
Fault-tolerant Local Recovery with Preprocessing in Multiple
Shared Protection

Mengfei Zhu1,2, Rui Kang2, and Klaus-Tycho Foerster3
1China Mobile Group Design Institute Co. Ltd., Beijing, China

2Kyoto University, Kyoto, Japan
3TU Dortmund, Dortmund, Germany

Emails: zhumengfei@cmdi.chinamobile.com, kang.rui.u25@kyoto-u.jp, klaus-tycho.foerster@tu-dortmund.de

Abstract—In distributed microservice architecture, low latency
and high reliability are crucial as they directly impact user
experience by ensuring robust service continuity across the
network. Function unavailability occurs due to various reasons,
and when such failures are detected, the nodes hosting the
backup resources can attempt autonomously local recovery,
leveraging precomputed recovery policies, without the need for
central processor intervention, thereby reducing recovery time.
In scenarios involving shared protection with limited recovery
capabilities, it is crucial to implement a well-defined policy for
local recovery. Such a policy prevents repetitive or infeasible
recovery attempts, ensuring effective recovery.

This paper considers a local strategy to maximize the residual
resilience, where individual nodes decide which function to re-
cover. It hence works as a complement to global recovery to pro-
vide prompt recovery, as a first line of defense. This paper hence
considers the preparation of priority settings with preprocessing
based on the SUPPORTED model.We conduct a comprehensive
analysis of the conditions for achieving feasible and optimal local
recovery solutions with zero-round communication for one and
two failures. Additionally, we formulate the problem as an integer
linear programming problem and design a testbed to implement
the local recovery algorithm incorporating preprocessing. Our
evaluation reveals that the zero-round communication approach
emerges as the optimal choice, drastically shortening recovery
times to 10−6 seconds while maintaining 98% feasibility and
perfect optimality for all practical solutions, on average, across
two failure scenarios.

Index Terms—Local recovery, preprocessing, distributed al-
gorithm, shared protection, fault tolerance, residual resilience,
network virtualization.

I. INTRODUCTION

A. Motivation

Modern network services like firewalls and load balancers
are virtualized as Virtual Network Functions (VNFs) in vir-
tual machines and containers. This virtualization decouples
functions from specialized hardware, allowing multiple func-
tions to run on the same server but introduces challenges
in fault tolerance and failure recovery due to dependencies
on the underlying, dynamically changing infrastructure [1].
Microservice architecture breaks an application into multiple
independent functions distributed across various servers or
containers. Latency is a critical factor as communication
between functions introduces delays. Longer latency caused
by failures are particularly intolerable.

To enhance network resilience against function unavailabil-
ity, protection strategies are commonly employed. One such
strategy is shared protection, which offers a cost-effective
approach to provide fault-tolerance [2]. Computing resources

are pooled among various backup functions hosted on the same
physical host. This approach improves availability without
the need for dedicated backup resources for each individual
function, leading to reduced costs, minimized dependencies,
and enhanced resource utilization efficiency. Through the
allocation of shared protection resources across multiple crit-
ical nodes, the network achieves more efficient bandwidth
utilization, enhancing its overall stability and reliability.

In such cases, functions are commonly protected by multiple
nodes to guarantee the availability. Failure to do so may result
in contention and failures. If multiple functions protected by
the same node fail simultaneously, contention can arise if the
demand for shared resources surpasses the available capacity
for recovery, potentially leaving at least one of the failures un-
recovered. To improve such issues, it involves #1) ensuring
feasibility against the current failures, i.e., the failure should
be recoverable, and #2) optimizing fault tolerance for future
failures. The recovery policy should consider the tolerance for
the future possible failures.

B. Background and related work

Recovery commonly follows two distinct approaches. One
is from a global perspective, where all failure patterns are
known, and predetermined recovery policies are applied ahead
of failures [3], [4]. Alternatively, the central controller detects
failures and determines the recovery policy [5], [6]. In contrast,
the other approach is local (i.e., decentralized) failure recov-
ery, with each node independently decides on the recovery
procedure based on its local state and environment, without
relying on global knowledge of other nodes.

Global recovery suffers from scalability limitations, delayed
perception of dynamic environments, and delayed response
in recovering from failures. Performing complex calculations
for recoveries becomes challenging, especially considering the
highly dynamic deployment of functions and their large-scale
deployment. Additionally, continuous communication between
the centralized controller and each node may lead to delays and
increased overhead for recovery. If the centralized controller
is distant from the cluster, the detection of topology status and
issuing commands to each node can be time-consuming.

Local recovery enhances system responsiveness and effi-
ciency, significantly reducing recovery times and avoiding
the need to send large volumes of data to a central loca-
tion, thereby reducing bandwidth consumption and network
load. Additionally, this approach improves the scalability and
flexibility of distributed systems, as each node’s capacity to

Rui Kang and Mengfei Zhu contributed equally to this article.

independently manage faults facilitates expansion and adapts
to increases in system size and complexity.

In local recovery however, each node can only observe the
failures of the functions that are hosted by the node. Hence,
each node cannot know the survival of the functions protected
by the other nodes, which makes it difficult to make optimal
decisions without time-consuming communication. The sym-
metry arising from multiple nodes concurrently attempting to
recover the same function could lead to inconsistent recovery;
hence, we seek to address symmetry breaking, preferably by
establishing a certain order or priority, importantly, to achieve
break symmetry for free [7] by leveraging inherent information
without introducing additional communication overhead.

To this end, Schmid and Suomela [8] introduced SUP-
PORTED models to enhance distributed algorithms with pre-
processing. It can reduce communication overhead by per-
forming analysis on the input topology before distributing it
to nodes, thereby reducing the amount of data that needs to
be transmitted and communication rounds. Their model was
applied to subgraph detection by Korhonen and Rybicki [9],
stronger lower bounds and the computation needed for prepro-
cessing in distributed computing by Foerster et al. [7], [10],
labelings and independent sets [11]. However, the algorithms
therein still need at least a constant non-zero number of rounds
of communication to achieve their goals after preprocessing,
and hence cannot be applied to immediate protection.

C. Research question and main contributions

As thus a question arises: is it possible to develop a local
recovery policy for function recovery with preprocessing based
on the SUPPORTED model, which allows each node to make
a local recovery decision with zero-round communication, en-
suring feasibility against current failures and improving future
fault-tolerance? As a complement to a global and centralized
recovery strategy, if the communications among nodes can
be avoided to obtain the recovery policies in a distributed
manner, the recovery time can be reduced in some cases.
This paper formulates the problem and analyzes the conditions
under which distributed failure recovery can be utilized with
zero-round communication, ensuring that the failure recovery
can be accelerated while maintaining the resilience optimality
of the prioritized settings. In addition, this paper introduces
and evaluates a testbed including the designed algorithms to
realize the proposed strategy. Compared to other related work,
we investigate the capabilities of the SUPPORTED model in
the complex and practical scenario of shared protection.

II. PROBLEM FORMULATION

A. Problem definition

Given sets of functions and nodes, the backup resource
allocation between functions and nodes, and the maximum
available capacity of each node for recovery, the goal is to
develop a local recovery policy allowing each node to inde-
pendently recover failed functions and propose a preprocessing
strategy that simplifies recovery, minimizes communication,
and enhances fault tolerance.

B. Optimization problem modeling for fault-tolerance

Let N be the set of available nodes for hosting functions.
Let F denote the functions protected by N . A backup resource
allocation is given, which is expressed by a given binary value
bfn, f ∈ F, n ∈ N . If bfn = 1, function f ∈ F is protected by
node n ∈ N ; 0, otherwise. Let Fu denote the set of unavailable
(failed) functions; Fa denotes the set of available (serviceable)
functions; Fu ∪ Fa = F . The current available capacity of
node n ∈ N for recovery is given by cn, which is a non-
negative integer and expresses the number of functions that
can be recovered by it. Since the shared protection allows
one available resource to protect against potentially multiple
failures simultaneously, the available residual capacity cn of a
node may be smaller than the number of protected functions,
which indicates that not all protected nodes can be recovered
with insufficient capacity.

The recovery against failures should be determined without
repetition and omission, i.e., multiple nodes cannot recover
the same function and failed functions must be recovered by a
node. We use a binary decision variable rfn, f ∈ Fu, n ∈ N
to denote the recovery; it is set to 1 if node n ∈ N is chosen
for recovering the failed function f ∈ Fu; otherwise, 0.

The objective of the considered problem is to maximize
fault-tolerance for potential future failures, i.e., the number
of functions that are protected by the remaining capacities of
nodes after the recovery from failures. ρfn, f ∈ Fa, n ∈ N is
a binary auxiliary variable for calculating the objective value,
which describes one possible way of protection based on the
optimal solution. If ρfn = 1, function f ∈ Fa can be recovered
by node n ∈ N ; 0, otherwise. The problem is formulated by:

max
∑
f∈Fa

∑
n∈N

ρfn (1)

s.t.
∑
f∈Fa

ρfn ≤ cn −
∑
f∈Fu

rfn,∀n ∈ N, (2)

ρfn ≤ bfn,∀f ∈ Fa, n ∈ N, (3)
rfn ≤ bfn,∀f ∈ Fu, n ∈ N, (4)∑
n∈N

ρfn ≤ 1,∀f ∈ Fa, (5)∑
n∈N

rfn = 1,∀f ∈ Fu. (6)

The model is formulated as an integer linear programming
(ILP) problem. Equation (2) ensures the capacity limitation
after recovery. Equations (3) and (4) ensure that only the nodes
hosting the backups of a function can recover the failure of
the function. Equation (5) ensures that each recovery strategy
can recover at most one function once. Equation (6) ensures
that every failed function must be recovered.

The protection relationship between functions f ∈ F and
nodes n ∈ N in the model can be depicted as a bipartite
graph. We use N , F , and bfn to build a protection graph
G = (F ∪N,B), which represents the protection relationship
between N and F . N and F are two disjoint sets in the graph.
B is the set of edges which connect N and F and represent the

1 2 3 4 5 6

a b c d e

(a) Protection graph for given
backup resource allocation.

a b

c

d

e

(b) Corresponding neighborhood
graph.

Note: ◦ represents a function; � represents a node.

Fig. 1. Examples of protection graph and neighborhood graph and transfor-
mation between them.

protection relationships between nodes and functions. bfn, n ∈
N, f ∈ F , is an element of B. If bfn = 1, i.e., function f is
protected by node n, there is an edge connecting n ∈ N and
f ∈ F . The number of functions protected by a node can be
expressed by the degree of the node in the protection graph.
An example is shown in Fig. 1(a).

III. LOCAL RECOVERY IN THE SUPPORTED MODEL

In this section, we analyze the conditions under which a
feasible and optimal recovery solution can be obtained with
zero-round and one-round communication so that we can
reduce the average recovery time by local recovery based on
preprocessing against failures. By conducting these analyses,
we can perform graph decomposition to reduce the problem
size. We classify the problems in terms of the number of
simultaneous failures and explore the feasibility and optimality
conditions of local recovery with communication. We also
clarify which failure conditions allow for local recovery and
which failure conditions require a trade-off between inter-node
communication and communication with the central processor.
This approach enables us to optimize recovery strategies and
enhance overall system recovery efficiency by tailoring the
response to different failure scenarios.

The feasibility considers node capacity limitation and suc-
cessful recoveries avoids repetition and omission in (2)-(6); the
optimality focuses on resilience with considering the effect of
the local recovery to the fault-tolerance after failure recovery.
It is defined as the number of functions that are protected by
the node with remaining capacities after the recovery from
current failures, i.e., the objective function of the proposed
strategy described in (1). For the following positive and
impossibility results, we only consider instances where a
global algorithm can find feasible and optimal solutions - the
difficulty then lies in the question if we can achieve the same
goal by the aid of preprocessing.

A. Feasibility and optimality against single failure with zero-
round communication

We consider local recovery with preprocessing based on
the SUPPORTED model. Each node monitors the failures
of the corresponding primary instance (the instance which
is currently being served) of the functions protected by it;
the states of the other functions cannot be detected. Each
node decides locally whether to recover each of the protected
functions or not. Without loss of generality, we assume that

the recovery capacity of each node is larger than zero in the
following theorems and proofs.

Firstly, precomputed optimal recovery policies for local
recovery with preprocessing based on the SUPPORTED model
ensure zero-round complexity due to initial backup resource
allocation and non-preemptive node capacities.

We next briefly show that preprocessing is a crucial even
for a single failure. Else, a failure-adjacent node cannot
determine (without communication) whether to recover the
failed function. One way to reason about this setting is with
so-called orphans:

Definition 1. If there exists a function f ∈ F satisfying∑
n∈N,cn>0 bfn = 1, we call f an orphan function. Next,

we call the node that protects the orphan function protector.
An orphan function has only one protector.

Without preprocessing, each node which hosts a backup
resource of the failed function needs at least one-round to
determine if the function is an orphan function and commu-
nicate with the neighborhoods by exchanging the values of
cn−dn, which is the difference of the remaining capacity and
the degree of node n in the protection graph, for reaching
a consensus to avoid repeat recovery, i.e., satisfy (6). As
an example of the protection graph shown in Fig. 1((a)), if
function 1 fails and both nodes a and b observe the failure.
Without preprocessing, both nodes may locally make the same
decision to recover or not to recover function 1 and lead to
contention and infeasible recovery. We cast our insight into
the following Theorem 1:

Theorem 1. Without preprocessing, to achieve feasibility of
the considered problem, one needs at least one round of
communication, even for a single failure.

B. Feasibility and optimality against two failures with zero-
round communication

Different from the single failure case, multiple failed func-
tions may cause the contention for recovery due to node
insufficient recovery capacity. As the example shown in
Fig. 1(a), if functions 1 and 2 fail and nodes a and b should
make local decision to recover one function. Without a well-
designed preprocessing, both of the nodes may recover the
same function and lead to contention and infeasible recovery.
Compared with recovery against a single failure, more rounds
of communication for obtaining a solution to avoid contentions
may be required in multiple failure cases. We analyze the
conditions that feasible and optimal local recovery solutions
can and cannot be obtained with zero-round communication
for two failures as well as the feasibility guarantees and
effectiveness of one-round communication.

Definition 2. For function f ∈ F , we define Vf = {n|bfn =
1,∀n ∈ N} as the set of nodes that protect function f . For a
node n ∈ N , we define Pn = {f |bfn = 1,∀f ∈ F} as set of
functions protected by node n.

As an example shown in Fig. 1(a), if functions 4 and 5
fail, node c can observe only one failure, and node d can

observe two. In such cases, a priority should be given in the
preprocessing. We next discuss some conditions and situations
in which feasible and optimal recovery can be guaranteed.

Theorem 2. For two failed function f1 and f2, if |Vf1∩Vf2 | ≥
2 and the protection graph consisting of f1, f2, and Vf1∪Vf2 is
a complete bipartite subgraph, a feasible and optimal recovery
can be achieved with zero-round communication.

Proof. All nodes that observe a failure also observe both
failures and due to the theorem formulation, we can assume
no further failures appeared elsewhere in the graph. Hence, as
f1 and f2 are protected by the same set of nodes, all nodes
in this set know that each node in the set sees both (i.e., all)
failures. Hence, for each possible such failure appearance, we
can precompute which nodes optimally recover the functions
in question.

We note that this idea can also be extended to more than
two failures. On the other hand, without precomputation, the
nodes would need at least some communication to agree on
which nodes recover the functions in question.

Next, if we can assume (e.g, by topological constraints) that
the occurred failures appear in different parts of the graph, then
we can recover again two failures:

Theorem 3. When both failed functions are not shared pro-
tected, i.e., Vf1 ∩ Vf2 = ∅, local recovery can obtain feasible
and optimal local recovery with zero-round communication.

Proof. All nodes that observe a failure only observe a single
failure and each node that observes a failure is aware of this
fact. Hence, the nodes observing a failure can make use of
Theorem 1.

Again, this idea can be extended to multiple failures, as
long as the theorem assumption holds. It is even possible to
extend it to multiple (arbitrary) failures in general for some
graph classes, e.g., if the protection graph is a ring, we can
precompute a global orientation, w.l.o.g., clockwise, and each
node protects its clockwise function neighbor.

Notwithstanding, we cannot recover two failures in general
with zero rounds of communication:

Theorem 4. It is not possible to always provide a protection
strategy that protects against any two failures with zero round
of communication.

Proof. We give the proof by giving a counter-example. To
this end, we construct a protection graph with three nodes
na, nb, nc (each having a protection capacity of one) and six
functions, one orphan f o

a, f
o
b , f

o
c for each of na, nb, nc, and

three functions fab, fbc, fca that are connected to the nodes
corresponding to their indices, respectively. As such, each
node na, nb, nc has a degree of three in the protection graph.
Next, we consider the two-failure patterns where one orphan
fails and one function from fab, fbc, fca fails. A protection
strategy must protect against all of these 3 × 3 = 9 different
failure patterns. In this protection graph, if function fca fails,
then either the node nc or the node na must protect it, but

it can only protect it if its orphan does not fail. Assume that,
w.l.o.g., the node na protects fca if the orphan f o

a does not fail.
Hence, in this case, nc must not protect fca to not violate the
problem formulation constraints. However, from the viewpoint
of nc, the two failure cases (1) fca,f o

b and (2) fca,f o
a are then

indistinguishable without communication. In case (1), nc must
not protect fca, as a protects its by the earlier assumption (and
nb would protect f o

b), but in case (2), nc must protect fca, as
na is the only node that can protect the orphan f o

a. Hence,
there is a contradiction, which finishes the proof.

Next, while we cannot protect against any two failures with
zero rounds of communication, we can extend the protection
by using one round of communication.

Theorem 5. If two failed functions are shared protected and
Vf1 6= Vf2 , in other words, at least one node can observe
two failures and one node can only observe one failure, the
local recovery can obtain optimal recovery policies within
one-round communication.

Proof. Each node v that sees only one failure has at least
one neighbor w that sees two failures in the neighborhood
graph. Hence, each such node v node that sees one failure,
can be informed about the second failure within one round
of communication by its neighbor w. As such, all nodes that
locally observe at least one failure know about both failures,
and we can precompute an optimal recovery policy that the
nodes can apply after one round of communication, depending
on which two failures appear.

IV. TESTBED

Whereas the previous section presented theoretical algorith-
mic and impossibility results, we next propose a testbed to
translate these ideas into a practical setting.

A. Overview

The testbed is designed to evaluate the recovery mechanism
introduced in the paper. The mechanism utilizes the local
recovery solution executed by worker nodes as a supplement
to the global recovery solution executed by a central controller
of the cluster. The overall structure is shown in Fig. 2. In this
testbed, we assume that the capacities of nodes are one.

The central controller plays the role of initializing function
deployments, monitoring the statuses of all functions running
in the cluster, and executing global recovery. Initializer reads
the topology and protection relationships and creates primary
and backup functions in the corresponding worker nodes in
the beginning. Daemon communicates with worker nodes and
monitors the statuses of functions by heartbeat packets from
worker nodes. Preprocessor executes the pre-step of the local
recovery, which processes the information from the initializer
and sends the results to worker nodes via daemon for local
recovery. Global optimizer calculates the recovery policies
globally after detecting function failures and sends the new
recovery policy to replace the results obtained by the local
recovery solution in worker nodes if necessary.

Worker node n
Central controller

Daemon
Global optimizer

Initializer

Preprocessor

Worker node 2

…

Worker node 1
Daemon Local optimizer

…

Initial deployments
Processing results
Recovery policy (opt.)Protection graph

Worker node lists
HeartbeatsHeartbeats Function manager

Function a Function b

Fig. 2. Overall structure of testbed.

Worker nodes play the role of executing instructions from
the central controller, lifecycle management of functions,
monitoring the statuses of locally deployed functions, sending
heartbeat packets, and executing local recovery. Daemon in
a worker node monitors the statuses of local functions and
communicates with the other elements in the testbed including
sending and receiving heartbeat packets, receiving instructions
and preprocessed information from the central controller. If
any function which is protected by a worker node is not alive,
the local optimizer calculates the local recovery policy and
requests function manager to execute the recovery. Function
manager executes the requirements from the other components
and maintains the lifecycle of locally deployed functions by
connecting to the platforms, e.g., Docker [12].

B. Local recovery algorithm

Algorithm 1 processes the input protection graph in the cen-
tral controller and sends the results to corresponding worker
nodes for Algorithm 2 for local recovery in worker nodes.

Algorithm 1 Preprocessing

Input: Protection graph G(F ∪ N,B), priorities for up to K function
failures.

Output: Processed information for node n ∈ N including: rknf optimal
recovery priority of function f ∈ Pn in k-failure cases, k ∈ [1, · · · ,K];
neighbor nodes of n, N ′, with f ∈ Pn′ , ∀n′ ∈ N ′ and rk

n′f , ∀f ∈
Pn′ , n

′ ∈ N ′, k ∈ [1, · · · ,K].
1: for k ∈ [1, · · · ,K] do
2: for f ∈ F do
3: Calculate the optimal solution for failed function f under k-

failures. rknf = 1, if n ∈ N is the optimal recovery policy of f under
k-failures; 0, otherwise.

4: end for
5: end for
6: Assemble the processed information for each node referring the neigh-

borhood relationships converted from the protection graph.

Algorithm 1 prepares two parts of information for the local
decisions in Algorithm 2. Recovery priorities are used to
avoid recovery contentions if multiple worker nodes protect
the same function. When communication is prohibited, k
is set to 1. In this scenario, each node does not receive
information about failures observed by its neighbors. Each
node can only know the failures of functions which it protected
directly. As a result, when different priorities are assigned
based on the failures observed by the node itself, it can lead to
repetition or omission of recovery, and inefficient utilization
of computational time during preprocessing. The neighbor
information is used for communication if a node observes
two failures whose priorities are the same if communication
is allowed.

After failures are detected by node n ∈ N , Algorithm 2
is executed to find out the recovery policies of the failed
functions directly connected to n.

Algorithm 2 Local recovery

Input: Current node n, processed information for node n ∈ N from
Algorithm 1 including: rknf optimal recovery priority of function f ∈ Pn

in k-failure cases, k ∈ [1, · · · ,K]; neighbor nodes of n, N ′, with
f ∈ Pn′ ,∀n′ ∈ N ′ and rk

n′f , ∀f ∈ Pn′ , n
′ ∈ N ′, k ∈ [1, · · · , k];

set of failed functions protected by n, F ′n.
Output: Recovery choices for failed functions F ′n.
1: if |F ′n| ≥ K + 1 then
2: Choose and recover f ∈ F ′n whose first recovery priority is current

node according to r1nf . If there are multiple functions need to be
recovered, randomly choose one.

3: else
4: If one-round communication is allowed, n sends observed failures to

its neighbors and waits until messages are received from all the neighbors
which shared protects at least one failed function with n and save the list
of failures to L; otherwise, L← F ′n.

5: if |L| ≥ K + 1 or |L| = 1 then
6: Choose and recover f ∈ F ′n whose first recovery priority is

current node according to r1nf . If there are multiple functions need to
be recovered, randomly choose one.

7: else
8: Choose and recover f ∈ F ′n whose first recovery priority is current

node according to r
|L|
nf .

9: end if
10: end if
11: return obtained recovery policy.

If there are more than K failures observed by n, the
preprocessed information cannot ensure an optimal solution.
To avoid unsuccessfully recovery caused by priority conflicts
for different numbers of failures and time for one-round com-
munication, the local algorithm attempts to recover the failures
by using the priority rnf for single-failure cases directly. If the
number of failures whose priorities are all n, n chooses one
to recover in order not to exceed its capacity. If there are no
more than K failures protected by n, n collects the failure
information from its neighbors. If n and its neighbors observe
one failure or more than K failures, n recovers the failure if the
priority to recover the failed function f is n according to the
priority r1nf for single-failure cases obtained by Algorithm 1.
If n and its neighbors observe less than K failures, n recovers
the failure if the priority to recover the failed function f is n
according to the priority rknf for k-failure cases obtained by
Algorithm 1. If n and its neighbors observe more than two
failures, local algorithms attempt recovery using the priority
rnf for single-failure cases. If one-round communication is
not allowed, the definition of L equals to F ′n.

V. EVALUATION

We evaluate the proposed strategy from different aspects.
The evaluation is programmed in Python 3.9, running on an
Intel Core i9-11900KB CPU with 64 GB memory.

A. Baseline strategies and settings

To evaluate the performances of the local recovery solu-
tion proposed in this paper, we introduce the following five
common and state-of-the-art solutions as baseline models.

0%
20%
40%
60%
80%

100%

LRWOP/
GO/PS-1

PS-0 LRRO LRLB RD

Fe
as

ib
ili

ty
 p

ro
po

rti
on

10/20 20/40 30/60
40/80 50/100 average

(a) Proportion of feasible solutions obtained by different strategies.

0
0.2
0.4
0.6
0.8
1

LRWOP/
PS-0/PS-1

LRRO LRLB

O
pt
im
al
ity
ra
tio

10/20 20/40 30/60
40/80 50/100 average

(b) Ratio of objective values of different strategies to optimal
values obtained by GO.

Fig. 3. Comparison on different strategies in protection graphs of different
sizes. x/y: there are x nodes and y functions in the protection graph.

• Random decision (RD): simulates how local recovery
works without a policy. Each node detects the failures
individually and decides whether to recover.

• Local recovery without preprocessing (LRWOP): nodes
exchange information with neighbors to obtain a global
view, using a global optimal algorithm to calculate re-
covery policies.

• Local recovery with random order (LRRO): based on the
SUPPORTED model with a random recovery priority.

• Local recovery considering load-balancing (LRLB): We
consider two baselines based on the SUPPORTED model
for LRLB according to [13] and [3]. The priorities are set
to minimize the utilization ratio against failures.

• Global optimization solution (GO)

The proposed strategy with zero-round and one-round com-
munication are represented by PS-0 and PS-1, respectively.
The proposed strategy maximizes the potential fault-tolerance
after failure recovery. The objective values of LRWOP and
GO are the number of recoverable functions in the remaining
functions by following the global optimization algorithms. The
constraints are the same with (2)-(6) in the proposed strategy.
We compare the solutions obtained by the baselines and PS-
0/PS-1 in terms of the objective value in (1) in randomly
generated protection graphs, where the number of nodes and
functions are given in advance. Each function is randomly
connected to one node in order to ensure that each function
is protected by at least one node. The other edges are created
by following Erdős–Rényi model [14].

Recovery time is another metric including the transmission

delay for communication between neighbors, computational
time to calculate the recovery time, and the waiting time for
messages from neighbors and controllers.

B. Evaluation of impact of size of protection graphs on
recovery solutions and time

We consider five types of protection graphs with different
numbers of nodes and functions. The probability of connecting
a pair of node and function is set to 0.5. We randomly generate
10 graphs for each type. In each graph, two failures randomly
occur. The results are shown in Fig. 3 and Table I.

GO and PS-1 obtain optimal solutions in all examined cases.
PS-0 does not guarantee a feasible solution if the function to
be recovered has a priority conflict, which occurs in 2% of
all examined cases in this evaluation; it is consistent with
the proof of Theorems 3 and 4. PS-0 guarantees that all
obtained feasible solutions are optimal. LRRO obtains 94%
feasible solutions and reaches 85% optimality on average in
the examined cases. LRLB obtains 62% feasible solutions and
reaches 17% optimality on average in the examined cases. RD
does not obtain any feasible solution in the examined cases.
LRRO and LRLB outperform RD significantly because of their
priority settings with constraints (2)-(6).

In terms of the recovery time, LRWOP takes the longest
recovery time to obtain the global topology and failure in-
formation and compute the global optimal solution on each
node, which is 15 and 324758 times than that of PS-1 and
PS-0, respectively. LRRO, LRLB, and PS-0 do not take time
on communications or calculations. They only make decisions
referring to the priorities obtained in the preprocessing phase,
which reduces more than 99.99% recovery time. Compared
with GO and PS-1, PS-0 reduce more than 99.99% recov-
ery time with sacrificing 2% feasibility. As the graph size
increases, the increase of time of GO and PS-1 is greater
compared to PS-0. This is because PS-1 needs to communicate
with a larger number of nodes, and GO needs to compute
more nodes. From Fig. 3(a) and Table I, we can observe
that the proportion of feasible solutions and recovery time
do not vary significantly with increasing graph size in PS-
0. It indicates that for relatively larger graphs, PS-0 has an
advantage compared with GO and PS-1 which require longer
time for computation and communication.

VI. FURTHER RELATED WORKS ON RECOVERY

The protections for functions in previous research can be
divided into two main categories depending on the method
of resource usage: dedicated and shared protections. The
dedicated protection ensures that the protected functions can
always be recovered at a cost of high consumption and
deployment costs. In response to the problems posed by the
dedicated protection, the shared protection for virtual network
has been introduced in [15]. The shared protection allows
different functions to share the same resources to improve uti-
lization and reduce deployment costs and energy consumption
while presenting a challenge of resource scheduling. The work
in [16] designed a model to schedule delay sensitive functions

TABLE I
COMPARISON OF RECOVERY TIME [S] USING DIFFERENT STRATEGIES IN DIFFERENT SIZES OF PROTECTION GRAPHS

Graph sizes† LRWOP (×10−1) LRRO/LRLB (×10−6) GO (×10−3) PS-0 (×10−6) PS-1 (×10−3)

10/20 1.39 3.07 7.25 3.84 3.12
20/40 3.94 2.62 17.5 2.91 13.4
30/60 7.97 2.81 35.0 2.88 40.2
40/80 14.1 6.84 74.6 2.81 53.1
50/100 22.9 11.3 94.6 3.11 219
average 10.1 3.67 45.8 3.11 65.8

†: x/y: there are x nodes and y functions in the protection graph.

allowing resource sharing and preemption. Our work addresses
the issues arising from shared protection in local recovery by
prioritizing planning based on a SUPPORTED model.

Previous strategies for failure recovery include immediate
recovery at the time of failure to adapt to dynamic scenarios.
For instance, reinforcement learning (e.g., [17]) dynamically
allocates resources for recovery, while heuristic algorithms
(e.g., [18]) manage stateful function placement and switch
traffic. Alternatively, global recovery policies calculated pre-
emptively promise rapid recovery but may sacrifice accuracy
(e.g., [19]). Others (e.g., [3], [4]) focus on deploying and
managing primary and backup resources to prevent service
interruptions. In contrast, our approach combines both strate-
gies by preprocessing topology for protection relationships and
using this data dynamically. This aims to minimize recovery
time and ensure effective recovery.

VII. CONCLUSION

In distributed systems, the reliability and latency of each
function are extremely crucial as they affect user experience.
We considered the problem of how to determine a policy for
each node to recover functions distributively that maximizes
residual resilience. The failures should be recovered without
repetition or omission. We formulated the problem as an ILP
problem. We analyzed conditions for obtaining feasible and
optimal local recovery solutions with zero-round or one-round
communication against one and two failures. We proposed a
local recovery strategy based on preprocessing with zero-round
or one-round communication executed on each worker node.
We designed a testbed with related algorithms to realize the
proposed strategy. We evaluated the strategy compared with
five baseline strategies. PS-0 cannot guarantee 100% feasibility
for the cases with more than one failures, which is 98% on
average in all examined cases with two failures. However,
considering the recovery time, PS-0 is the only method whose
recovery time is on the scale of 10−6 among other baselines,
which is 3.11× 10−6 seconds on average. If a certain level of
infeasibility for the cases with two failures is allowed, PS-0
is the best choice, which reduces more than 99.99% recovery
time with sacrificing 2% feasibility.

REFERENCES

[1] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the art of network function virtualization,” in
USENIX Symp. on Networked Syst. Design and Implementation (NSDI),
2014, pp. 459–473.

[2] S. Aidi, M. F. Zhani, and Y. Elkhatib, “On improving service chains
survivability through efficient backup provisioning,” in Int. Conf. on
Network and Service Management (CNSM). IEEE, 2018, pp. 108–115.

[3] M. Zhu, F. He, and E. Oki, “Resource allocation model against multiple
failures with workload-dependent failure probability,” IEEE Trans. on
Network and Service Management, vol. 19, no. 2, pp. 1098–1116, 2022.

[4] R. Kang, F. He, and E. Oki, “Fault-tolerant resource allocation model for
service function chains with joint diversity and redundancy,” Computer
Networks, vol. 217, p. 109287, 2022.

[5] V. Mushunuri, A. Kattepur, H. K. Rath, and A. Simha, “Resource
optimization in fog enabled iot deployments,” in Second Int. Conf. on
Fog and Mobile Edge Comp. (FMEC). IEEE, 2017, pp. 6–13.

[6] Z. Wen, R. Qasha, Z. Li, R. Ranjan, P. Watson, and A. Romanovsky,
“Dynamically partitioning workflow over federated clouds for optimising
the monetary cost and handling run-time failures,” IEEE Trans. on Cloud
Computing, vol. 8, no. 4, pp. 1093–1107, 2020.

[7] K.-T. Foerster, J. Hirvonen, S. Schmid, and J. Suomela, “On the power
of preprocessing in decentralized network optimization,” in IEEE Conf.
on Computer Commu. (INFOCOM). IEEE, 2019, pp. 1450–1458.

[8] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn
control,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp. 121–126.

[9] J. H. Korhonen and J. Rybicki, “Deterministic subgraph detection
in broadcast CONGEST,” in 2017 21st International Conference on
Principles of Distributed Systems, OPODIS,, J. Aspnes, A. Bessani,
P. Felber, and J. Leitão, Eds.

[10] K. Foerster, J. H. Korhonen, A. Paz, J. Rybicki, and S. Schmid,
“Input-dynamic distributed algorithms for communication networks,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 5, no. 1, pp. 06:1–06:33,
2021. [Online]. Available: https://doi.org/10.1145/3447384

[11] K. Foerster, J. H. Korhonen, J. Rybicki, and S. Schmid, “Does pre-
processing help under congestion?” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019,
P. Robinson and F. Ellen, Eds.

[12] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[13] F. He and E. Oki, “Preventive priority setting against multiple controller
failures in software defined networks,” IEEE Trans. Parallel Distributed
Syst., vol. 34, no. 8, pp. 2352–2364, 2023.

[14] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[15] T. Guo, N. Wang, K. Moessner, and R. Tafazolli, “Shared backup
network provision for virtual network embedding,” in IEEE International
Conference on Communications (ICC), 2011, pp. 1–5.

[16] Y. Zhang, F. He, T. Sato, and E. Oki, “Network service scheduling with
resource sharing and preemption,” IEEE Trans. on Network and Service
Management, vol. 17, no. 2, pp. 764–778, 2019.

[17] R. Kang, F. He, and E. Oki, “Resilient virtual network function alloca-
tion with diversity and fault tolerance considering dynamic requests,” in
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2022, pp. 1–9.

[18] G. Yuan, Z. Xu, B. Yang, W. Liang, W. K. Chai, D. Tuncer, A. Galis,
G. Pavlou, and G. Wu, “Fault tolerant placement of stateful vnfs and
dynamic fault recovery in cloud networks,” Computer Networks, vol.
166, p. 106953, 2020.

[19] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1253–1301,
2021.

