• Locally Checkable Labelings LCL:
 - LCL in LOCAL(o(log n)) can be solved in \(O(1)\) in the SUPPORTED model.

• Optimization problem: Maximum Independent Set, of size \(\alpha(G)\)
 - Set of size \((\alpha(G) - \varepsilon)n\) in \(O(\log_{1+\varepsilon} n)\), respectively \((1+\varepsilon)\) approximation if maximum degree \(\Delta\) constant

Also works in passive model: SLOCAL(t) \(\rightarrow\) SUPPORTED(\(\Delta^{O(t)}\))

Best LOCAL algorithm: \(2^{O(\sqrt{\log n})}\)

Also works without the active model

Use all edges of H for communication

Also works in \textit{passive} model:

Use all edges of H for communication
Further Results in the Active SUPPORTED Model

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
 - SLOCAL(t) can be simulated in SUPPORTED(O(t*poly log n)): e.g. MIS in SUPPORTED(poly log n)
 - Converse not true, respectively open question

• Locally Checkable Labelings LCL:
 ◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size $\alpha(G)$
 ◦ Set of size $(\alpha(G)-\varepsilon)n$ in $O(\log_{1+\varepsilon} n)$, respectively $(1+\varepsilon)$ approximation if maximum degree Δ constant
 ◦ Cannot be approximated by $o(\Delta/\log \Delta)$ in time $o(\log_{\Delta} n)$ in the active SUPPORTED model

Also works in passive model: SLOCAL(t) \rightarrow SUPPORTED($\Delta^{O(t)}$)

Best LOCAL algorithm: $2^{O(\sqrt{\log n})}$

Also works without the active model

Use all edges of H for communication

Also works in passive model: SLOCAL(t) \rightarrow SUPPORTED($\Delta^{O(t)}$)

Also works without the active model
How to Support an Unknown Future: Preprocessing for Local Algorithms

Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. To appear @IEEE INFOCOM 2019