
Analyzing Network Routing Resilience: A Hybrid
Approach of Face and Tree Routing

Georgios Karamoussanlis
TU Dortmund

Dortmund, Germany
georgios.karamoussanlis@udo.edu

Stephanie Althoff
TU Dortmund

Dortmund, Germany
stephanie.althoff@udo.edu

Erik van den Akker
TU Dortmund

Dortmund, Germany
erik.vandenakker@udo.edu

Klaus-Tycho Foerster
TU Dortmund

Dortmund, Germany
klaus-tycho.foerster@udo.edu

Abstract—With the aim of ensuring reliable and consistent
communication, network topologies need to be able to correctly
and rapidly respond to potential errors. Through these responses,
the connection within the network is maintained, even in the
presence of faults. This is achieved through various mechanisms,
known as fast failover algorithms, which are implemented in the
data plane, opposed to the slower control plane.

In this work, an established fast failover approach, which
routes through trees, is extended. This extension is achieved
by dividing the routing path into two parts and using both
face routing and tree routing for forwarding packets. This is
done against the backdrop that Tree Routing yields suboptimal
results when the source of the routing is highly error-prone. To
counteract this, this work proposes a modification of the Tree
Routing by first routing through a waypoint using face routing
and then utilizing tree routing. As such, the routing is resilient
to errors both at the source and destination.

Results of this work showed in a setting of clustered failures
using real world graphs, resilience can be enhanced, with a
higher hop count due to utilizing the faces to circumvent early
failures. Furthermore, it has been shown that for random errors
in random graphs, the resilience is also increased compared to
the original tree routing algorithm.

Index Terms—fast failover routing, routing, face routing

I. INTRODUCTION AND BACKGROUND

In today’s digital society, we increasingly rely on commu-
nication networks. Many applications, such as i.e. financial
transactions or medical software, require a high availability
of service. Network outages are causing a degradation in
service quality [1] and can lead to high costs [2]. However,
networks have been expanded significantly in size over the
years, which leads to a corresponding increase of data traffic.
Consequently, the likelihood of packets encountering failures
during transmission has grown [3]. In the modern era, manag-
ing failures of communication networks has, therefore, become
increasingly critical.

It is essential for networks to be equipped to handle node
failures and to provide alternative paths ensuring that packets
reach their intended destinations. Due to stringent availability
requirements, local fast rerouting algorithms are used within
the data plane in many communication networks [4], which
are known to operate at timescales several orders of magnitude
faster than the control plane [5].

Current methods for local fast failover algorithms, which are
widely used in many networks today, primarily utilize edge-
disjoint paths to create alternative routes [6], [7]. We refer to

the survey of Chiesa et al. [4] for a general overview. Further
research has shown that the use of tree routing can further
enhance resilience [8]. In this approach, the edge-disjoint
paths are extended into trees, which are then used for routing
packets through the network. Trees are especially suited to this
approach, as one can implement local fast failover routing in
the nodes by traversing them in a depth-first search (DFS),
where failed edges are simply skipped [9] in the local DFS
traversal. Notwithstanding, using trees brings the disadvantage
that routing may be prematurely terminated when frequent
errors occur at the root, as the path diversity is concentrated
at the destination neighboring the leaf nodes.

However, this approach cannot be directly turned into a
double-tree structure, protecting both source and destination:
when routing from a leaf to the destination, the packet never
needs to return, as the packet has reached its intended target.
But, when returning to the source, using the local DFS-
traversal approach is problematic, as connecting the source
to the tree turns the routing structure into a non-tree planar
graph, where resilience to failures is hard to achieve [9], [10].

Still, upon taking a closer look, one does not need to
perform arbitrary routing in this double-tree, as we are only
interested in reaching the destination from the source, and
hence we can take inspiration from classic face routing [11],
[12]. In this setting, the graph is divided into so-called “faces”
and routing is based on their geometric and geographic prop-
erties. Even though face routing usually requires non-trvial
state [13] in the packets or nodes, which is undesirable in
high-performance networks, we in this paper propose to simply
route along the outer face to realize such a double-tree aproach,
as routing along the outer face is compatible with zero-state
local fast failover algorithms [9], [10].

A. Contributions

The present work analyzes whether the integration of face
routing can improve fast failover routing in the form of tree
routing. In this context, a demand first traverses from its source
to a checkpoint using face routing and is then routed to the
destination using tree routing. We denote this hybrid approach
as OneTreeCheckpoint.

To this end, we present a formal concept how face routing
can be integrated into the context of fast failover routing for
the example of tree routing.

We show in Python-based simulations that such a hybrid
approach can increase resilience to link failures, for both
clustered failures in real-world graphs and random failures in
random graphs. Nonetheless, the higher resilience comes at the
cost of increased hop count, as the increased path diversity,
leading to better routing success, comes at the cost of longer
routes post-failures.

B. Organization

The work is structured as follows: Section II introduces the
model and Section III discusses the concepts, including both
the precomputation and routing processes. Section IV presents
the evaluation, analyzing the resilience and hops of the various
approaches. Finally, Section V summarizes the work and
Section VI provides an outlook on further improvements that
could be made to the hybrid use of face and tree routing.

II. MODEL

We consider networks modeled as undirected graphs G =
(V,E). For routing packets in the network, static local for-
warding rules are implemented at each node for every possible
combination of source s ∈ V and destination d ∈ V . These
forwarding rules decide about the used outgoing edge based on
the information in the packet header, as well as the incoming
port the packet was sent from. It is not allowed to modify the
packet header to add additional information. The forwarding
rules have to be installed at each node in advance (while the
failures are unknown yet). After implementing the forwarding
rules, a random set of edges F ⊆ E fails, hence the packet
has to be routed through the Graph G′ = (V,E \ F) only
utilizing the previously installed forwarding rules.

Generally a forwarding pattern is called r-resilient, if for
any set F ⊆ E with |F | = r and any source-destination
pair s, d ∈ V , where s and d are still connected in G′,
packets from s can still reach the destination d while only
following the rules of the forwarding pattern. In this work, we
heuristically check if a packet still reaches the destination node
under random edge failures, applying our strategy, and using
resilience to describe the probability of the packet reaching
its destination under a given failure set. A more detailed
description of the used metrics is given in Section IV.

III. CONCEPT AND MODEL

In this section the concept of connecting face routing with
tree routing is described in detail. Each step of Fig. 1 is
referenced in the corresponding following sections. In the
figure, arrows are shown under each step to indicate the
direction in which each respective phase operates. The frame-
work [14], which is based on previous work [15], has been
expanded in this work. This is a corresponding model to [15],
which describes the graph structures. A comparable model
can also be found in the following work [8]. Therefore, the
model of the trees used for routing in Sections III-A2 and
III-B2 consists of unidirectional edges to maintain the internal
structure of the trees and preserve parent-child relationships.
The concept is encapsulated in the implementation of the

Fig. 1. Example graph demonstrating the step-wise implementation of the
Hybrid Approach of Face and Tree Routing

OneTreeCheckpoint algorithm, which will be detailed fur-
ther in the following sections. In the other steps of the concept,
the deployed structure consists of bidirectional edges.

A. Precomputation

In the precomputation phase, preparations are made and the
underlying structures are created, which form the basis for
the routers forwarding rules. This precomputation consists of
three steps, which are shown in Fig. 1 as 0 , 1 , and 2 .
The precomputation fills the entries of the routing tables by
building the structures of each step for every source (s) and
destination (d) pair.

1) EDPs: Before face and tree structures are created, the
edge-disjoint paths (EDPs) need to be found in step 0 .
For a given (s,d)-pair the edge-disjoint paths describe paths
from s to d such that no two paths share an edge. First
the longest EDP is found in order to choose the checkpoint
(cp) as a safe node for routing through. In the current state
of the algorithm, the cp is selected as the node that lies
halfway through the longest EDP. This decision is based on
the observation that the midpoint of the longest EDP often
provides a balanced splitting point for further computations,
particularly in dense network topologies, where it is critical
to evenly distribute the workload between the subsequent
EDPs. While the choice of cp at this midpoint is heuristic
and determined ad hoc in this version of the algorithm, it
serves to minimize the complexity of the sub-problems created
during the search for the remaining two EDPs. Specifically, it
ensures that the two remaining paths, which are crucial for
constructing the structures in Sections III-A2 and III-A3, are
reasonably balanced in length. This heuristic aims to prevent
situations where one sub-problem becomes disproportionately
more complex than the others.

After choosing cp, it is used to find the remaining two EDPs
in order to use them as the foundation for the structures in
Section III-A2 and III-A3. This is done by finding the longest

EDP between s and cp for step 1 . Similar for step 1 the
longest EDP between cp and d is used for step 2 .

2) Tree: The underlying structures of both steps 1 and 2
are trees, that are generated by expanding the longest EDP. In
contrast to the structure of 1 , the tree in 2 is expanded to
a planar structure with faces, which is described in Chapter
III-A3. The first tree build, expands the EDP in the direction of
cp to s. The direction was chosen to address the issue of having
too many faulty edges at the source. This leads to a multitude
of leaves at the source, all of which serve as entry points into
the routing structure. The second tree expands the EDP in the
direction of cp to d. At the beginning of the tree building
algorithm, the tree consists of the longest EDP as previously
described. After that, the algorithm iterates over the nodes of
the tree and adds their neighboring nodes, which are not part
of the tree yet, along with the corresponding edges to the tree.
These iterations will be terminated once no further edges can
be inserted into the tree. Next comes the pruning of the tree,
as it contains paths that are not leading to the destination. The
pruning function will be called repeatedly until no more nodes
can be removed from the tree. In every call of this pruning
function, leaves are removed if they don’t have a connection to
d in the topology. At the last part of the algorithm, each node
gets a rank, which describes the order in which the routing has
to choose its next hop. For this part a ranking function assigns
ranks to the nodes of the tree, starting from the leaves. A rank
reveals the information about how many edges need to be
traversed from the respective node to reach the destination. A
special ranking is needed for the rankings of the EDP nodes,
since they need to be traversed first.

3) Faces: Since the routing of step 3 starts at s and ends
at cp, the reversed tree structure build in step 1 needs to be
changed. This adjustment is needed due to the intricate nature
of routing within a tree structure, particularly when navigating
from leaf nodes towards the root, relying solely on localized
information available at each node. In order to route on this
tree starting from the leaves, face routing is chosen as the
concept of routing to the checkpoint. Being able to use face
routing and find the faces of a graph, implies that the graph is
planar. This is given by the definition of a graph represented
as a tree [16]. Conducive to route from s to cp, the source
gets connected to the leaves of the structure and coordinates
get added to each node of the structure, representing a planar
topology. Following the coordinates of each node, the faces of
the structure need to be determined. The algorithm determines
the faces of a planar graph by traversing each node and
examining the half-edges emanating from that node. New faces
are identified by visiting neighboring nodes starting from a
node until a closed path is formed.

B. Routing

The routing is divided into 2 sections (Sections III-B2 and
III-B1), as shown in Fig. 1. The routing scheme changes as
soon as the packet to be sent has arrived at cp. This is due to
the change in the underlying structure, which was described

in Chapter III-A. Before using the structure provided by the
precomputation, packets are routed along the EDPs, which
span from s to d. In case the routing via the EDPs fails, the
packet then first passes through a planar structure with faces
3 and then through a tree structure 4 .

1) Face Routing: Face routing describes the first part that
the packet traverses on its complete route to the destination.
It is first routed from s to cp. The idea of the face routing
algorithm is similar to [12]. We first explain it in general before
showing how it can be applied to our setting.

Since the structure created in Chapter III-A3 is planar and
the faces have been determined, this paragraph explains how
to route in any face in order to get to the next face in general or
to find the destination directly. An example of the face routing
algorithm is shown in Fig. 2. Three variables are given in this
Figure, which include the Entry Point (EP), from where the
routing starts in the current face, the Destination (D), and
the Intersection Point (IP), which represents the intersection
point between the imaginary edge (EP , D). In the first phase
of routing, the demand follows the green arrows. At each
edge, it is checked whether it intersects with the imaginary
edge. If such an intersection exists, it is further checked if this
intersection is the one closest to the destination and is stored.
This process is repeated until an invalid edge is encountered,
causing the routing to backtrack, or a loop within the face
is completed. Next, the packet follows the blue path to the
node of the previously determined nearest IP and transitions
to the next face. At this point, this process is repeated until
the packet encounters D in the first pass.

We note however that this face routing as described requires
some header modification in general, as we move from face
to face, and can no longer rely on the incoming port to
uniquely identifiy our current routing state – opposed to edge
disjoint paths. Notwithstanding, in our proposal, we do not
need to change faces, as we start on the outer face, which
contains both the source and the checkpoint. As long as source
and checkpoint remain connected in the pre-built subgraph-
structure post-failures, they will both be on the outer face, and
we can hence route from source to the checkpoint without
header modification, as we switch from face to tree routing
once we hit the checkpoint.

2) Tree Routing: Tree routing describes the second part that
the packet goes through on its complete path to the destination.
In this part, it is ultimately routed from cp to d.

First, routing follows the previously edge-disjoint paths.
This is ensured by prioritized ranking. The lower the rank of
a node, the higher its priority. Assuming that all EDPs contain
a faulty edge, the routing begins via the tree. This is divided
into sections, which correspond to the type of port through
which the packet arrives at any node (A) of Fig. 3.

When the packet arrives through the incoming edge of the
parent node, it indicates that node A is being visited for the
first time. Therefore, the optimal child (B) with the lowest
rank is selected first, the packet is forwarded there, and the
process is repeated.

Fig. 2. Example of Face Routing used as a motivation for step 3 . The first
path is searching for the intersection point (IP) and second path is traversing
to the closest intersection from the entry point (EP) of the face. This figure
serves solely as an illustrative example of the conceptual workings of face
routing and employs different nodes than those depicted in Fig. 1.

If the packet returns through the child node B because all
outgoing edges there might have failed, it means that another
child must be selected. For this, all outgoing edges from A
are sorted by their ranks, and it is checked which child has
the next higher rank compared to B. In this case, it would be
C. This process is similar if the packet is sent back from node
C to node A.

In the last case, the packet arrives back at A from D.
This means that the child with the highest rank also failed
in routing, and there are no other children to which the packet
can be forwarded. Therefore, the packet is forwarded from A
to its parent node.

Here, the special case to be considered is when there are
no further children at the source, the routing has failed.

3) Theoretical Guarantees: As noted in the precomputation
in §III-A, we start with as many EDPs as possible, i.e., if
the source and destination are r-edge-connected, we obtain
r such paths, and we can hence obtain (r − 1)-resilience by
successively routing on the paths as shown in CASA [15].

In our proposal, we leave the first (r− 1) EDPs untouched
and hence directly obtain (r − 2)-resilience. For the last
EDP, after the checkpoint, our proposal is guaranteed to
reach the destination if routing on the last EDP also reaches
the destination, as we simply potentially offer more options
past the checkpoint, see the original TREE paper [8]. For
the last EDP before the checkpoint, the original part of the
EDP is contained in the planar ”face” subgraph built in the
preprocessing, which is edge-disjoint from the first (r − 1)
EDPs and the tree structure past the checkpoint. If the r-
th EDP still connects source and checkpoint, then the planar
”face” subgraph also connects source and checkpoint, as the
r-th EDP is contained in it, and as thus we can route from the
source to the checkpoint analogously as in [9, §6.2].

Hence, overall, we retain the (r−1)-resilience of the original

Fig. 3. Example of Tree Routing used in step 4 . Ranks of the nodes.

r EDPs, but possible induce longer paths/stretch due to the
extension of the last EDP into a larger subgraph. Furthermore,
the latter hopefully allows for more resilience to failures,
which we next evaluate heuristically.

IV. EVALUATION

The evaluation is divided into two sections. First, in Fig. 4,
randomly generated graphs with randomized failures are eval-
uated. Subsequently, TopologyZoo [17] graphs with clustered
failures are evaluated in Fig. 5. We use Python to perform
these graph-based simulations. The metrics used in all figures
are listed below:
Hops: the number of edges needed to reach a specific

destination from a source. The average number of hops is
calculated by summing the hops of all repetitions of a failure
rate (or a graph in the case of Fig. 5) that did not fail, and
then dividing by the number of repetitions of a failure rate
that did not fail.
Resilience: The resilience R is defined as the probability

of success with which a packet reaches its destination from
a source. To quantify this, the resilience is computed as the
ratio of successful transmissions m to the total number of
transmission attempts n. Mathematically, the resilience of a
path P is expressed as: R = m

n where m is the number of
successful transmissions from the source s to the destination
d and n is the total number of transmission attempts. To
determine the average resilience R̄ across multiple repetitions
or for a given failure rate, we compute the mean resilience
across all tested paths or graph topologies. If Ri is the
resilience of the i-th path, the average resilience is calculated
as: R̄ = 1

k

∑k
i=1 Ri where k is the number of paths or

repetitions considered, and Ri is the resilience of the i-th
path. For each failure rate or graph configuration (as shown in
Fig. 5), the sum of all path resiliences is divided by the total
number of repetitions to yield the average resilience.

In the following Section IV-A, each step on the X-axis
represents the average of the results from 100 experimental
runs for that value. In Section IV-B, each step on the X-axis
represents the average of the results from 5 experimental runs
for that value. In each experimental run, the s from which the
packet is routed to d changes.

Fig. 4. Comparison of the resilience and hops of different algorithms on randomly generated 5-regular (upper) and 8-regular (lower) graphs. Each Failure
Rate step represents an increment of 5 failures added to the network topology. The left plot displays the resilience (success rate) of each algorithm, while the
right plot shows the average number of hops required.

For each step on the X-axis, five different source nodes s are
randomly chosen to evaluate the performance of the algorithm
when routing to the same destination d. The source nodes are
selected as follows: prior to each run, the list of all nodes in
the graph is shuffled using a pseudo-random number generator
initialized with a fixed seed to ensure reproducibility. From
the shuffled list, the first five nodes are selected as source
nodes s. The destination node d remains the same across
all runs for consistency in comparison. The random selection
of source nodes enhances the diversity of test scenarios by
varying the sources across runs, allowing the algorithm to be
tested against different parts of the network. This approach
improves robustness and ensures more generalizable results.

A. Randomly Generated Graphs
First, the results of the randomized graphs from Fig. 4

are evaluated. These graphs consist of 50 nodes, each with a
connectivity of 5 or 8 respectively. In both plots, the respective
metrics in relation to the failure rate can be seen. The first
failure rate (FR) step involves selecting 5 edges uniformly at
random from the total set of edges and marking them as faulty.
A FR step indicates that 5 faulty edges are randomly selected,
in the same manner as the first step, and added to the existing

faulty edges. The randomly generated graphs of this chapter
are created by using the random regular graph(n, k, seed)
algorithm of NetworkX [18], which generates a random k-
regular graph on n nodes. For this experiment 100 5-regular
and 100 8-regular graphs were generated. For each graph
a destination and five different starting points are chosen
at random.

Additionally, one other algorithm from a recent paper [8]
is compared to the algorithm of this work. OneTree is
the original form, which operates without face routing and
the checkpoint.

Regarding resilience, both algorithms offer maximum re-
silience up to FR=7 on 5-regular graphs (FR=15 on 8-regular),
as can be seen in the left plot of Fig. 4. From FR=8 on 5-
regular graphs (FR=16 on 8-regular), OneTreeCheckpoint
consistently achieves the highest resilience values.

Upon examining the hop counts in the right plot of
Fig. 4, it becomes apparent that OneTree achieves an
identical number of hops up to FR=6 on 5-regular graphs
(FR=11 on 8-regular graphs). Starting from FR=7 on 5-
regular graphs, the hop counts of OneTree exceed those of
OneTreeCheckpoint. On 8-regular graphs between FR=11

and FR=24, the OneTree Algorithm generally has a higher
hop count than the OneTreeCheckpoint, from FR=25 to
FR=30, the OneTree needs a smaller number of hops.

In summary, this means that, with regard to randomized
regular graphs, the resilience is generally improved by the
hybrid approach of this work but also requires a comparatively
higher number of hops in some cases.

B. Real World Graphs

The experiments with the OneTree and
OneTreeCheckpoint algorithms on real-world graphs [17]
are shown in Fig. 5. There, four graphs are listed with their
number of nodes and measured hops/resilience. The used
topologies consist of: BtEurope with n = 24, Geant2001
with n = 27, Bics with n = 33 and Garr201105 with
n = 59. The chosen model for the clustered selection of
faulty edges is taken from [19]. This targeted attacks failure
model simulates adversarial failures, such as those caused by
attacks, by focusing on well-connected regions or clusters
in the network. These clusters could represent strategically
important areas, like groups of cities. An adversary might
target links within these clusters to disrupt the network’s
fast-recovery capabilities. In this model, links are selected
for failure based on the clustering coefficient of nodes, with
a predefined number of links either chosen randomly from a
candidate set or fully disabled if the set contains fewer links
than the failure parameter.

In the upper plot of Fig. 5, it can be seen that
OneTreeCheckpoint achieves higher resilience in two out of
the four experiments. This is due to the fact that this algorithm
provides multiple entry points from the source, even when
influenced by several faulty edges. However, it can also be
observed that OneTree delivers increased resilience values in
the experiments with graphs of n = 24 and n = 59. This can
be attributed to the fact that, in selected cases, expanding a
single EDP is more effective than creating a broader hybrid
structure. Considering the hops in the lower plot of Fig. 5,
both algorithms achieve similar numbers in the first three
experiments. In the fourth experiment, a significant increase
in hops is observed for OneTreeCheckpoint, which can be
attributed to the structure of the hybrid architecture having a
larger number of edges. However, in selected cases, this also
leads to substantial overhead regarding the hop count.

It is also noteworthy that the precomputation time of the
algorithms was measured in the experiments, although not
graphically represented in this work. From these results, it
can be concluded that OneTreeCheckpoint usually requires
three times as much precomputation time compared to the
OneTree algorithm.

In summary, it can be concluded that OneTreeCheckpoint
enhances resilience by approximately 10.64%, making it more
adept at withstanding clustered failures. However, in some
cases, the increased hops due to its larger structure may lead to
unnecessary overhead, potentially compromising its resilience
despite these improvements.

Fig. 5. Comparison of the resilience and hops of the two algorithms on
various graph sizes using topologies from the Topology Zoo. The upper plot
shows the resilience (success rate) of each algorithm, while the lower plot
illustrates the average number of hops. Each bar represents the aggregated
results from 5 experimental runs.

V. CONCLUSION

This work presents an initial approach to combine the
advantages of face routing with those of tree routing. Initially,
packets are forwarded from the source to a checkpoint cp via
face routing. Next, the packets reach their destination with the
help of tree routing. This method was chosen to counteract
clustered failures at the source and to provide a variety of entry
points into the routing for the packets. It has been observed
that the hybrid approach can enhance resilience not only in
the case of clustered failures but also in comparison to similar
algorithms in scenarios involving random failures.

VI. OUTLOOK

Subsequently, further possibilities are described for improv-
ing the combination of face routing and tree routing. One
possibility is to modify the choice of cp by, for example,
already globally knowing the ”fault tolerance” of a node
and thus highlighting it in the choice of cp. This choice
can also be randomized in other ways. Another approach
could be to modify the tree formation. Modifications could be
incorporated, such as building multiple trees or restricting the

width of the tree. However, in this case, it would be necessary
to evaluate whether the graph is large enough to fill multiple
trees. Furthermore, in some scenarios, it would be beneficial to
use multiple cp, through which routing should be performed.
To this end, we also plan to run larger-scale evaluations on
more data sets and topologies.

Lastly, it could also be interesting to extend the ideas
presented in this paper to other concepts and methodolo-
gies in the fast failover setting, such as randomization [6],
header modification [7], [20], dynamic failures due to link
flapping [21], shortcutting failures to reduce the detour stretch
overhead [22], [23] or even to directed graphs [24], [25].

REFERENCES

[1] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy,
D. Wetherall, and T. E. Anderson, “Studying black holes in the
internet with hubble,” in 5th USENIX Symposium on Networked
Systems Design & Implementation, NSDI 2008, April 16-18,
2008, San Francisco, CA, USA, Proceedings, J. Crowcroft and
M. Dahlin, Eds. USENIX Association, 2008, pp. 247–262. [Online].
Available: http://www.usenix.org/events/nsdi08/tech/full papers/katz-
bassett/katz-bassett.pdf

[2] G. Aceto, A. Botta, P. Marchetta, V. Persico, and A. Pescapè,
“A comprehensive survey on internet outages,” J. Netw.
Comput. Appl., vol. 113, pp. 36–63, 2018. [Online]. Available:
https://doi.org/10.1016/j.jnca.2018.03.026

[3] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Toronto,
ON, Canada, August 15-19, 2011, S. Keshav, J. Liebeherr, J. W. Byers,
and J. C. Mogul, Eds. ACM, 2011, pp. 350–361. [Online]. Available:
https://doi.org/10.1145/2018436.2018477

[4] M. Chiesa, A. Kamisinski, J. Rak, G. Rétvári, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,”
IEEE Commun. Surv. Tutorials, vol. 23, no. 2, pp. 1253–1301, 2021.
[Online]. Available: https://doi.org/10.1109/COMST.2021.3063980

[5] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira,
and S. Shenker, “Ensuring connectivity via data plane
mechanisms,” in Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013,
Lombard, IL, USA, April 2-5, 2013, N. Feamster and J. C.
Mogul, Eds. USENIX Association, 2013, pp. 113–126. [On-
line]. Available: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/liu junda

[6] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Shapira, and S. Shenker, “On the Resiliency of Randomized
Routing Against Multiple Edge Failures,” in 43rd International
Colloquium on Automata, Languages, and Programming (ICALP
2016), ser. Leibniz International Proceedings in Informatics (LIPIcs),
I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi,
Eds., vol. 55. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, pp. 134:1–134:15. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6269

[7] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.
[Online]. Available: https://doi.org/10.1109/TNET.2016.2619398

[8] O. Schweiger, K.-T. Foerster, and S. Schmid, “Improving the resilience
of fast failover routing: Tree (tree routing to extend edge disjoint
paths),” in Proceedings of the Symposium on Architectures for
Networking and Communications Systems, ser. ANCS ’21. New
York, NY, USA: Association for Computing Machinery, 2022, p. 1–7.
[Online]. Available: https://doi.org/10.1145/3493425.3502747

[9] K. Foerster, J. Hirvonen, Y. Pignolet, S. Schmid, and G. Trédan,
“On the feasibility of perfect resilience with local fast failover,”
in 2nd Symposium on Algorithmic Principles of Computer
Systems, APOCS 2020, Virtual Conference, January 13, 2021,
M. Schapira, Ed. SIAM, 2021, pp. 55–69. [Online]. Available:
https://doi.org/10.1137/1.9781611976489.5

[10] ——, “On the price of locality in static fast rerouting,” in
52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2022, Baltimore, MD, USA, June
27-30, 2022. IEEE, 2022, pp. 215–226. [Online]. Available:
https://doi.org/10.1109/DSN53405.2022.00032

[11] B. Leong, S. Mitra, and B. Liskov, “Path vector face routing:
Geographic routing with local face information,” in 13th IEEE
International Conference on Network Protocols (ICNP 2005), 6-9
November 2005, Boston, MA, USA. IEEE Computer Society, 2005,
pp. 147–158. [Online]. Available: https://doi.org/10.1109/ICNP.2005.32

[12] I. Stojmenovic, “Position-based routing in ad hoc networks,” IEEE
Commun. Mag., vol. 40, no. 7, pp. 128–134, 2002. [Online]. Available:
https://doi.org/10.1109/MCOM.2002.1018018

[13] F. Cadger, K. Curran, J. A. Santos, and S. Moffett, “A survey of
geographical routing in wireless ad-hoc networks,” IEEE Commun.
Surv. Tutorials, vol. 15, no. 2, pp. 621–653, 2013. [Online]. Available:
https://doi.org/10.1109/SURV.2012.062612.00109

[14] K.-T. Foerster, A. Kamisinski, Y.-A. Pignolet, S. Schmid, and G. Trédan,
“fast-failover,” https://gitlab.cs.univie.ac.at/ct-papers/fast-failover, 2022.

[15] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan,
“Casa: Congestion and stretch aware static fast rerouting,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications. IEEE Press, 2019, p. 469–477. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2019.8737438

[16] D. B. West, Introduction to Graph Theory, 2nd ed. Upper Saddle River,
N.J.: Prentice Hall, 2001.

[17] S. Knight, H. X. Nguyen, N. Falkner, R. A. Bowden, and
M. Roughan, “The internet topology zoo,” IEEE J. Sel. Areas
Commun., vol. 29, no. 9, pp. 1765–1775, 2011. [Online]. Available:
https://doi.org/10.1109/JSAC.2011.111002

[18] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[19] K. Foerster, A. Kamisinski, Y. Pignolet, S. Schmid, and
G. Trédan, “Grafting arborescences for extra resilience of fast
rerouting schemes,” in 40th IEEE Conference on Computer
Communications, INFOCOM 2021, Vancouver, BC, Canada, May
10-13, 2021. IEEE, 2021, pp. 1–10. [Online]. Available:
https://doi.org/10.1109/INFOCOM42981.2021.9488782

[20] E. van den Akker and K. Foerster, “Short paper: Towards 2-resilient
local failover in destination-based routing,” in Algorithmic Aspects of
Cloud Computing -9th International Symposium, ALGOCLOUD 2024.
Springer, 2024.

[21] W. Dai, K. Foerster, and S. Schmid, “On the resilience of fast failover
routing against dynamic link failures,” CoRR, vol. abs/2410.02021,
2024. [Online]. Available: https://arxiv.org/abs/2410.02021

[22] A. Shukla and K. Foerster, “Shortcutting fast failover routes
in the data plane,” in ANCS ’21: Symposium on Architectures
for Networking and Communications Systems, Layfette, IN, USA,
December 13 - 16, 2021. ACM, 2021, pp. 15–22. [Online]. Available:
https://doi.org/10.1145/3493425.3502751

[23] S. Althoff, F. Maassen, M. Weiler, A. Shukla, and K. Foerster, “Towards
local shortcutting of fast failover routes,” in Proceedings of the on
CoNEXT Student Workshop 2023, CoNEXT-SW 2023, Paris, France, 8
December 2023, G. Tyson and M. Varvello, Eds. ACM, 2023, pp.
1–2. [Online]. Available: https://doi.org/10.1145/3630202.3630223

[24] J. Grobe, S. Althoff, and K. Foerster, “Analyzing network routing
resilience: A hybrid approach of face and tree routing,” in 14th Inter-
national Workshop on Resilient Networks Design and Modeling, RNDM
2024. IEEE, 2024.

[25] E. van den Akker and K. Foerster, “Brief announcement: On the feasibil-
ity of local failover routing on directed graphs,” in Stabilization, Safety,
and Security of Distributed Systems - 26th International Symposium,
SSS 2024, ser. Lecture Notes in Computer Science. Springer, 2024.

