
Analyzing the Communication Clusters in Datacenters∗

Klaus-Tycho Foerster
klaus-tycho.foerster@tu-

dortmund.de
TU Dortmund

Dortmund, Germany

Thibault Marette
Stefan Neumann
marette@kth.se
neum@kth.se

KTH
Stockholm, Sweden

Claudia Plant
claudia.plant@univie.ac.at

Faculty of Computer Science and
ds:Univie, University of Vienna

Vienna, Austria

Ylli Sadikaj
ylli.sadikaj@univie.ac.at

Faculty of Computer Science and
UniVie Doctoral School Computer
Science, University of Vienna

Vienna, Austria

Stefan Schmid
stefan.schmid@tu-berlin.de

TU Berlin
Berlin, Germany

Yllka Velaj
yllka.velaj@univie.ac.at

Faculty of Computer Science,
University of Vienna

Vienna, Austria

ABSTRACT
Datacenter networks have become a critical infrastructure of our
digital society and over the last years, great efforts have been made
to better understand the communication patterns inside datacen-
ters. In particular, existing empirical studies showed that datacenter
traffic typically features much temporal and spatial structure, and
that at any given time, some communication pairs interact much
more frequently than others. This paper generalizes this study to
communication groups and analyzes how clustered the datacenter
traffic is, and how stable these clusters are over time. To this end,
we propose a methodology which revolves around a biclustering
approach, allowing us to identify groups of racks and servers which
communicate frequently over the network. In particular, we con-
sider communication patterns occurring in three different Facebook
datacenters: a Web cluster consisting of web servers serving web
traffic, a Database cluster which mainly consists of MySQL servers,
and a Hadoop cluster. Interestingly, we find that in all three clusters,
small groups of racks and servers can produce a large fraction of
the network traffic, and we can determine these groups even when
considering short snapshots of network traffic. We also show empir-
ically that these clusters are fairly stable across time. Our insights
on the size and stability of communication clusters hence uncover
an interesting potential for resource optimizations in datacenter
infrastructures.

CCS CONCEPTS
• Networks → Data center networks; Network dynamics; •
Computing methodologies→ Cluster analysis.

∗Authors ordered alphabetically.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583410

KEYWORDS
Data Center, Clustering, Network Traffic.

ACM Reference Format:
Klaus-Tycho Foerster, Thibault Marette, Stefan Neumann, Claudia Plant, Ylli
Sadikaj, Stefan Schmid, and Yllka Velaj. 2023. Analyzing the Communication
Clusters in Datacenters. In Proceedings of the ACM Web Conference 2023
(WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3543507.3583410

1 INTRODUCTION
With the popularity of data-centric and distributed applications, for
example in the context of artificial intelligence, datacenter networks
have become a critical infrastructure of our digital society. Indeed,
these applications led to an explosive growth of communication
traffic over the last years, especially inside datacenters, pushing
datacenter networks to their capacity limits [32, 33].

Interestingly, however, datacenter traffic is not only growing
quickly, but also features much structure. Studying packet traces
collected from networking applications, researchers have found
that datacenter traffic matrices are often sparse and skewed [1, 6],
and exhibit locality [9], also over time [38, 39]. In other words,
packet traces from real world applications are generally far from
arbitrary or random, but are of fairly low entropy [2, 16, 20, 32].

The existence of such structure in communication traffic is attrac-
tive, and may be exploited for network provisioning and infrastruc-
ture optimizations [23]. Indeed, the networking community is cur-
rently putting great effort into designing protocols and algorithms
to optimize different layers of the networking stack to leverage the
traffic structure. These efforts include, e.g., learning-based traffic
engineering [35] and video streaming [26], self-adjusting optical
networks [5, 15], or self-driving networks [21]. For instance, many
network optimizations exploit the presence of elephant flows [3].

This paper aims at an understanding of the clustered nature of the
communication traffic, going beyond the typically considered pair-
wise interactions [7, 16, 22, 32] and looking into communications
among groups. In particular, we wonder whether the communica-
tion traffic matrices typically observed in empirical studies feature
clusters of dense communication. We ask:

1

https://doi.org/10.1145/3543507.3583410
https://doi.org/10.1145/3543507.3583410

WWW ’23, May 1–5, 2023, Austin, TX, USA K.-T. Foerster et al.

traffic trace containing
all communications

<sender, receiver, #bytes, time>

<rack1, rack2, 50, >
<rack3, rack21, 3, >

<rack31, rack22, 201, >
<rack7, rack91, 109, >
<rack1, rack3, 73, >

<rack15, rack3, 393, >

T1
T2

T3
T4

T4
T4

Step 1:
Partition

timesteps

real-valued
traffic matrices

Step 2:
Thresholding

Step 3:
Bicluster
detection

Boolean
matrices

clustered
Boolean
matrices

Step 4:
Cluster
analysis

quality and
similarity of

commmunication
clusters over time

Figure 1: An overview of our approach. Given a traffic trace, we partition it into contiguous time steps for which we create
real-valued traffic matrices, where entries (𝑢, 𝑣) correspond to the amount of traffic sent from node 𝑢 to 𝑣 . For each traffic
matrix, we create a binary matrix indicating the Top 𝑥% of sender–receiver pairs that created the most traffic. We apply our
biclustering algorithms on each of these binary matrices. We subsequently evaluate the resulting clusterings over time, also
taking into account the true amount of traffic that was sent.

• How can communication clusters be efficiently found algo-
rithmically?

• How large are communication clusters in datacenters, and
how is their size distributed?

• How stable are these communication clusters over time?

The answers to these questions have important implications on
the optimizability of resource allocations in datacenters [19]: dense
communication clusters may be allocated locally in the datacenter
(e.g., in the same rack or pod), which can significantly reduce com-
munication overheads and improve throughput. Furthermore, stable
clusters over time are attractive as frequent reoptimizations (i.e.,
reconfigurations such as, migrations or topological adaptions [17])
can be avoided.

The communication clusters we identify consist of groups of
senders and receivers that transmit a lot of data between each
other. As the groups of senders and receivers may be different, this
introduces an asymmetry in the clustering that we will have to take
into account in our methods. Additionally, it is highly likely that
some nodes appear in multiple clusters, e.g., some nodes may be
included in multiple receiver clusters because they require more
information than other nodes in the network.

We propose a methodology based on a biclustering approach,
allowing us to find the communication clusters described above
and allowing us to efficiently identify groups of racks and servers
which communicate frequently over the datacenter network. Our
approach is optimized toward the standard precision and recall
metrics, whose definitions we adapt to fit the network application
scenario, allowing us to study the cluster similarity over time.

A merit of our approach is that it only requires very little data:
we only require access to the Top 𝑥% of endpoint pairs that create
the most traffic. In particular, we do not require the exact amount
of traffic sent between these endpoints, which is difficult to ob-
tain in practice [10]. Additionally, our method does not require

any additional knowledge about the application running in the
datacenter.

We evaluate our method in an extensive case study. Since it is
known that the amount of structure available in a communication
traffic depends on the application [4, 32], we consider three different
traffic traces: one from a Web cluster, one from a Database cluster,
and one from a Hadoop cluster. The Web cluster consists of web
servers serving web traffic, the Database cluster mainly consists of
MySQL servers, and the Hadoop cluster is used for batch processing.
These traces have been made available to the research community
by Facebook [37], and are currently the largest datacenter data sets
available to the research community. We believe that our insights
generalize to many other datacenters as well, since the applications
we consider are widely deployed in practice.

We find that our approach can indeed efficiently identify high-
quality traffic clusters, and we make several interesting observa-
tions. In particular, we find that small groups of racks and servers
often produce large fractions of the network traffic, and our ap-
proach can determine these groups even when considering short
snapshots of network traffic. We also show empirically that these
clusters are very stable across many time steps.

In summary, our contributions are:

• We present a systematic and efficient approach to identify possi-
ble dense clusters in communication traffic.

• We propose a methodology for employing precision and recall
metrics in the context of network traffic clustering. To the best
of our knowledge, this is the first study of these metrics in this
context.

• We report on an extensive evaluation based on actual datacenter
packet traces (Web, Database, and Hadoop), showing that our
approach is efficient and can find high-quality clusters.

• We uncover that small clusters are responsible for a significant
amount of network traffic, and that these clusters are stable over

2

Analyzing the Communication Clusters in Datacenters WWW ’23, May 1–5, 2023, Austin, TX, USA

time. This suggests that an optimized allocation of communica-
tion endpoints in datacenters may have a significant impact on
the overall communication cost.

• Our methodology only requires a list of endpoint pairs which
cause a lot of traffic. We show empirically that this gives good
clusterings even when taking into account the absolute amounts
of traffic.

• As a contribution to the research community, and to ensure repro-
ducibility and facilitate follow-up work, our implementations are
available as open-source software.1 Our experimental datasets
and artifacts are available upon request.

2 FINDING HI-QUALITY TRAFFIC CLUSTERS
Now we describe our methodology. We start with a high-level
overview and then present the full details and parameter settings.

2.1 High-Level Overview
We start by giving an overview of our methodology and present
an illustration of our approach in Figure 1. The details and formal
definitions follow in Section 2.2.

We assume that our input is a traffic trace, i.e., we obtain a
sequence of tuples (𝑢, 𝑣,𝑤,𝑇) indicating that node 𝑢 sent𝑤 bytes
to receiver 𝑣 at a timepoint 𝑇 .

Based on the traffic trace, we create a sequence of contiguous
and disjoint time steps [𝑇𝑖 ,𝑇𝑖+1). For each time step, we generate a
real-valued traffic matrix, where each entry (𝑢, 𝑣) corresponds to
the total amount of traffic that was sent from node 𝑢 to 𝑣 in the
entire timeframe [𝑇𝑖 ,𝑇𝑖+1).

For each real-valued traffic matrix, we create a binary matrix by
thresholding, i.e., we set the Top 𝑥% largest entries in the traffic
matrix to 1 and we set all other entries to 0. Note that this cor-
responds to having a list of sender–receiver pairs that cause the
highest amounts of traffic during the time step.

Next, for each time step we apply a biclustering algorithm on the
time step’s binary matrix to obtain a biclustering. Informally (see
below for a formal definition), the biclusterings reveal the groups
of senders and receivers that communicate a lot during the time
step and they correspond to the communication clusters that we
are looking for. See Section 2.2 for a description of the biclustering
algorithms that we used.

Clearly, the above approach has merits, as well as drawbacks.
The main drawback is that we obtain our communication clusters
based on the binary matrices and not on the original trafficmatrices;
indeed it is not clear whether the binary (rounded) traffic reveals
anything about weighted traffic. Hence, in our evaluation we need
to ensure that this approach allows us to draw conclusions about
the patterns in the weighted traffic. However, if we can show that
this is the case, this is also a merit of our method: in practice, it of-
ten creates significant overhead to store the entire traffic trace and
therefore people only subsample it [10, 32]. Our approach, on the
other hand, can be used even when we only obtain the binary matri-
ces as input. In other words, for our approach it suffices to know the
Top 𝑥% communication partners which can be obtained more effi-
ciently, for instance, using heavy hitters data structures [12, 29, 36].
This might make our methodology more applicable in settings in
1https://github.com/tmarette/datacenterClusterAnalysis

which one aims to understand communication clusters without
creating too much overhead for the network.

We introduce three different measures to study the quality of
our clusters. First, we define versions of precision and recall to
understand how well our communication clusters capture the in-
formation in the binary matrices. Second, we study the traffic inside
the biclustering to understand how well our biclusters, that were
derived on the binary matrices, represent the actual traffic from
the real-valued traffic matrices. This measure compares the traffic
sent between sender–receiver pairs from the biclusters with the
total traffic. Our experiments show that we typically obtain high
values for all three measures, indicating that we find high-quality
clusters for the binary matrices which also capture the real-valued
traffic information.

Furthermore, we introduce a similarity measure to study the
similarity of different biclusterings. This allows us to compare the
communication clusters that we obtain at different time steps. Our
experiments will show that these communication clusters are typi-
cally highly stable over time.

2.2 Detailed Approach
Next, we describe the implementation of our approach in full de-
tail. It will be convenient for us to consider unweighted/weighted
graphs rather than binary/real-valued matrices, as this allows us to
streamline our exposition. This is equivalent to using matrices by
identifying graphs with their adjacency matrices.

From traffic traces to weighted graphs. We assume we are
given a packet trace, or more specifically, a sequence of packet
headers containing a timestamp and the amount of traffic that
server/rack 𝑢 sent to server/rack 𝑣 at a certain time. To study how
the traffic patterns develop over time, we partition the traffic into
time intervals of a certain duration, and we will refer to each of
these time intervals as time steps. For the following discussion we
assume that the duration 𝑑 of a time step is fixed. This simplifies
our notation.

We represent the traffic during each time step 𝑡 as a weighted
bipartite communication graph 𝐺𝑡 = (𝑈 ∪𝑉 , 𝐸𝑡 ,𝑤𝑡). Here, 𝑈 is the
set of all racks/servers that send data over the network during the
entire time duration; similarly, 𝑉 is the set of all racks/servers that
receive data during the entire time. We stress that if a rack/server
sends and receives data, it has two nodes in the graph: one in 𝑈 ,
and one in𝑉 . Furthermore, 𝐸𝑡 is the set of edges at time step 𝑡 . The
weight function𝑤𝑡 : 𝑈 ×𝑉 → R+ assigns to each pair (𝑢, 𝑣) the total
amount of traffic that rack/server 𝑢 sent to rack/server 𝑣 during
time step 𝑡 . We chose to represent the traffic as a bipartite graph as
finding clusters in bipartite graphs is a well-studied problem [14, 28]
and it allows us to find non-trivial patterns of datacenter traffic.

From weighted graphs to unweighted graphs. As some of
our algorithms expect unweighted graphs, we also consider the
following thresholded unweighted graphs 𝐺𝜏

𝑡 = (𝑈 ∪𝑉 , 𝐸𝜏𝑡). Here,
𝜏 ∈ R is a threshold such that 𝐺𝜏 only contains edges of weight at
least 𝜏 , i.e., 𝐸𝜏𝑡 = {(𝑢, 𝑣) ∈ 𝐸𝑡 : 𝑤 (𝑢, 𝑣) ≥ 𝜏}. This can be interpreted
as keeping all edges (𝑢, 𝑣) for which 𝑢 sent “a lot” of traffic to 𝑣 .

Typically, we set the threshold 𝜏 such that a desired fraction of
edges from𝐺𝑡 remain. For example, if we set 𝜏 to the 70%-percentile
of the non-zero edge weights in 𝐺𝑡 , then 𝐺𝜏

𝑡 contains the largest
30% of non-zero weight edges from 𝐺𝑡 . When setting 𝜏 to one of

3

https://github.com/tmarette/datacenterClusterAnalysis

WWW ’23, May 1–5, 2023, Austin, TX, USA K.-T. Foerster et al.

these percentiles, we write 𝜏𝑝 to denote the 𝑝-percentile for non-
zero weight edges in 𝐺𝑡 for 𝑝 ∈ (0, 1). Note that if we pick large
values for 𝑝 (e.g., 𝑝 = 70%), this results in sparser graphs 𝐺𝜏𝑝

𝑡 , and
smaller values for 𝑝 (e.g., 𝑝 = 30%) result in denser graphs 𝐺𝜏𝑝

𝑡 . For
𝑝 = 0%, we keep all non-zero weight edges in 𝐺𝜏𝑝

𝑡 .
We discuss the choices for 𝜏 that we use in our case study in

Section 2.3.
Clustering bipartite graphs. To find traffic patterns inside

our unweighted graphs, we propose a biclustering approach. More
concretely, given an unweighted bipartite graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸),
our algorithms compute a biclustering of 𝐺 , i.e., they return sets
of biclusters (𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘) such that𝑈𝑖 ⊆ 𝑈 and 𝑉𝑖 ⊆ 𝑉 for
all 𝑖 = 1, . . . , 𝑘 .

Our algorithms (more details follow) pick the biclusters in such
a way that the induced subgraphs 𝐺 [𝑈𝑖 ,𝑉𝑖] are dense; this corre-
sponds to sets of senders and receivers that communicate a lot of
data in the network. In other words, the nodes in a cluster𝑉𝑖 receive
“a lot” of traffic from vertices in𝑈𝑖 .

In our experiments, we compute a biclustering for each time
step 𝑡 . More concretely, we apply our biclustering algorithms on
each graph𝐺𝜏

𝑡 for 𝑡 = 1, . . . ,𝑇 , where 𝑇 is the total number of time
steps. This yields biclusterings (𝑈 𝑡

1 ,𝑉
𝑡
1), . . . , (𝑈

𝑡
𝑘
,𝑉 𝑡

𝑘
) for each time

step 𝑡 = 1, . . . ,𝑇 .
See Section 2.3 for the concrete algorithms that we use.
Measuring the quality of traffic clusters. Next, we introduce

the measures that we use to obtain insights into our data and to
assess the quality of the clusterings that we obtain.

Comparing graph snapshots. To compare two (unweighted) graph
snapshots 𝐺𝜏

𝑡 and 𝐺𝜏
𝑡+1, we consider three different measures:

(1) common= |𝐸𝑡 ∩ 𝐸𝑡+1 |/|𝐸𝑡 ∪ 𝐸𝑡+1 | · 100,
(2) appear= |𝐸𝑡+1 \ 𝐸𝑡 |/|𝐸𝑡 ∪ 𝐸𝑡+1 | · 100,
(3) disappear= |𝐸𝑡 \ 𝐸𝑡+1 |/|𝐸𝑡 ∪ 𝐸𝑡+1 | · 100.

These measures represent the percentage of edges that appear in
two consecutive graph snapshots, the percentage of edges that are
new, and the percentage of edges that disappear, resp.

Evaluating the quality of biclusterings. To evaluate the quality
of our biclusterings, we consider three different measures which,
taken together, give us a differentiated picture on the quality of the
traffic clusters. While biclustering approaches have been applied
successfully in many applications in computer science, evaluating
these approaches typically requires an external validation which
is not available in our problem setting. An interesting measure for
the validity of a biclustering under variations of the input data set
is the stability index by Lee et al. [24], which is relevant for finding
biclusters in data with numerical attributes. With the following
definitions of traffic inside the biclustering, recall and precision, we
introduce a methodology to measure the quality of traffic clusters
that originate from thresholded communication graphs.

First, for a biclustering (𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘) we say that its in-
duced bicliques are given by the set

bicl((𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘)) =
𝑘⋃
𝑖=1

(𝑈𝑖 ×𝑉𝑖), (1)

i.e., bicl((𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘)) ⊆ 𝑈 × 𝑉 contains all edges (𝑢, 𝑣)
with 𝑢 ∈ 𝑈𝑖 and 𝑣 ∈ 𝑉𝑖 for some 𝑖 . Intuitively, the induced bicliques

are “idealized” versions of the the original biclusters, in which all
missing edges were added.

The traffic inside the biclustering (𝑈1,𝑉1), . . . , (𝑉𝑘 ,𝑉𝑘) is the frac-
tion of traffic sent between vertices that are contained in one of the
biclusters (𝑈𝑖 ,𝑉𝑖). More formally, it is given by

1
𝑊

∑︁
(𝑢,𝑣) ∈bicl((𝑈1,𝑉1),...,(𝑈𝑘 ,𝑉𝑘))

𝑤𝑡 (𝑢, 𝑣),

where𝑊 =
∑

(𝑢,𝑣) ∈𝐸𝑡 𝑤𝑡 (𝑢, 𝑣) is the total sum of edge weights
(corresponding to the total amount of network traffic at time step 𝑡).
Note that here we are summing over the weights from the original
weighted graph. Hence, if the traffic inside the biclustering is large,
this indicates that the biclustering captures the traffic inside𝐺 well.

However, the traffic inside a biclustering has some limitations.
For example, consider a biclustering (𝑈1,𝑉1) with 𝑈1 = 𝑈 and
𝑉1 = 𝑉 . Then the traffic inside this biclustering is equal to the total
sum of weights but the biclustering is not very informative, as it
considers the whole graph as a single bicluster. Therefore, we also
consider recall and precision, which are defined for unweighted
graphs 𝐺𝜏

𝑡 = (𝑈 ∪𝑉 , 𝐸𝜏𝑡).
The recall measures the fraction of edges (𝑢, 𝑣) of 𝐺𝜏 that are

“covered” by the induced bicliques of the biclustering (𝑈1,𝑉1), . . . ,
(𝑉𝑘 ,𝑉𝑘). More formally, the recall is given by

recall = |𝐸𝜏𝑡 ∩ bicl((𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘)) |/|𝐸𝜏𝑡 |.
On the other hand, the precision measures the fraction of edges in
the induced bicliques which also have corresponding edges in 𝐺𝜏 .
More formally, the precision is given by

precision =
|𝐸𝜏𝑡 ∩ bicl((𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘)) |

|bicl((𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘)) |
.

Intuitively, the precision is high if the biclusters are “not too
large” and the recall is high if the biclusters “cover” the edges
well. Hence, if we find biclusters that simultaneously have high
recall, high precision and a lot of traffic inside the biclusters, this
indicates that the biclusters capture the traffic structure inside our
communication graph well.

Comparing biclusterings across time steps. Next, recall that the
biclusterings we computed depended on the time step 𝑡 . As we are
interested in comparing biclusterings from different time steps, we
need to measure their similarity.

For two time steps 𝑡1 and 𝑡2 with biclusterings (𝑈 𝑡1
1 ,𝑉

𝑡1
1), . . . ,

(𝑈 𝑡1
𝑘1
,𝑉

𝑡1
𝑘1
) and (𝑈 𝑡2

1 ,𝑉
𝑡2
1), . . . , (𝑈 𝑡2

𝑘2
,𝑉

𝑡2
𝑘2
), we say that their similar-

ity sim(𝑡1, 𝑡2) is given by the fraction of edges which are contained
in both induced bicliques. More formally, let bicl1 = bicl((𝑈 𝑡1

1 ,𝑉
𝑡1
1),

. . . , (𝑈 𝑡1
𝑘1
,𝑉

𝑡1
𝑘1
)) and bicl2 = bicl((𝑈 𝑡2

1 ,𝑉
𝑡2
1), . . . , (𝑈 𝑡2

𝑘2
,𝑉

𝑡2
𝑘2
)). Then

their similarity is given by

sim(𝑡1, 𝑡2) =
|bicl1 ∩ bicl2 |
|bicl1 ∪ bicl2 |

.

Intuitively, two biclusterings are similar if their idealized bi-
cliques are similar. While this definition might look a bit artificial at
first glance, it is quite handy because it allows us to deal with over-
lapping biclusters and also with biclusterings that have different
numbers of biclusters.

To compare 𝑇 > 2 different biclusterings, we turn to simi-
larity matrices (see, e.g., Fig. 3(d)). Given multiple biclusterings

4

Analyzing the Communication Clusters in Datacenters WWW ’23, May 1–5, 2023, Austin, TX, USA

(𝑈 𝑡
1 ,𝑉

𝑡
1), . . . , (𝑈

𝑡
𝑘
,𝑉 𝑡

𝑘
) for 𝑡 = 1, . . . ,𝑇 , the similarity matrix 𝑆 ∈

[0, 1]𝑇×𝑇 has entries 𝑆𝑡1,𝑡2 = sim(𝑡1, 𝑡2). Thus, 𝑆𝑡1,𝑡2 measures how
similar the biclusterings 𝑡1 and 𝑡2 are. As 𝑆 is symmetric, we only
report the entries for 𝑡2 ≥ 𝑡1.

Visualization. Sometimes we visualize the biclustering we ob-
tain. Given a bipartite graph 𝐺 = (𝑈 ∪ 𝑉 , 𝐸) with biadjacency
matrix 𝐵 ∈ {0, 1} |𝑈 |× |𝑉 | and a biclustering (𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘),
we reorder the rows and columns of 𝐵 using the ADVISER algo-
rithm [11]. In our plots (see, e.g., Fig. 2), yellow dots correspond
to 1-entries in 𝐵 and purple dots correspond to 0-entries in 𝐵. We
follow the convention that vertices from𝑈 correspond to rows of 𝐵
and vertices from 𝑉 correspond to columns of 𝐵; in other words,
the rows of 𝐵 correspond to nodes that send data and the columns
of 𝐵 correspond to nodes that receive data.

2.3 Choice of Parameters and Algorithms
We conclude this section by justifying our choices for the parame-
ter 𝜏 and the biclustering algorithms we use in the case study.

Choice of parameter 𝜏 . Recall that 𝜏𝑝 determines the sparsity
of the graph 𝐺𝜏𝑝 , where larger (smaller) values for 𝑝 correspond to
sparser (denser) graphs. Furthermore, when running biclustering
algorithms on sparser graphs, this typically results in smaller bi-
clusters (i.e., the biclusters contain fewer vertices and the induced
bicliques are smaller). Intuitively, if we pick 𝑝 too small (correspond-
ing to dense graphs and large biclusters), our biclusterings have
high recall and high traffic inside the biclusters but small precision.
Similarly, when 𝑝 is too large (the biclusters are too small), we have
high precision but small recall and small traffic inside the matrices.

As we argued before, we are interested in finding biclusterings
which simultaneously have high recall, high precision and high
traffic inside the biclustering. Therefore, in our experiments we
pick the value of 𝑝 ∈ {0%, 30%, 50%, 70%} such that all of these
three objectives are satisfied (if possible). If multiple values in
{0%, 30%, 50%, 70%} satisfy all three criteria, we report the largest
possible value for 𝑝 , since this corresponds to biclusters with fewer
vertices which might be easier to optimize in application settings.

In preliminary experiments we also used other options with 𝑝 ∉

{0%, 30%, 50%, 70%} but they did not reveal any new insights beyond
what we report. Hence, we focus on 𝑝 ∈ {0%, 30%, 50%, 70%}.

Biclustering algorithm. The first biclustering algorithm we
use is the pcv algorithm [30]. This algorithm takes as input an
unweighted bipartite graph 𝐺 and a parameter 𝑘 , and returns a
biclustering (𝑈1,𝑉1), . . . , (𝑈𝑘 ,𝑉𝑘). The biclustering is such that the
clusters 𝑈1, . . . ,𝑈𝑘 partition 𝑈 , but the clusters 𝑉1, . . . ,𝑉𝑘 might
overlap and their union does not have to equal 𝑉 . In a nutshell, the
algorithm computes the biadjacency matrix 𝐵 of 𝐺 and denoises 𝐵
via a truncated rank𝑘-SVD and then applies𝑘-Means on the rows of
the low-rank matrix to obtain the clusters𝑈1, . . . ,𝑈𝑘 . Then it finds
the clusters 𝑉𝑖 by looking at the submatrices 𝐵 [𝑈𝑖 , :] and setting 𝑉𝑖
to the set of columns in 𝐵 [𝑈𝑖 , :] with “many” non-zero entries.

We used pcv because it processes graphs with tens of thou-
sands of nodes highly efficiently and, even though it is a ran-
domized algorithm, its outputs are very consistent over different
runs (see App. A.2). Furthermore, it allows overlapping column-
clusters which is necessary given the structure of our dataset. How-
ever, other methods that find overlapping clusters could have been

used as well, for instance, algorithms for Boolean Matrix Factoriza-
tion [27, 28]. In our experiments, we set 𝑘 = 7 for pcv.

In addition to pcv, we also use GraphScope [34]. Unlike pcv
which only considers a single time step, GraphScope is an adaptive
mining scheme on time-evolving graphs, i.e., it takes as input all un-
weighted graphs𝐺𝜏

1 , . . . ,𝐺
𝜏
𝑇
. GraphScope requires no user-defined

parameters, and it operates completely automatically, based on the
MDL (Minimum Description Language) principle [31]. It simulta-
neously finds the communities and determines change-points when
the cluster structure changes. In particular, given a bipartite graph,
where one group of nodes represent the source nodes and the other
the destination nodes, GraphScope treats source and destination
nodes separately, and discovers separate source and destination
partitions, i.e., it determines a partition of the sources into 𝑠 groups
and a partition of the destinations into 𝑑 groups, where 𝑠 and 𝑑

can have different values. GraphScope starts by identifying the
communities on the initial graph snapshot, and then compares the
current structure to consecutive snapshots. If this structure does
not change much over time, consecutive snapshots of the evolving
graphs are grouped together into a time-segment. If a new graph
snapshot cannot fit well into the old segment, GraphScope intro-
duces a change-point, and starts a new segment at that time-stamp.
Those change-points often detect drastic discontinuities in time.
The advantage of applying GraphScope is that it requires no pa-
rameters, i.e., it determines the number of row and column groups
automatically. However, it is less scalable than pcv; in particular,
it is too inefficient to process rack–server or server–server com-
munications in our case study, and does not allow for overlapping
column clusters 𝑉𝑖 .

We apply these two different algorithms on all unweighted
graphs 𝐺𝜏

𝑡 for rack–rack communication. We empirically show
that they find similar clusters, indicating that the clusters we find
are true positives.

3 A CASE STUDY
As a case study, we consider the traces obtained from three different
clusters in the Altoona datacenter, which were shared with the
research community by Facebook [32, 37]. The clusters correspond
to a Web cluster, a Database cluster and a Hadoop cluster. We
consider the traffic over a 150 minutes (2.5 hours) time frame, plus
some additional time period in the beginning to avoid possible
artifacts from the “warm-up phase“ and to focus on the steady-state
behavior. To understand how the traffic patterns develop over time,
we partition the 150 minutes of traffic into disjoint time intervals
of 1, 5, and 15 minutes, the time steps; there are hence 150, 30, and
15 time steps, resp.

3.1 Web Cluster
This cluster contains Web servers serving Web traffic.

Properties of datasets. To analyze how similar two consecutive
graphs 𝐺𝑡 and 𝐺𝑡+1 are, we compute the percentages of edges that
appear, disappear, and do not change between 𝐸𝑡 and 𝐸𝑡+1 in the
rack–rack communication over a 15minutes interval for 𝜏0, 𝜏0.3, 𝜏0.5,
and 𝜏0.7. The graphs exhibit a strong similarity over time, and the
percentage of edges that 𝐸𝑡 and 𝐸𝑡+1 share is very high, i.e., greater
than 70%. The results for the 5 and 1 minutes interval are similar.

5

WWW ’23, May 1–5, 2023, Austin, TX, USA K.-T. Foerster et al.

For the rack–server communication, we notice that the results
are similar to those for the rack–rack communication. The only
exception is represented by the sparsest graphs, i.e., 𝑝 = 70%, for
the 15 minutes time interval where the percentage of common
edges is lower than the percentage of appearing and disappearing
edges. For the server–rack communication the similarity over time
is analogous to that of the rack–rack communication for 15 and 5
minutes time interval, i.e., the percentage of common edges is higher
than the percentage of appearing and disappearing edges, except
for 𝑝 = 70% in the 5 minute time interval. For the 1 minute time
interval with 𝜏0.5 and 𝜏0.7, instead, the similarity changes and we
notice that 40% of the edges are appearing or disappearing and only
a small number of edges remain in two consecutive graph snapshots.
(We present additional Figures in the appendix.)

Discussion of results.We start by discussing our results that
we obtained using pcv. In Fig. 2 we present the visualization of the
rack–rack communication over a typical 1 minute interval. We used
𝜏0.7, i.e., we kept the 30% largest non-zero weight edges in𝐺𝜏𝑝 . The
plot clearly allows us to identify the cache servers, the Web servers
and the multifeed servers.

Next, we need to ensure that the nice visual clusters from Fig. 2
indeed correspond to actual traffic patterns.We analyze this in Fig. 3.
First, we need to ensure that the biclusterings returned by pcv have
high recall, precision, and traffic inside the biclusters. Fig.s 3(a)–3(c)
show that indeed all of these measures are very high, for time steps
of lengths 15, 5, and 1 minutes, resp. For each time step, the clusters
contained more than 80% of the total traffic, while having recall
and precision values of at least 90%. Hence, the biclusters seem to
correspond to real traffic patterns. Second, we try to understand
how stable the biclustering results are over time. Fig.s 3(d)–3(f)
provide the similarity matrices for time steps of lengths 15, 5, and
1 minutes, resp. The plot shows that the clusterings of the different
time steps have very high similarity and thus the obtained cluster
structures are very stable over time, with similarity values over 85%.

In Table 1 we report the results of GraphScope for the Web
cluster. In the Web cluster the graphs are more similar and few
change-points are identified by GraphScope, i.e., the number of
segments is equal to 1 in most of the cases, for all the time intervals.
The results of GraphScope, for some aspects, are in line with our
analysis of the graph similarity in terms of common, appearing,
and disappearing edges. The Web cluster is characterized by a well
defined structure that remains persistent over time.

It is important to underline that the results obtained with Graph-
Scope differ from those obtained with the pcv in terms of number

Table 1: Our findings for the Web cluster and Database using
GraphScope for rack-rack traces. (S - segments, s - #clusters
for sources, d - #clusters for destinations)

Clusters Web cluster Database

15´ 5´ 1´ 15´ 5´ 1´
S, s, d S, s, d S, s, d S, s, d S, s, d S, s, d

p=0% 1, 7, 7 1, 8, 9 1, 7, 6 1, 8, 8 2, 8, 8 43, 11, 11
p=30% 3, 7, 12 1, 7, 7 1, 6, 5 2, 10, 9 3, 12, 9 46, 1, 9
p=50% 4, 10, 9 1, 6, 7 1, 5, 6 3, 8, 7 7, 8, 8 45, 8, 8
p=70% 1, 7, 13 1, 7, 7 12, 12, 16 2, 9, 6 9, 8, 8 40, 8, 10

Figure 2: Visualization of our approach for rack–rack com-
munication over a 1minute interval from theWeb cluster for
𝑝 = 70%. On the left, we present the unordered binary matrix.
On the right, we present the binary matrix after reordering
based on the bicluster structure. The cluster structure reveals
the cache servers (vertical block), theWeb servers (horizontal
block) and the multifeed servers (small square).

0 50.00

0.25

0.50

0.75

1.00

recall
precision
trafficInCluster

(a) 15 min, 𝑝 = 70%

0 200.00

0.25

0.50

0.75

1.00

recall
precision
trafficInCluster

(b) 5 min, 𝑝 = 70%

0 1000.00

0.25

0.50

0.75

1.00

recall
precision
trafficInCluster

(c) 1 min, 𝑝 = 50%

(d) 15 min, 𝑝 = 70% (e) 5 min, 𝑝 = 70% (f) 1 min, 𝑝 = 50%

Figure 3: Web cluster and rack–rack communication results,
with 𝑝 = 70% and time step lengths varying from 15 minutes
to 1minute. Fig.s 3(a)–3(c) present recall, precision and traffic
inside the clusters, and Fig.s 3(d)–3(f) present the correspond-
ing similarity matrices.

of clusters and segments detected. This difference is due to the
different solutions provided by the algorithm: GraphScope does
not identify overlapping communities and, unlike pcv, the nodes
are partitioned and belong to only one cluster.

Next, we consider rack–server communication over 5 minute
time frames and 𝑝 = 0%. In Fig. 9(a) we visualize a typical bicluster-
ing. We see that the resulting biclusters are extremely dense, which
is why our biclusterings have a precision of almost 100%. The recall
is around 85% and the traffic inside the biclustering is about 90%.
This suggests that we found high-quality traffic biclusters. Further-
more, the biclusterings are very stable over time and all entries
in the similarity matrix are over 94%. For shorter time frames of
length 1 minute, the data becomes sparser and pcv does not find the
full clusters anymore, which is why the traffic inside the clusters
drops to around 60% in this case. For server–rack communication
the situation is almost identical.

For the server–server communication, we consider 15 minute
time frames and 𝑝 = 0%. These are the densest graphs that we

6

Analyzing the Communication Clusters in Datacenters WWW ’23, May 1–5, 2023, Austin, TX, USA

obtain among all clusters, containing around 10% of all possible
edges; for shorter time frames or larger values for 𝑝 , the graphs
becomemuch sparser (e.g., for 5 minute intervals and 𝑝 = 0.5%, they
contain less than 2.1% of all possible edges). The typical biclustering
we find clearly reveal the structure of the cache and theWeb servers
(see Fig. 6 in the appendix). The similarities of our biclusterings are
very high (typically above 99%); their recall is constantly above 95%,
and their precision and traffic inside the clusters is around 50%. We
explain the low fraction of traffic by the fact that pcv seems to miss
some servers in the clustering (see also Fig. 6).

3.2 Database Cluster
The Database cluster mainly consists of MySQL servers which store
user data and serve SQL queries.

Properties of datasets. We evaluate the similarity of graphs in
the Database cluster and we notice that for the rack–rack commu-
nication, and the rack–server communication, the percentage of
common edges is high, i.e., greater than 70% for the 15 and 5 min-
utes interval, for any 𝑝 . The sparser graphs with 𝑝 = 70% exhibit
a less strong similarity over time and the percentage of common
edges decreases to 50% for the 1minute interval. In the server–rack
communication, the graphs characterized by a lower similarity are
those obtained with 𝜏0.7 for the 15 and 5 minutes time interval.
While for the 1 minute time interval the results are similar to those
in the other communication cases with an exception for the sparsest
graphs with 𝑝 = 70% where the number of common edges, about
20%, is lower that that of the new edges, about 40%. (We present
additional figures in the appendix.)

Discussion of results.We present our findings that we obtained
from pcv and 1-minute time intervals in Fig. 4. We present a typical
plot for the rack–rack communication over a 1-minute interval
with 𝑝 = 0% in Fig. 4(a). In Fig. 4(b), we present recall, precision
and traffic inside the biclusters. Recall and precision are very high
(almost 100%) but the precision is lower (around 80%). Indeed, when
increasing 𝑝 to 30% and 50%, the precision drops quite significantly
to 70% and 60%, resp., but for both the recall and the traffic inside
the clusters stay above 90%. However, when setting 𝑝 = 70%, the
traffic inside the clusters drops quite significantly to around 70%
and precision and recall drop to 50% and 80%, resp. In Fig. 4(c) we
see that the clusterings have very high similarities of at least 85%.

We note that when considering longer time steps, consisting of
5 or 15 minutes, the precision for larger values of 𝑝 increases. For
example, when considering 15 minute intervals, the precision for
𝑝 = 30% is above 80% and for 𝑝 = 50% it is above 75%.

Applying GraphScope to the Database cluster we notice that the
similarity of the graphs decreases, and the algorithm detects more
change-points and segments, in particular for the 1 minute time
interval, as shown in Table 1.

As the Web cluster, also the Database cluster is characterized
by a well-defined structure that remains persistent over time. The
reason for the high number of change-points in the 1 minute time
interval in Table 1 is related to the size of the graphs, these are the
smallest in terms of number of edges compared to the other graphs.

Next, we consider rack–server and the server–rack communi-
cations over 15 minute time frames and for 𝑝 = 0%. We visualize
typical communication patterns in Fig.s 9(b) and 9(c), resp. We con-
sidered the 10,000 servers that received/sent the most data over the

(a) ordered plot

0 1000.00

0.25

0.50

0.75

1.00

recall
precision
trafficInCluster

(b) measures (c) similarity

Figure 4: Our results for the Database cluster and rack–rack
communication over 1-minute time steps and 𝑝 = 0%. Fig. 4(a)
shows the graph after reordering according to the bicluster-
ing. Fig. 4(b) presents recall, precision and traffic inside the
biclusters. Fig. 4(c) shows the similarity matrix.

0 10 20
Snapshot

20

40

60

Ed
ge

s % common
appear
disappear

(a) measures: 5 min,
𝑝 = 30%, Hadoop
cluster rack–rack com.

0 10 20
Snapshot

32.5
35.0
37.5

Ed
ge

s % common
appear
disappear

(b) measures: 5 min,
𝑝 = 50%, Hadoop clus-
ter rack–rack com.

0 10 20
Snapshot

20

30

40

Ed
ge

s % common
appear
disappear

(c) measures: 5 min,
𝑝 = 70%, Hadoop
cluster rack–rack com.

Figure 5: Similarity of consecutive graph snapshots for the
Hadoop clusters. Notice that lines may overlap.

whole 150 minutes. In both cases, there exists one bicluster that
is relatively dense, even though sparser than what we have seen
for the Web cluster; the rest of the graph is extremely sparse. For
both, rack–server and server–rack communication, the precision
and recall are around 50% across all time steps; we explain this by
the sparsity of the obtained biclusters and the long “unclusterable”
tail of servers that do not receive/send a lot of data. The bicluster
similarity is very high (over 80%) in both cases. Intriguingly, for
rack–server communication the biclusters contain 85% of the traffic,
while for server–rack it contains just 15% of the traffic.

For server–server communication, we considered the 10,000
servers which sent and received the most data. We did not find any
meaningful biclusters; even for 15 minute time frames and 𝑝 = 0%,
the graphs are extremely sparse and have less than 0.12% of all
possible edges.

3.3 Hadoop Cluster
This cluster is for batch processing and runs Hadoop applications.

Properties of datasets. In the Hadoop cluster, we notice a dif-
ferent structure compared to the previous two clusters. In particular
for the rack–rack communication, in the 15 and 5 minutes time
interval for 𝜏0.7, the percentage of common edges is low while there
is a high number of edges that appear and disappear. We show the
percentages in Fig. 5(a), Fig. 5(b), and 5(c), The same happens for
the rack–server communication for 𝜏0.7 and 5minutes time interval.
This low similarity over time is exhibited also for the 1minute time
interval with 𝜏0.5, 𝜏0.7 in the rack–rack communication, and for the

7

WWW ’23, May 1–5, 2023, Austin, TX, USA K.-T. Foerster et al.

5 minute time interval with 𝜏0.7 in the rack–server communica-
tion. In the server–rack communication, the percentage of common
edges is low while there is a high number of edges that appear and
disappear, the only graphs exhibiting a strong similarity over time
are those obtained with 𝜏0 for the 15 minutes time interval.

Discussion of results. We again start by discussing our results
from pcv. We present the biclustering from rack–rack communica-
tion over 5-minute intervals and 𝑝 = 30% in Fig. 8 in the appendix.
Fig. 8(a) shows a typical plot of a graph𝐺𝜏𝑝

𝑡 ; we see that this graph
is very dense, containing almost 70% of all possible edges. As the
biclustering essentially forms one single large cluster for the graph,
the precision is also around 70%, and the recall and traffic inside the
cluster are very high (Fig. 8(b)). Not surprisingly, the similarities
across different time steps are extremely high (Fig. 8(c)).

In Table 2 in the appendix we report the results obtained with
GraphScope for the Hadoop cluster. Comparing the results for the
Hadoop cluster with the other clusters, it is easy to see that in
this Hadoop cluster the similarity of the graphs decreases, and
the algorithm detects many more change-points and segments, in
particular for the 1 minute time interval. The Hadoop Cluster is
the one with the lowest percentage of common edges and highest
percentage of edges that appear and disappear for the 1 minute
time interval and, as shown in Table 2, GraphScope detects a high
number of change-points. Moreover, it is the cluster with the highest
average number of edges.

Next, we consider rack–server communication over 15 minute
time intervals and 𝑝 = 30%. We visualize a typical biclustering in
Fig. 9(d), where we considered the 10,000 servers that received the
most data over the whole 150 minutes. When considering 𝑝 = 0%,
the only change in the plots is that the dense areas become even
more dense. Fig. 9(d) shows that the racks send a lot of data to a
very large fraction of the servers. Our biclusterings had recall and
traffic inside the biclusters almost 100%; the precision is around
50%, due to the sparsity of the graph. The smallest entry in our
similarity matrices is over 85%, suggesting that the set of active
servers is very stable over the entire time frame. For server–rack
communication results are essentially identical.

For the server–server communication of the 10,000 most active
sending and receiving servers, the matrices are relatively sparse
(even over 15 minutes and for 𝑝 = 0%, they typically contain less
than 5% of all possible edges). It seems like the data does not contain
clear bicluster structures, as the recall and the traffic inside the
biclusterings are almost 0%.

4 ADDITIONAL RELATEDWORK
The study of communication traffic and its patterns is a topic of
high relevance in the networking community, and has received
much attention in the literature, at least from the 1990s when it was
observed that enterprise and Internet traffic can significantly differ
from other communication traffic, such as phone calls [25]. There
also already exist several important studies on the traffic in datacen-
ter networks specifically. Empirical studies found that much data-
center traffic is rack-local [6, 13], that there is typically only a small
fraction of large flows [2], and that demand is generally bursty [6–
8, 13] and of low entropy [4] and features ON/OFF behavior [6].
Some of these properties have recently been revisited in the context
of a large empirical study in Facebook’s datacenters [32], which

showed that the specific properties also depend on the datacenter
type. However, these works do not go in-depth for our research
question on communication clustering, even though many further
aspects are considered: e.g., the seminal work by Benson et al. [6]
studies traffic from the viewpoints of application type, flow- and
packet-arrival times, link utilization, and extra-rack vs. intra-rack
traffic, but not the communication cluster structure itself. Similarly,
Roy et al. [32] consider, e.g., rack locality, demand-distribution,
and communication between co-located server clusters–but do not
study clustering in the observed traffic. Lastly, while Ghobadi et
al. [16] showed that small groups of servers can be talkative, they
also did not further investigate communication clusters.

Hence, to the best of our knowledge, our work is the first to pro-
pose a systematic approach to determine communication clusters
in datacenter traffic, based on biclustering, showing that a signif-
icant amount of traffic lies in small and stable clusters. Despite
the practical relevance of biclustering in many applications, e.g.,
in text mining and bioinformatics, only few publications focus on
the evaluation of biclustering results. Existing approaches based
on external validation [18] require information on an ideal biclus-
tering solution and are not applicable to our problem setting. Lee
et al. [24] introduced a stability index to measure the validity of a
biclustering under variations of the input data set. This measure
focuses on finding biclusters in data with numerical attributes, as
it is the case for gene expression.

5 FUTURE RESEARCH
We understand our work as a first step, and believe that it opens sev-
eral interesting avenues for future research. In particular, it would
be interesting to improve the scalability of our algorithms further,
in order to be able to conduct even more fine-grained analyses.
Another interesting direction is to find patterns of flow patterns
(involving a sequence of senders and receivers), rather than pat-
terns of sender–receiver that we considered. Next, the dataset we
considered provides traffic information over a single day (24 hours)
and is widely studied by the research community. As a consequence,
we are limited in the traffic window, and hence studied a 150 min-
utes sample. Future studies could consider larger datasets to study
shorter and larger time frames: seconds, days, weeks and months.
More generally, while our work shows that small, dense, and stable
clusters exist in the communication traffic, it remains to investigate
the resulting possible opportunities for improving the resource
efficiency in datacenters. In particular, it would be interesting to
study under which circumstances a collocation of such clusters
can be meaningful, possibly even dynamically over time, using
cost-efficient migrations or reconfigurations.

ACKNOWLEDGMENTS
Research supported by the European Research Council (ERC), grant
agreement No. 864228 (AdjustNet), Horizon 2020, 2020-2025. Stefan
Neumann and Thibault Marette are supported by the ERCAdvanced
Grant REBOUND (834862), and the EC H2020 RIA project SoBig-
Data++ (871042). Some of the computations were enabled by the
National Academic Infrastructure for Supercomputing in Sweden
(NAISS) and Swedish National Infrastructure for Computing (SNIC)
partially funded by the Swedish Research Council through grant
agreements no. 2022-06725 and 2018-05973.

8

Analyzing the Communication Clusters in Datacenters WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] 2016. ProjecToR Dataset. www.microsoft.com/en-us/research/project/projector-

agile-reconfigurable-data-center-interconnect.
[2] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In SIGCOMM. ACM, 63–74.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: minimal near-optimal data-
center transport. In SIGCOMM. ACM, 435–446.

[4] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the
Complexity of Traffic Traces and Implications. Proc. ACM Meas. Anal. Comput.
Syst. 4, 1 (2020), 20:1–20:29.

[5] Chen Avin and Stefan Schmid. 2018. Toward demand-aware networking: a theory
for self-adjusting networks. Comput. Commun. Rev. 48, 5 (2018), 31–40.

[6] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traffic
characteristics of data centers in the wild. In Internet Measurement Conference.
ACM, 267–280.

[7] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2010. Under-
standing data center traffic characteristics. Comput. Commun. Rev. 40, 1 (2010),
92–99.

[8] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: fine grained traffic engineering for data centers. In CoNEXT. ACM, 8.

[9] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. 2014. OSA: An Optical Switching Architecture
for Data Center Networks With Unprecedented Flexibility. IEEE/ACM Trans.
Netw. 22, 2 (2014), 498–511.

[10] Kimberly C. Claffy, George C. Polyzos, andHans-Werner Braun. 1993. Application
of Sampling Methodologies to Network Traffic Characterization. In SIGCOMM.
194–203.

[11] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. 2012. Visual Role Mining: A Picture Is Worth a Thousand Roles. IEEE
Trans. Knowl. Data Eng. 24, 6 (2012), 1120–1133.

[12] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005),
58–75.

[13] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis. 2012.
ECHO: Recreating network traffic maps for datacenters with tens of thousands
of servers. In IISWC. IEEE, 14–24.

[14] Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite
spectral graph partitioning. In SIGKDD. 269–274.

[15] Klaus-Tycho Foerster and Stefan Schmid. 2019. Survey of Reconfigurable Data
Center Networks: Enablers, Algorithms, Complexity. SIGACT News 50, 2 (2019),
62–79.

[16] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel C. Kilper. 2016. ProjecToR: Agile Reconfigurable
Data Center Interconnect. In SIGCOMM. ACM, 216–229.

[17] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid,
and Chen Avin. 2021. Cerberus: The Power of Choices in Datacenter Topology
Design - A Throughput Perspective. Proc. ACM Meas. Anal. Comput. Syst. 5, 3
(2021), 38:1–38:33.

[18] Blaise Hanczar and Mohamed Nadif. 2013. Precision-recall space to correct
external indices for biclustering. In ICML (2) (JMLR Workshop and Conference
Proceedings, Vol. 28). JMLR.org, 136–144.

[19] Monika Henzinger, Stefan Neumann, and Stefan Schmid. 2019. Efficient dis-
tributed workload (re-) embedding. Proceedings of the ACM on Measurement and

Analysis of Computing Systems 3, 1 (2019), 1–38.
[20] Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the

Datacenter. In NSDI. USENIX Association, 145–157.
[21] Patrick Kalmbach, Johannes Zerwas, Péter Babarczi, Andreas Blenk, Wolfgang

Kellerer, and Stefan Schmid. 2018. Empowering Self-Driving Networks. In
SelfDN@SIGCOMM. ACM, 8–14.

[22] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis. In Proc.
9th ACM SIGCOMM Conference on Internet Measurement (IMC). ACM, 202–208.

[23] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, Martin
Reisslein, and Stefan Schmid. 2019. Adaptable and data-driven softwarized
networks: Review, opportunities, and challenges. Proc. IEEE 107, 4 (2019), 711–
731.

[24] Youngrok Lee, Jeonghwa Lee, and Chi-Hyuck Jun. 2011. Stability-based validation
of bicluster solutions. Pattern Recognit. 44, 2 (2011), 252–264.

[25] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. 1994. On
the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans.
Netw. 2, 1 (1994), 1–15.

[26] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In SIGCOMM. ACM, 197–210.

[27] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki
Mannila. 2008. The Discrete Basis Problem. IEEE Trans. Knowl. Data Eng. 20, 10
(2008), 1348–1362.

[28] Pauli Miettinen and Stefan Neumann. 2020. Recent Developments in Boolean
Matrix Factorization. In IJCAI, Christian Bessiere (Ed.). 4922–4928.

[29] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput.
Program. 2, 2 (1982), 143–152.

[30] Stefan Neumann. 2018. Bipartite Stochastic Block Models with Tiny Clusters. In
NeurIPS. 3871–3881.

[31] Jorma Rissanen. 1978. Modeling by shortest data description. Autom. 14, 5 (1978),
465–471.

[32] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In SIGCOMM. ACM,
123–137.

[33] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter rising: a decade of
clos topologies and centralized control in Google’s datacenter network. Commun.
ACM 59, 9 (2016), 88–97.

[34] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007.
GraphScope: parameter-free mining of large time-evolving graphs. In KDD. ACM,
687–696.

[35] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning
to Route. In HotNets. ACM, 185–191.

[36] David P. Woodruff. 2016. New Algorithms for Heavy Hitters in Data Streams
(Invited Talk). In ICDT (LIPIcs, Vol. 48). 4:1–4:12.

[37] James Hongyi Zeng. 2017. Data Sharing on traffic pattern inside Facebook’s data
center network. https://research.facebook.com/blog/2017/01/data-sharing-on-
traffic-pattern-inside-facebooks-datacenter-network/. Accessed: 2022-05-10.

[38] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Internet Measurement
Conference. ACM, 78–85.

[39] Shihong Zou, Xitao Wen, Kai Chen, Shan Huang, Yan Chen, Yongqiang Liu, Yong
Xia, and Chengchen Hu. 2014. VirtualKnotter: Online virtual machine shuffling
for congestion resolving in virtualized datacenter. Comput. Networks 67 (2014),
141–153.

9

www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/

WWW ’23, May 1–5, 2023, Austin, TX, USA K.-T. Foerster et al.

A APPENDIX
A.1 Additional Plots and Tables
In this section, we present additional plots of Fig.s 6, 8 and 9, as
well as Table 2.

A.2 Stability of pcv Solutions
Since pcv is a randomized algorithm and requires the number of
clusters 𝑘 as input, we also study how stable its biclustering solu-
tions are over different runs and across different choices of 𝑘 .

More concretely, given an unweighted bipartite graph 𝐺 , we
created five initial biclusterings of 𝐺 for 𝑘 = 7 (as in our experi-
ments above). Then we vary 𝑘 = 5, . . . , 10 and each time we create
another five biclusterings of 𝐺 . For each new biclustering and and
each initial biclustering, we compute the normalized mutual infor-
mation (NMI) of their induced bicliques (see Eq. (1)); we report the
averages and standard deviations of these NMIs. Note that we use
the induced bicliques for computing the NMI because they relate to
the edges “covered” by the biclustering and they are independent
of 𝑘 and can handle overlapping clusters (as produced by pcv).

We report our results in Fig. 7. The NMI values we obtain are
always above 75% and the standard deviations are low. Indeed, here
we report some of the “worse” results; on many other datasets
the NMIs are well above 90% and have extremely small standard
deviations.

A.3 Graph Similarity over Time
To analyze how similar two consecutive graphs 𝐺𝑡 and 𝐺𝑡+1 are,
we compute the percentages of edges that appear, disappear, and
do not change between 𝐸𝑡 and 𝐸𝑡+1. We present additional plots
for the Web cluster in Fig.s 10 and 11, and the Database cluster in
Fig.s 12 and 13.

A.4 Graph Statistics
In this section we report the size of the clusters in Table 3.

Figure 6: Visualization of the biclustering of server–server
communication over a 15 minute interval from theWeb clus-
ter for 𝑝 = 0%. We considered the 10,000 servers that sent and
the 10,000 server that received the most data. pcv detects the
two blocks on the left and at the top as biclusters, but does
not include the slightly more dense areas towards the bottom
and towards the right.

Table 2: Our findings for the Hadoop cluster using Graph-
Scope for rack-rack traces (S - segments, s - #clusters for
sources, d - #clusters for destinations).

15’ 5’ 1’
S, s, d S, s, d S, s, d

p=0% 3, 5, 6 14, 9, 10 93, 9, 9
p=30% 7, 9, 8 21, 8, 10 81, 8, 10
p=50% 6, 9, 8 17, 8, 10 73, 8, 9
p=70% 7, 9, 9 14, 7, 9 68, 8, 8

(a) 5min,𝑝 = 70%,Web clus-
ter rack–rack com.

(b) 1 min, 𝑝 = 0%, Database
cluster rack–rack com.

Figure 7: Stability of the pcv biclusterings for rack–rack com-
munication of the Web cluster (left) and the Database cluster
(right). We plot average NMI values against the parameter 𝑘;
errorbars correspond to standard deviations.

(a) ordered plot

0 200.00

0.25

0.50

0.75

1.00

recall
precision
trafficInCluster

(b) measures (c) similarity

Figure 8: Our results for the Hadoop cluster and rack–rack
communication over 5-minute time steps and 𝑝 = 30%.
Fig. 8(a) shows the graph after reordering according to the
biclustering. Fig. 8(b) presents recall, precision and traffic
inside the biclusters. Fig. 8(c) shows the similarity matrix.

Table 3: Densities of the thresholded graphs 𝐺𝜏
𝑡 = (𝑉𝑡 , 𝐸𝜏𝑡)

for rack–rack communication. Here, the densities are the
averages over all values |𝐸𝑡 |/(|𝑈 | · |𝑉 |), where we average
over 𝑡 . We present the results for different values for 𝑝 and
different time step lengths.

Clusters Web cluster Database Hadoop

t 15’ 5’ 1’ 15’ 5’ 1’ 15’ 5’ 1’

p=0% 0.83 0.74 0.48 0.47 0.46 0.4 0.98 0.96 0.7
p=30% 0.58 0.52 0.34 0.33 0.32 0.28 0.69 0.68 0.49
p=50% 0.42 0.37 0.24 0.23 0.22 0.2 0.49 0.48 0.35
p=70% 0.25 0.22 0.14 0.14 0.14 0.12 0.29 0.29 0.21

10

Analyzing the Communication Clusters in Datacenters WWW ’23, May 1–5, 2023, Austin, TX, USA

(a) ordered plot: Web cluster, rack–server, 5 min, 𝑝 = 0%

(b) ordered plot: Database cluster, rack–server, 15 min, 𝑝 = 0%

(c) ordered plot: Database cluster, server–rack, 15 min, 𝑝 = 0%

(d) ordered plot: Hadoop cluster, rack–server, 15 min, 𝑝 = 0.3%

Figure 9: Visualizations of the communications between racks and servers. In all plots, the sending racks are in the rows and the
columns correspond to receiving servers, except for Fig. 9(c) where the rows are receiving racks and the columns are sending
servers. For Fig.s 9(b) and 9(c) we have removed some sparse parts on the right side of the plot for better readability.

0 10 20
Snapshot

0

20

40

60

80

Ed
ge

s % common
appear
disappear

(a) measures: 5 min, 𝑝 =
30%, Database cluster rack–
rack com.

0 10 20
Snapshot

20

40

60

80

Ed
ge

s % common
appear
disappear

(b) measures: 5 min, 𝑝 = 30%,
Database cluster rack–server
com.

Figure 12: Similarity of consecutive graph snapshots for the
Database cluster. Notice that the percentage of edges that
appear, disappear, or are in common may be the same and
two different lines may overlap.

0 2 4 6 8
Snapshot

30

40

50

Ed
ge

s % common
appear
disappear

(a) measures: 15 min, 𝑝 = 70%,
Database cluster server–rack
com.

0 50 100 150
Snapshot

25

30

35

Ed
ge

s % common
appear
disappear

(b) measures: 1 min, 𝑝 = 70%,
Database cluster server–rack
com.

Figure 13: Similarity of consecutive graph snapshots for the
Database cluster, server–rack communication. Notice that the
percentage of edges that appear, disappear, or are in common
may be the same and two different lines may overlap.

0 10 20
Snapshot

20

30

40

50

60

Ed
ge

s % common
appear
disappear

(a) measures: 5 min, 𝑝 = 30%,
Web cluster rack–rack com.

0 2 4 6 8
Snapshot

20
30
40
50
60
70

Ed
ge

s % common
appear
disappear

(b) measures: 15 min, 𝑝 = 30%,
Web cluster rack–rack com.

Figure 10: Similarity of consecutive graph snapshots for the
Web cluster, rack-rack communication. Notice that the per-
centage of edges that appear, disappear, or are in common
may be the same and two different lines may overlap.

0 2 4 6 8
Snapshot

32

33

34

Ed
ge

s % common
appear
disappear

(a) measures: 15 min, 𝑝 = 70%,
Web cluster rack–server com.

0 10 20
Snapshot

25

30

35

Ed
ge

s % common
appear
disappear

(b) measures: 5 min, 𝑝 = 70%,
Web cluster server–rack com.

Figure 11: Similarity of consecutive graph snapshots for the
Web cluster. Notice that the percentage of edges that appear,
disappear, or are in common may be the same and two dif-
ferent lines may overlap.

11

	Abstract
	1 Introduction
	2 Finding Hi-quality Traffic Clusters
	2.1 High-Level Overview
	2.2 Detailed Approach
	2.3 Choice of Parameters and Algorithms

	3 A Case Study
	3.1 Web Cluster
	3.2 Database Cluster
	3.3 Hadoop Cluster

	4 Additional Related Work
	5 Future Research
	Acknowledgments
	References
	A Appendix
	A.1 Additional Plots and Tables
	A.2 Stability of pcv Solutions
	A.3 Graph Similarity over Time
	A.4 Graph Statistics

