
Blockchain-Based Implementation of Service Function Chains in Multicloud and
Multitenant Environments Over Containerized Networks

Rui Kang2, Mengfei Zhu1,2, and Klaus-Tycho Foerster3,
1China Mobile Group Design Institute Co. Ltd., Beijing, China

2Kyoto University, Kyoto, Japan
3TU Dortmund, Dortmund, Germany

kang.rui.u25@kyoto-u.jp, zhumengfei@cmdi.chinamobile.com, klaus-tycho.foerster@tu-dortmund.de

Abstract—To address the growing demand for secure, flexible
services, this paper emphasizes the integration of zero-trust
security principles within service function chains (SFCs). Zero-
trust model reduces security risks associated with the complex
and customized nature of contemporary service delivery. SFCs
deliver these flexible services, but current implementations often
require configuring specific forwarding devices or network plu-
gins, complicating deployment and maintenance. Additionally,
these implementations generally lack robust mechanisms for
ensuring trustworthiness and traceability, crucial for preventing
data tampering and facilitating effective monitoring and rapid
responses to security incidents. This paper presents a four-layer
architecture, termed SFC-BC, which leverages Kubernetes for
managing containerized networks and Hyperledger Fabric for
blockchain-based management. Employing distributed databases
with synchronization and hash verification, SFC-BC enhances
the traceability and reliability of data. We have developed a
prototype to demonstrate the practical implementation of SFC-
BC, proving that it prevents unauthenticated access to SFCs.This
holistic approach facilitates efficient SFC deployment across
diverse environments without the intricacies typically involved
in network configuration, operation, and management.

I. INTRODUCTION

As demand grows for flexible and sophisticated services,
customers seek customized solutions that meet the service
level agreements. For example, video streaming services vary
based on user requirements, traffic locations, customer prefer-
ences, network status, and other policies. Given the complex
security needs of these services, and the dynamic, often less-
controlled environments they operate in, traditional security
models fall short. The increasing personalization of services
also escalates the risks to privacy and data integrity, necessitat-
ing a security approach. Incorporating zero-trust principles of-
fers a robust security framework that continuously verifies and
authenticates all entities within the network. Service providers
can deploy these services across multiple data centers [1],
[2]. However, assembling service functions (SFs) to config-
ure elastic and reliable services is complex, particularly in
multicloud and multitenant environments. Implementing zero-
trust in these environments strengthens security by rigorously
verifying every access request.

Integrating a micro-service architecture into network ap-
plication design enhances the delivery of large, complex
applications by utilizing small, independent network functions.
Network function virtualization (NFV) separates these func-

tions from specific hardware [3], and through NFV, a SFC
of ordered, virtualized functions is established [4], serving
users’ needs economically and flexibly. Each function is
containerized, allowing execution within a container rather
than on dedicated hardware.

In the zero-trust model, encapsulation and traffic steering
technologies of SFC support dynamic security strategies. This
model requires that all service provider (SPs), users, and
services be authenticated and authorized for each access.
Encapsulation verifies packet integrity and origin, while traffic
steering routes traffic only to authorized SFs based on current
security policies. However, practical implementations of SFC
often struggle to align with these zero-trust requirements.

Existing SFC implementations primarily attach additional
information to manage traffic. Researches in [5]–[10] shows
traffic flow matching based on protocol headers, which is
unreliable across public networks due to broadcast domains
and network address translation. Other studies [11]–[13] dif-
ferentiate traffic flows in SFCs using tags, protocol headers,
and tunneling, resulting in extra packet headers or payloads.
In Kubernetes, traffic classification to an SFC is achieved
by identifying traffic types via specified container network
interface (CNI) [14] or network plugins like OVN4NFV [15]
and Nodus [16] which are limited to rerouting SFs across
different networks. Most current SFC architectures rely on
software-defined networking (SDN) due to the lack of physical
switches and SFs that support SFC encapsulation, such as
the network service header (NSH) introduced in [17] [18]. A
demonstration in [19] highlighted an SFC-supported CNI im-
plementation by the open virtual network [20] based on SDN
in Kubernetes. However, these methods fall short in addressing
the essential requirements for designing SFCs within zero-
trust frameworks, which demand rigorous security protocols
and flexible access controls. Addressing these shortcomings is
critical to bolster both the security and operational capabilities
of SFC architectures.

A blockchain-based approach advances SFC implementa-
tions towards zero-trust by transitioning from centralized to
distributed management, thereby enhancing trust across ten-
ants and services. This shift facilitates continuous verification
of all SFs, ensures robust access control in multicloud envi-
ronments, and upholds data integrity through strict isolation
and dynamic security policies.

Rui Kang and Mengfei Zhu contribute equally to the article.



N

N

N

N

N
N

N

Org. 1 Kubernetes Cluster

Org. 2 Org. 3

Fabric network

Order
CA 1

CA 2

CA 3

P1
L

CC
P2

L

CC
P3

L

CC

A1 A2 A3

Channel
L

Command line terminal Web-based user interface

SP SFC user

Create/update/delete SFCs

Types

Platform manager

Functions

Roles

Review history

Classifier SFF SFF

SF1

instance

SF2

instance

SF3

instance

Operate

User 

interface

Deploy

Fetch

Blockchain 

service

SFC 

components

Infrastructure

Note: SP: service provider; SFC: service function chain; SFF: service function
forwarder; SF: service function; A: application; L: ledger; CC: chaincode; CA:
certification authority; P: peer node; N: physical node.

Fig. 1: Overall structure of SFC-BC.

II. SFC-BC DESIGN

This paper presents the SFC-BC, a framework that leverages
blockchain technology to enhance the security and operational
integrity of SFCs. This architecture not only secures trace-
ability and trustworthiness across multicloud and multitenant
environments but also complies with zero-trust security princi-
ples, providing a robust mechanism for continuous verification
and decentralized management of SFs. SFC-BC is designed
to enable the dynamic integration of SFs from multiple SPs
within Kubernetes, focusing on data safety and isolation in
a multitenancy and multicloud context. It supports SFCs in
containerized networks without requiring specific network plu-
gins, thus cutting deployment and operational costs associated
with SDN or extra tags for traffic steering. Unlike previous
models, traffic steering in SFC-BC is decoupled from forward-
ing devices and directly integrated into SFs, reducing load on
hardware and enhancing control granularity. The architecture
leverages distributed databases to store configurations of SFCs
and usage records of SFs, thereby enhancing traceability and
enabling comprehensive auditability. It also boosts data relia-
bility and increases tamper-resistance through multi-database
synchronization and hash verification. To bolster privacy, user
and SP data are isolated at both the data and network layers.
Communications between different SFCs are segregated into
individual channels (private ’subnets’), restricting access to
the members of each channel to only the users of the SFC
and the involved SPs. Moreover, sensitive information, such
as passwords, is exclusively shared between the user and
a specific SP. Within the network cluster, namespaces are
utilized to isolate resources, with policies specifically designed
to segregate traffic at the IP address or port levels between
different namespaces.

Figure 1 illustrates the overall structure of SFC-BC, which
consists of four layers:
Infrastructure layer : this base layer is a Kubernetes cluster

shared by various organizations such as SPs and the man-
ager of SFC-BC. Each organization can designate specific
physical nodes to host their private SFC components
and blockchain services, such as SFs and peer nodes.
For example, Figure 1 shows three organizations each
managing different numbers of worker nodes, allowing
them to control their respective components within SFC-
BC.

Blockchain service layer : deployed on the physical nodes,
this layer stores SFC configurations and historical
records. It also supports user interfaces and SFC com-
ponents for auditing and tracing, manages certification
and data security via certificate authorities, and estab-
lishes secure connections using transport layer security
(TLS). Each organization maintains at least one peer
node that connects to a channel to manage ledgers and
smart contracts, which record SFC configurations, status
updates, and authentication data. Channels are created
for each SFC and include the SPs involved and the
SFC-BC manager. Orderer nodes sequence transactions
within this framework. The blockchain service in SFC-
BC is instrumental in storing configurations and opera-
tional records of SFCs. Utilizing Hyperledger Fabric, this
service validates received data against SFC configurations
and previous records from the last hop SF, identifies
the addresses of subsequent hops, and logs processing
information. This ensures a secure and verifiable flow of
information, which is crucial for maintaining the integrity
of the network operations.

SFC components : these components retrieve SFC configura-
tions from the blockchain service, recognizing the current
SF position, verifying packet/frame integrity, and logging
operational data. The classifier, managed by the SFC-BC
manager, optionally directs traffic to the initial SFC entry
based on security or performance needs. SFFs function
as standard forwarding devices, not relying on specific
SFC encapsulations [13], [17], [18]. SFs execute required
functions and coordinate with blockchain applications to
transmit data to subsequent SFs.
Each SF checks the trustworthiness of incoming data. If
validated, the data are processed and passed to the next
hop and recorded on the blockchain. Unvalidated data are
discarded, and the failure is logged. Validation policies,
configurable per SF, include none (no validation), hash
(verification based on data hash values), address (verifi-
cation based on addresses and ports). The combination of
hash and address is also possible.

User interface : this interface facilitates the management of
SFC configurations and the querying of historical records.
Both command-line and web-based interfaces are avail-
able for SFC-BC managers, SPs, and users to manage
and review SFC and SF records.

III. DEMONSTRATIONS AND EVALUATIONS

We demonstrate the functions and evaluate the performances
of SFC-BC in this section. We create Kubernetes cluster (ver-



Source and destination information
sharing with Org1 and Org3, respectively : 

SP: Org1
SF: NameWriter

Instance: 1

SP: Org2
SF: NameWriter

Instance: 1

SP: Org3
SF: NameWriter

Instance: 1
S D

Org1-peer1
Org1-peer2

Org2-peer1
Org2-peer2

Org3-peer1
Org3-peer2User1-peer

1. Send transaction 
for creating an SFC. 

2. Send corresponding private data by using transient data.

start 2022-04-11T15:08:36Z start 2022-04-11T15:08:36Z
Org1-NameWriter-1 2022-04-11T15:08:37.288Z
Org2-NameWriter-1 2022-04-11T15:08:37.854Z
Org3-NameWriter-1 2022-04-11T15:08:38.495Z

4. Each SF fetches SFC configuration and sends to the next hop after authentication and verification.
5. Each SF updates the processing records after processing.

3. Source sends a 
message to the 
first SF.

6. Send package after getting 
the destination information. 

Transaction for creating an SFC. Transaction for sharing authentication information with each SP. 

Transactions for updating SF status. Sent message. Received message.

(a) Sketch and block information during functionality test. S: source. D: destination.

Locations 

for 

updating 

statuses

Definition 

of SFC

…
…

…

…
…

Hash value of

payload exists. 

Values of private data do not stored. 

…
…

(b) Transaction of creating SFC.

…
…

Hash value of 
payload exists. 

Values of private data do not stored. 

(c) Example of transaction to share private data.

…
…

(d) Example of transaction to submit SF status.

Fig. 2: Sketch and screenshots of transactions for functionality test.

sion 1.23.4) for demonstrations. The version of Hyperledger
Fabric is 2.4.3.

A. Functionality demonstration

We show the functionality of SFC-BC by a short SFC
including three SFs from three SPs. Each SF receives the
messages in UDP datagrams and appends its name and current
timestamp, and then sends the messages to the next hop. The
sketch of demonstration and screenshots of results are shown
in Fig. 2.

After approving and committing the chaincode, eight blocks
(blocks 6-13) in the blockchain are created during one trans-
mission by the creation and usage of the SFC. Block 6 contains
a transaction to create an SFC and initialize the records of
SF statuses, whose details are shown in Fig. 2(a). Blocks
7-11 contain the transactions for sharing the private data
(authentication and source&destination information) between
the user and a specific SP. As an example which shares the
user name and password between the user (User1) and SP
(Org1) in Fig. 2(b), the hash value of payload is recorded
in the blockchain without specific values, which protects the
sensitive information of the user from being disclosed. At the
same time, other SPs cannot get the sensitive information from
the public ledger. Blocks 12 and 13 contain three transactions
for submitting the updates of SF statues. Two transactions are
included in block 12 since the transactions arrive within the
batch timeout set in Fabric. An example of submitting the SF
status is shown in Fig. 2(c). In the example, the SF whose

PSIID is Org:NameWriter:1 in chain1 owned by User1 is
submitted by Org1. In this test, the message sent by the source
is received by the destination after passing and processed by
three SFs.

B. Test for unauthenticated usages and messages with forged
source

If the user of an SFC sets a wrong authentication informa-
tion with an SP, the error message is submitted and stored in
blockchain when a message is received by an SF provided by
the SP as shown in Fig. 3. At the same time, the SF stops
processing the traffic and refuses to send to the next hop.

SFC-BC enables the validation of traffic from the previous
hops by setting a field in the SFC configurations, which is
used to defend the attacks and usages from the forged sources.
When an SF received messages from an unregistered source
or the hash value of input data does not match the hash value
of the data output from the previous hop, the error message
is submitted and stored in blockchain as shown in Fig. 3. At
the same time, the SF stops processing the traffic and refuses
to send to the next hop.

When the transmission rate is relatively high so that the
updating cannot be submitted to the blockchain before the next
submission, the keys of SF status records can be attached with
random prefixes or suffixes to avoid dirty writes which lead
MVCC READ CONFLICT errors in Fabric. In this demon-
stration, we only use one key for each record.



SF1

SP: Org1

SF: NameWriter

Instance: 1

Someone without 

authentication of SF1.

S’

SF2

SP: Org2

SF: NameWriter

Instance: 1

…

Eavesdropping 

& tampering

S

Someone sends messages from 

an unregistered source.



 

Fig. 3: Errors are recorded into blockchain, when authenti-
cation fails, traffic source is not authenticated, and the hash
verification fails. S: source. D: destination.

The hash validation introduces extra connections with the
peer nodes for submitting and querying the input hash values
and the output hash values from the last hops, respectively.
Compared with the situations without validation and the val-
idation which only validate the source addresses, ports, and
protocols of incoming packets, the hash validation has higher
processing latency.

The hash validation mainly plays two roles in SFC-BC.
Firstly, it works for the security of SFs and data cooperating
with the network policies set by Kubernetes, which refuse
the connections from untrustful sources and namespaces. Sec-
ondly, if more than one SFC is created in one channel, which
is not recommended, hash values can be used to distinguish
the packets from different SFCs.

IV. CONCLUSION

This paper proposed SFC-BC, an innovative architecture for
implementing SFCs in Kubernetes environments, leveraging
the capabilities of Hyperledger Fabric for achieveing zero-
trust. Designed for multicloud and multitenant contexts, SFC-
BC provides a trustful, traceable, and comprehensive solution
that alleviates the complexities associated with configuring and
interconnecting diverse underlying technologies. The architec-
ture encompasses several layers, each dedicated to distinct
aspects of service delivery and management. The infrastructure
layer facilitates the deployment of containerized SFC and
blockchain elements, offering isolated computing and network
resources. The blockchain service layer is instrumental in
storing and managing configurations and operational records
of SFCs, enabling precise validation and data processing
throughout the network. Traffic steering is managed within
the SFC component layer, optimizing data flow and routing
for enhanced service delivery. Additionally, the user interface
layer supplies intuitive graphical and command-line tools
that empower users to efficiently manage and operate SFCs.
Our prototype demonstrations validate the functionality of

SFC-BC, supporting complex SFC configurations and robust
authentication and validation mechanisms.

REFERENCES

[1] S. Paul, R. Jain, M. Samaka, and J. Pan, “Application delivery in
multi-cloud environments using software defined networking,” Computer
Networks, vol. 68, pp. 166–186, 2014.

[2] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in 11th USENIX Symp. on Networked Syst. Design and Implementation
(NSDI 14), 2014, pp. 459–473.

[4] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7665

[5] J. Blendin, J. Rückert, N. Leymann, G. Schyguda, and D. Hausheer,
“Position paper: Software-defined network service chaining,” in 2014
Third European Workshop on Software Defined Networks, 2014, pp.
109–114.

[6] B. Martini, F. Paganelli, A. Mohammed, M. Gharbaoui, A. Sgambel-
luri, and P. Castoldi, “SDN controller for context-aware data delivery
in dynamic service chaining,” in Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2015, pp. 1–5.

[7] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula, “Steering: A software-defined networking for inline
service chaining,” in 2013 21st IEEE International Conference on
Network Protocols (ICNP), 2013, pp. 1–10.

[8] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in 2015 7th International Con-
ference on Communication Systems and Networks, 2015, pp. 1–8.

[9] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyás, W. Tavernier,
and S. Sahhaf, “Escape: Extensible service chain prototyping environ-
ment using mininet, click, netconf and pox,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 125–126, 2014.

[10] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of virtual network functions in cloud-based edge networks,” in
Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft). IEEE, 2015, pp. 1–5.

[11] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu, “Practical
and incremental convergence between SDN and middleboxes,” Open
Network Summit, Santa Clara, CA, 2013.

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing Network-Wide policies in the presence of dynamic middlebox
actions using FlowTags,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 543–546.

[13] R. Kang, F. He, T. Sato, and E. Oki, “Demonstration of network service
header based service function chain application with function allocation
model,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, 2020, pp. 1–2.

[14] The CNI Authors, “CNI,” https://www.cni.dev.
[15] OPNFV, “opnfv/ovn4nfv-k8s-plugin,” https://github.com/opnfv/

ovn4nfv-k8s-plugin.
[16] Akraino, “akraino-edge-stack/icn-nodus,” https://github.com/

akraino-edge-stack/icn-nodus.
[17] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),”

RFC 8300, Jan. 2018. [Online]. Available: https://www.rfc-editor.org/
info/rfc8300

[18] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Communications Mag-
azine, vol. 55, no. 2, pp. 216–223, 2017.

[19] R. Kang, M. Zhu, and E. Oki, “Implementation of service function
chain deployment with allocation models in Kubernetes,” in 2022 IEEE
Conference on Computer Communications (INFOCOM) Workshops,
May 2022.

[20] The OVN community, “OVN, Open Virtual Network :: OVN project
documentation website,” https://www.ovn.org/en/, accessed Oct. 12,
2021.


