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Abstract—The fast and resilient routing of packets in networks
presents a complex problem with high practical relevance due to
its application in local/wide area networks and the Internet in
general: nearly all modern communication networks implement
some form of re-routing to retain connectivity after failures.
Therefore a lot of research regarding this problem has been
conducted, but it is almost exclusively focused on the prevalent
case of undirected networks.

In this paper we hence provide an overview of the current
research concerning fast rerouting algorithms and the unique
challenges of re-routing on directed graphs, in particular the
transferability of existing algorithms to this special case.

Subsequently, one of these algorithms, called Keep Forward-
ing, originally designed for undirected graphs, is adapted for
directed graphs and then evaluated against other algorithms in a
simulation on synthetic (random and disk graphs) and real-world
(from the Heathland sensor network experiment) topologies. We
show that our adaptation is superior to the other algorithms on
most topologies, with the average packet loss and stretch being
up to 61 % and 65 % lower than the second-best respectively
on the real-world topology.

Index Terms—Network resilience, fast reroute, local failover

I. INTRODUCTION

Today, we heavily rely on networks. The most famous
representative might be the Internet which is used for various
applications, such as online shopping and video calls. As can
be seen in [1] the use of the Internet is following an upward
trend. But with the resulting increase in network scale, link
failures occur more frequently which can lead to unwanted
and costly outages [2]. Due to stringent dependability require-
ments, networks need to be able to react quickly to those
failures and find alternative paths to route packages to their
intended destination.

In networks it is common to distinguish between the control
plane and the data plane [3]. The data plane is responsible
for forwarding packets based on locally available information,
while the rules guiding this forwarding process are established
by the control plane. However, in the event of network failures,
packet forwarding in the data plane is delayed until new paths
have been constructed for all impacted routers in the control
plane. This process can introduce significant delays, some-
times reaching several hundred milliseconds [3], [4], which
can noticeably disrupt crucial internet applications, including
web page loading, online gaming, and voice chats [4]–[6].

Therefore, modern networks employ fast failover routing,
operating on the data plane, to deal with failures up to several
orders of magnitude faster [3], [7]. Fast failover routing uses

pre-computed paths so that traffic can be redirected around
the failure. Fast failover routing on graphs is a thoroughly
researched problem (see, e.g., the recent survey by Chiesa
et al. [4]) with high practical relevance, especially through
its application in the Internet. But routing problems are also
found in sensor networks [8] and can be used to model a range
of practical problems like logistics networks [9] or power
distribution [10].

However, research in this area mostly focuses on undirected
or bidirected graphs, when, on the other hand, especially in
networks such as sensor networks, links can also be directed.
In this paper we hence focus on the less researched topic of
fast failover routing on directed graphs and analyze oblivious
fast failover routing algorithms. These algorithms construct
alternative paths proactively and utilize solely the incoming
port, source node, and target node information to determine
the next hop during packet forwarding, thus allowing for
straightforward implementation through routing tables.

The advantage of oblivious routing is its simple imple-
mentation, because packets do not need to be extended with
additional information and outgoing ports can be determined
via routing tables. This proactive approach allows for swift
responses to failures, enabling route switching within the data
plane within microseconds [4]. Furthermore, as the packet
itself remains unaltered by such an oblivious routing, other
network functions and protocols remain undisturbed.

Our Contributions. In this paper, we present our contri-
butions towards evaluating routing algorithms on directed
graphs. First, we have developed an easily expandable Python-
based simulation framework tailored for assessing routing al-
gorithms, which we provide at https://github.com/jonas-grobe/
directed-routing. Leveraging this simulation environment, we
conducted evaluations on the performance of Bonsai [11] and
Grafting [12] algorithms when applied to directed graphs,
including wireless graphs and a real-world sensor network
topology. Moreover, we successfully adapted the Keep For-
warding [13] algorithm to accommodate directed graphs, and
our modified version demonstrated promising results with
average packet loss up to 72 % lower and average stretch1

up to 76 % lower than Bonsai, although heavily depending
on the graph type. The runtime was also lower compared to
Bonsai and Grafting (§IV).

1Stretch – difference between utilized path length and shortest path.

https://github.com/jonas-grobe/directed-routing
https://github.com/jonas-grobe/directed-routing


Organization. We next briefly survey the background and
related work in §II. In §III, we then introduce the algorithms
Bonsai, Grafting, and Keep Forwarding in more detail, assess-
ing their suitability for directed graphs. We then adapt Keep
Forwarding to also support directed graphs. The subsequent
evaluation of the algorithms is described in §IV, where we
explain our simulation method, introduce the metrics we use to
compare the algorithms and present our results. A conclusion
of our results is presented in §V.

II. BACKGROUND AND RELATED WORK

Failures often appear in all types of computer networks [14],
e.g., ISPs [15], [16], data centers [2], [17], and cloud provider
WANs [18], with many further outages being reported on,
e.g., [19]–[22]. As such, there has been much research on
fast recovery of such failures, we refer to the recent survey
by Chiesa et al. for an overview [4]. Going forward, we will
focus on link failures, which can also be used to model node
failures, by simply failing all links incident to a node.

The Control Plane: The Second Line of Defense. A lot
of effort has been spent on control plane methods [23], [24],
such as link reversal [25], [26], fast (re)convergence [27], or
general SDN schemes [28], [29], but these methods are orders
of magnitude slower than reactions in the data plane [30].
Hence, we aim to investigate faster recovery methods, with a
focus on the data plane.

The Data Plane: The First Line of Defense. There has
also been no shortage2 on fast recovery methods against link
failures in the data plane, implementations are available for
many common protocols such as MPLS [31], [32], Segment
Routing [33]–[36], IP in general [37], [38], BGP [39], and
for more advanced hardware in the form of programmable
data planes and SDN [40], [41]. Many of these algorithms
(e.g., MPLS and Segment Routing) require packet (header)
changes or even programmable state on the switches and
routers, to, e.g., exploit failure-carrying of encountered fail-
ures [42] or to, e.g., perform graph exploration with rotor
router algorithms [43]. As powerful as these approaches may
be, they require specialized hardware and/or protocol changes
and hence are not commonly available.

Oblivious Fast Rerouting Mechanisms on (Un-)Directed
Graphs. Motivated by the above downsides, research has also
investigated how to perform fast rerouting in the presence
of link failures without packet or state modifications.3 Akin
to oblivous routing [46], the rerouting algorithm may rely
solely on local information, such as incident failures, the
incoming packet’s port, and its source and destination, to make
forwarding decisions via match-actions. The key question is
whether the packet can still reach its destination node from
the source node, as long as both nodes are still in the same
connected component post-failures. As the focus of our paper

2see again, e.g., the survey by Chiesa et al. [4]
3We note that there is also randomized fast rerouting, e.g., [44], [45], which

however suffers from, e.g., TCP reordering problems and is generally not
available on routers. We thus focus on deterministic rerouting.

is on directed graphs under the above oblivious setting, we
now also discuss the applicability of the research in this area
to directed graphs; to the best of our knowledge, no prior study
was performed for oblivious fast rerouting on directed graphs.

Feigenbaum et al. [7] showed that one failure can be
survived in this setting, even without source-information, but
two failures are then impossible to survive in general [47],
though often still achievable in practice [48]. When including
the source, the goal post shifts by one, i.e., resilience to two
failures is possible and to three failures is impossible [49].
In general, resilience to an arbitrary number of failures is
essentially only possible on outerplanar graphs [50]. These
works do not translate well to directed graphs, as they heavily
rely on bouncing back the last hops, traversing geometric
faces [51], or hitting the failure again from the other direction,
which is not possible in directed graphs in general. The same
downsides also apply to methods that successively try to
explore link-disjoint paths [52] or trees [53]. Here, for each
source-target node pairing, paths/trees are constructed, whose
leaves are neighbors of the target node. During routing, packets
are transmitted through a depth-first search (DFS) to reach
the designated target, where however such a DFS cannot “go
back” in directed graphs.

When leveraging higher graph connectivity, one can build
multiple spanning rooted arborescences (trees) [54], changing
to the next arborescence after each failure. With respect to
directed graphs, this general method is also applicable, as
a strongly k-connected directed graph allows for k of such
arborescences. In undirected graphs, earlier work focused
purely on the number of arborescences [47], with further
work investigating restricted graph classes [55], Shared Risk
Links Groups (SRLGs) [56], and short rerouting paths in
Bonsai [11]. As Bonsai is applicable to general (directed)
graphs and focuses on low stretch in combination with high
resilience, we will further investigate its performance on
directed graphs later in this paper, along with the so-called
grafting approach by Foerster et al. [12], which also uses non-
spanning arborescences. Without graph connectivity guaran-
tees however, recent parallel work [57] showed that already
one single failure cannot be survived in directed graphs, even
if all nodes retain a path to the destination post-failure.

By forgoing resilience guarantees, prior work also inves-
tigated greedy fast rerouting approaches, most prominently
Keep Forwarding by Yang et al. [13]: herein, one attempts
to route the packet closer to the destination, and if that fails,
trying to keep the distance at least the same in traversals, or, if
all fails, going a bit back, before trying again to get closer. In
principle, the approach is also applicable to directed graphs,
but the (central to the algorithm) used traversal approach
does not translate well to directed links, which we further
investigate as well later in this paper.

In summary, although there has been no direct prior investi-
gation of oblivous fast rerouting algorithms on directed graphs,
some prior work can be applied in this context. In the next
section, we focus on translating the most promising methods,
before later implementing and evaluating them.
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Fig. 1. Graph with three arc-disjoint t-rooted spanning arborescences.

III. ALGORITHMS

In this section, we introduce three oblivious fast rerouting
algorithms: Bonsai [11] in Section III-A, Grafting [12] in
Section III-B, and Keep Forwarding [13] in Section III-C.
We conclude that the first two algorithms can be used for
directed routing without modification. However, this is not the
case for Keep Forwarding, as we explain in the corresponding
section, before presenting a possible adaptation in Section
III-D. Each algorithm introduced in this section uses oblivous
fast failover routing. Therefore, we briefly recall the definition
of oblivious routing:

Definition 1: Oblivious Routing [46]: A routing algorithm
is oblivious if the router only uses following information for
packet forwarding: Incoming port through which the packet
arrived, source node and target node.

In order to extend this definition to the setting of failover
routing, we must also include the node-incident failures, as
else the rerouting algorithm could not distinguish between
links with and without failures.4

Definition 2: An Oblivous Fast Failover Routing is an
oblivious routing algorithm which may also match on the
incident link failures for packet forwarding.

Armed with these definitions, we now discuss the algorithms
in more detail.

A. Bonsai

In the following section we describe Bonsai [11] – an
oblivious fast failover routing algorithm based on arc-disjoint
arborescences. Essentially, we will consider arborescences as
connected spanning subgraphs s.t. each node has an outgoing
arc, except for a sink, which has none. We next define
arborescences and give an example in Fig. 1.

Definition 3: Arborescence [11]: Let (u, v) denote a directed
arc from node u to v. A directed subgraph T is an r-rooted
spanning arborescence of G if (i) r ∈ V (G), (ii) V (T ) =
V (G), (iii) r is the only node without outgoing arcs and (iv),
for each v ∈ V \ {r}, there exists a single directed path from
v to r. When it is clear from the context, we use the term
“arborescence” to refer to a t-rooted spanning arborescence,
where t is the destination node.

To minimise stretch and packet loss, flat (i.e., low depth)
arborescences are preferred. The construction of the maximum
number of arborescences as flat as possible is NP-hard [58]
[11], but the paper introduces three heuristics in polynomial

4This concept is sometimes also denoted as static fast failover routing.

time: Greedy, Round-Robin and Random. Knowledge of the
incoming port and the target node of the packet suffice to
determine the current arborescence the packet is routed on. If
the next edge on the arborescence failed, the router switches
to another arborescence, thus providing some resilience.

Greedy works especially well with low failure rates, where
only the flattest arborescences are used. Higher failure rates
force the use of deeper arborescences, which leads to round-
robin performing better in these cases. The authors of Bonsai
recommend to use these two variants over random.

Although only used on undirected graphs in the original
paper, Bonsai can also be used on directed graphs, because
arborescences are directed subgraphs.

B. Grafting

In the case of Bonsai, only spanning arborescences are
constructed, allowing any arborescence to be used from any
node during routing. However, this can result in many unused
edges and a single low-degree node can significantly reduce
the number of spanning arborescences and resilience.

Grafting [12] provides a solution by enabling the construc-
tion and connection of multiple non-spanning arborescences.
Three approaches have been developed in the Grafting paper
[12]: DAG-FRR, Cluster-FRR, Augment-FRR. For our exper-
iments we chose DAG-FRR, as it yielded the best results in
preliminary experiments. Cluster-FRR struggled to find many
clusters in the sampled graphs, and Augment-FRR exhibited
high variance in its results, as shown in [12].

Like Bonsai, Grafting algorithms were originally demon-
strated on undirected graphs, but can also be used on directed
graphs without modifications, as the underlying concepts are
inherently directed.

C. Keep Forwarding

Keep Forwarding (KF) is a different routing approach
which is not based on arborescences. Instead, the network is
separated into layers, depending on each node’s distance to the
target node. The packet is then routed to layers near the target.
KF relies on two key concepts: Partial Structural Networks
and c-KF Traversals, which we introduce in the following two
definitions, before we describe its rerouting in more detail.

Definition 4: Partial Structural Network [13]: A Partial
Structural Network (PSN) is constructed for each destination
node. To achieve this, all other nodes are categorized into
layers, referred to as A-layers. Nodes within the same layer
have the same distance to the destination node. Connections
within a layer are called A-links, while connections between
layers are referred to as M-links (Downlinks if they lead to a
layer closer to the destination node, Uplinks otherwise).
An example of a PSN can be seen in Fig. 2.

Definition 5: c-KF Traversal [13]: A traversal on an undi-
rected graph G = (V,E), which visits every node v ∈ V
at least once and every edge e ∈ E at least once, without
traversing any edge more than once in the same direction. It
can be constructed on any undirected connected graph (for
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Fig. 2. PSN of target t with two layers and M-Links between (analog to [13]).
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Fig. 3. A c-KF Traversal on a graph. The failure of edge E-C leads to E
sending the packet back to D, because there is no other edge available. Result
is another traversal encompassing all nodes and all working edges – c-KF
Traversals have some failure resilience (analog to [13]).

construction details, see [13]). For an example of a c-KF
Traversal, see Fig. 3.

Routing in KF is precomputed in three steps [13]:

1) The PSN for each potential destination node is com-
puted, see Definition 4.

2) Outgoing connections of each node are assigned prior-
ities. Downlinks, which bring the packet closer to the
destination, receive the highest priority. If no downlinks
are available, packets get routed on the current A-Layer
using a c-KF Traversal to visit every node in search of a
node with a downlink. Uplinks are only used, if no other
links are available. The incoming edge is only used to
send the packet back if no other edge with the same or
a better link type is available.

3) Finally, a routing table is constructed using connections
with different priorities. This table provides an ordered
list of further connections based on the destination of
the packet and the incoming port.

D. Keep Forwarding Extension

The basic approach of routing preferably along downlinks
can be transferred to directed environments. However, when
no downlinks are available or all downlinks failed, a method
to route the packet on the A-layer to other nodes is needed.
In the original implementation a c-KF Traversal is used,
but the existence of such a traversal is only guaranteed on
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Fig. 4. This A-layer graph consists of two strongly connected components:
{A,B,C} and {D,E,F,G}. On the left component a DFS is constructed (order
given by edge annotations). The dashed red edge is not used in the DFS
and added as low-priority A-link to be used only when edge A-B failed. The
dotted green edge connects both components and because it leads to the bigger
component, it is added as high-priority A-link. It will be used if C has no
downlink available. The right component is traversed via c-KF Traversal.

undirected graphs. To mitigate this limitation, we partition
each A-layer into strongly connected components and for each
try to construct a c-KF Traversal. If that is impossible, we use
a depth-first search (DFS) to route the packet to as many nodes
as possible.

This makes the algorithm usable, but leads to unused edges
and lower resilience (demonstrated in Fig. 4).

Nonetheless, that approach already demonstrated good per-
formance in our first evaluations, but still left 70 % - 90 %
of A-links unusable, as they were not used in DFS or were
between components – an undesirable situation. We were able
to further improve the performance by adding following links
to the routing:

• Links from a component to another, bigger component
were added as high-priority A-links. They are used in all
cases, where no downlink is available.

• Other links (i.e. links to smaller components or links not
used by DFS) were added as low-priority A-links, used
in routing only if no downlink and no other A-links are
available.

This enables full use of all graph edges leading to a node that
is connected to the destination. In that case the edge must be
a downlink, uplink or A-link and will be used, at least if all
other edges on the starting node fail.

IV. EVALUATION

In the first Section IV-A we define the metrics used to
evaluate and compare the algorithms. The random generation
of graphs and failures for the simulation is explained in the
following Section IV-B. Simulation results for the different
metrics are presented in Sections IV-C and IV-D. Finally, we
discuss all results in Section IV-E.

A. Metrics

To evaluate the algorithms, a set of metrics is needed. We
chose the following two to highlight different aspects which
are also relevant to practical use:

• Packet loss – % of deliverable packets lost (edge failures
taken into account).



Fig. 5. Packet loss of different routing algorithms. Directed random regular graph (25 nodes, degree of 6, 10 %/30 %/75 % of edges directed left to right).
Second row Directed Erdős-Rényi graph. Parameters: (n = 25, p = 0.35), (n = 50, p = 0.35), (n = 25, p = 0.6) left to right. Third row: Wireless graph
(25/50/25 nodes, area of size 50x50/80x80/50x50, sending range between (10,20)/(15,25)/(5,25)). 500 iterations per data point.

• Stretch – difference between the length of the path that is
utilized and the length of the shortest possible path (edge
failures taken into account).

A high stretch typically correlates with a high packet loss, as
each edge increases the risk of loss. However, since the path
length of lost packets is not considered in the calculation of
the stretch, it is possible to have a low stretch combined with
a high loss rate, warranting a separate consideration.

B. Graph and failure generation

As our experiments show, algorithm performance depends
on the graphs used. To cover a range of different graph
topologies, we use three methods for random generation in
combination with different parameters:

• Erdős-Rényi - number n of nodes and probability p of
each possible edge being created are given [59].

• Random regular – Creates a random graph of n nodes,
each having a degree of d. A fraction p of random edges
is then directed in a random direction.

• Wireless – Generates a directed graph of n nodes, sim-
ulating a wireless communication network. Nodes are
placed uniformly at random in a specified area, each
assigned a sending range picked uniformly at random
from some interval [a, b] with 0 < a ≤ b. Directed edges

connect nodes as follows: a node u with sending range r
can send to a node v if and only if the distance between
u and v is at most r.5

Additionally, we simulated all algorithms on a real-world
graph from the Heathland Experiment - a wireless sensor
network in a harsh environment with directed edges (Fig. 7).

In randomly generated graphs, both the source and target
nodes are chosen randomly. In the Heathland graph, the target
node is predetermined (as in the original experiment setup),
while the source node is selected randomly.

To evaluate algorithm performance under failures, we sim-
ulate uniformly distributed edge failures (the same method as
in [12]), varying failure rates between 0 % and 50 %.

C. Packet loss

Fig. 5 and Fig. 8 show the packet loss of different routing
algorithms on different graphs. On directed random regular
graphs and the Heathland graph, KF has the lowest packet
loss (average packet loss between 50 % to 80 % lower
compared to second best algorithm for each case), while
Grafting performs better than Bonsai. On wireless and random
regular graphs with 75 % of the edges being directed, no

5If a = b = 1, this would be a unit disk graph [60].



Fig. 6. Stretch of different routing algorithms. Directed random regular graph (25 nodes, degree of 6, 10 %/30 %/75 % of edges directed left to right).
Second row Directed Erdős-Rényi graph. Parameters: (n = 25, p = 0.35), (n = 50, p = 0.35), (n = 25, p = 0.6) left to right. Third row: Wireless graph
(25/50/25 nodes, area of size 50x50/80x80/50x50, sending range between (10,20)/(15,25)/(5,25)). 500 iterations per data point.

spanning arborescence can be constructed, leading to high
packet loss even at 0 % edge failure rate for Bonsai. Grafting,
which enables the construction of non-spanning arborescences,
does not have this issue.

On directed Erdős-Rényi graphs, the outperformance of KF
is not as significant. On Erdős-Rényi graphs with n = 50 and
p = 0.35, KF has the highest average packet loss – 44 %
higher than Bonsai round-robin.

D. Stretch

Fig. 6 and Fig. 8 show the stretch of different routing
algorithms on different graphs. Grafting has the highest stretch
on all graphs. Bonsai has a lower stretch, with a remarkably
low stretch on wireless and regular random graphs with 75
% directed edges. This can be explained in conjunction with
the high packet loss: Packets can either be directly routed to
target or be lost.

Apart from these special cases, KF has the lowest (average
stretch between 48 % to 85 % lower compared to second best
algorithm for each case) stretch and is the only algorithm with
the optimal stretch of 0 when no failure occurs on every graph
type. This is an advantage for everyday routing in practice, as
this enables the implementation of resilient routing via KF
with no extra stretch if no failures occur.

E. Discussion

Packet loss and stretch of the different algorithms depend on
the graph type examined. On directed random regular graphs,
KF exhibited the lowest packet loss and also the lowest stretch
(with exception of 75% directed edges, where Bonsai had
a lower stretch but also an extremely high packet loss). On
the directed Erdős-Rényi graphs however, many arborescences
could be constructed and the difference in performance of the
algorithms was lower – in the case of (n = 50, p = 0.35)
average packet loss for KF was 44 % and 29 % higher than
for Bonsai and Grafting respectively.

Regarding computational runtime, our adapted Keep For-
warding was the fastest, staying well below 0.1 seconds for
all instances, whereas Grafting and the greedy Bonsai variant
went above 3.5 and 1.0 seconds for 50 nodes, respectively,
showing a strong upwards trend as instance size increased with
the round robin version staying between greedy and KF.

We conclude that our modified KF has advantages over
Bonsai and Grafting, especially on smaller and sparsely con-
nected graphs (where especially Bonsai has problems due
to the limited number of spanning arborescences) and low
failure rate environments (KF is the only algorithm with a
stretch of 0 at failure rate 0 % on all graphs). Moreover, the



Fig. 7. Heathland experiment graph (analog to [8], [61]). Directed edges are
highlighted in blue. The target node used in the original experiment setup is
marked in green.

Fig. 8. Packet loss and stretch of different routing algorithms. Heathland
graph. 500 iterations per data point.

computational runtime for KF is low in comparison to the
other three algorithms.

V. CONCLUSION

In this paper, we initiated the investigation of local fast
failover routing on directed networks. We surveyed the lit-
erature for suitable methods and investigated three routing
algorithms originally devised for undirected graphs. Remark-
ably, two of these algorithms, namely Bonsai and Grafting,
seamlessly extend to directed graphs without necessitating any
modifications, whereas KF needed to be adapted and extended.
The modified KF then had the lowest runtime and lowest
stretch. Its packet loss depends on the random graph generator
used – while it exhibited the lowest packet loss on random
regular graphs, Bonsai and Grafting outperformed it on Erdős-
Rényi graphs. However, on the real-word Heathland graph, KF
again had the lowest packet loss of all algorithms. In order to
facilitate further research, we provide our implementation at
https://github.com/jonas-grobe/directed-routing.

A. Outlook

In this paper, we examined the routing problem within
a simplified network model with precomputation using full
graph knowledge and considered only single routing tasks with
the goal of minimizing packet loss and stretch. A more realistic
model could simulate multiple concurrent routing tasks with a
high load on edges or nodes leading to delays and losses [62],
as well as short-lived failures due to e.g. link flapping [63].

Under these circumstances, further adjustments to the routing
algorithms presented here may be necessary.

Furthermore, we measured path length and delay in hops
and assumed an evenly distributed failure rate, while in
practice each edge might have different parameters describing
average delay and failure probability [10].

It is important to note that our investigation solely focused
on data plane algorithms. In practice these would rely on
control plane algorithms for construction. Established control
plane algorithms like Distance Vector Protocols (neighbours
exchange routing tables and update accordingly) or Link
State Protocols (neighbours exchange connection information)
[64] are designed for undirected environments, similar for
bidirectional communication with the (logically) centralized
controller in Sofware Defined Networks [65]. For practical use,
their performance in directed networks should be evaluated,
and the algorithms should be modified or replaced to enhance
performance. One might even need to consider manual “one-
off” installation methods, as, e.g., for data source nodes with
no incoming connections as in the Heathland experiment.
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