
Transparent Fault Tolerance for Stateful
Applications in Kubernetes with Checkpoint/Restore

Henri Schmidt
TU Dortmund

Dortmund, Germany
henri.schmidt@tu-dortmund.de

Zeineb Rejiba
Hitachi Energy Research

Dättwil, Switzerland
0000-0001-8807-3105

Raphael Eidenbenz
Hitachi Energy Research

Dättwil, Switzerland
0009-0009-6204-5988

Klaus-Tycho Förster
TU Dortmund

Dortmund, Germany
0000-0003-4635-4480

Abstract—This paper presents a solution providing fault toler-
ance for stateful containerized applications that is transparent,
i.e., the application does not require to structure or manage its
state in any particular fashion. In the case of faults, such as node
crashes or node isolation, the application resumes execution on
another node. The solution relies on a Kubernetes operator and
a tool to periodically checkpoint containers and restore from the
latest checkpoints in case of a node failure.

Experimental evaluations reveal the trade-offs between over-
head due to checkpointing, i.e., CPU load, memory, network
bandwidth, reduced availability, and the performance during
recovery, i.e., outage time, state quality. Compared to a non-
transparent solution, the transparent solution yields similar
downtimes and state quality at an increased overhead.

Index Terms—fault tolerance, container orchestration, reliabil-
ity, checkpointing

I. INTRODUCTION

Containers have become the de-facto standard for pack-
aging, deploying, and managing software. Their benefits are
that they provide isolation, come with dependencies included,
they are easily distributed via registries. Moreover, lightweight
virtualization allows containers to run on a wide variety of
host platforms at a performance that is close to native. More-
over, container orchestration frameworks—first and foremost,
Kubernetes—provide the necessary means to run dynamic
container based workloads across a cluster and thus enable
a serverless platform-as-a-service type of experience. Thus,
application developers are freed from thinking in confinements
of device boxes. Instead, they can see a cluster as an elastic
sea of compute power at their disposal.

By contrast to traditional deployments of software, con-
tainers are considered ephemeral entities1, i.e., a container
might be stopped and restarted at any point in time, potentially
in another node. When such a restart or a “migration” to
another node occurs, a new container instance is spawned,
i.e., a new instance starts with fresh memory and any pre-
vious state in memory is lost. For this reason, only stateless
containers are typically deployed into container orchestration
frameworks without any additional state preserving measures.
Containerized applications that rely on persistent state must
implement additional measures such as shared volumes, exter-
nal databases, etc. for storing their state and recovering state

1https://docs.docker.com/develop/develop-images/dockerfile
best-practices/#create-ephemeral-containers

in a case of failure. Beyond recovery from faults, also planned
migrations, e.g., if an application is moved from one server
rack to another, require special measures for transferring state.

As a result, if an application developer wants to create
a stateful application that is containerized and managed by
a container orchestration framework, they spend significant
effort on devising an infrastructure that can persist the state,
and on adding the functionality to store, retrieve and restore
from a state snapshot. Such additional effort can become a
major factor to decide against containerization of existing
software. Merely determining what makes up the state of a
legacy application is already a challenging endeavour that can
take months. Thus, the lack of proper support for stateful con-
tainers prevents organizations from modernizing their software
portfolio and reaping the benefits that containerization brings.

What current container orchestration frameworks are miss-
ing is support for transparent fault tolerance, i.e., a feature
that allows containers to fail and resume from the same state
without requiring the application to provide special measures.

In this paper, we present and evaluate a solution that
achieves transparent fault tolerance. Concretely, we are the
first to design, implement and evaluate a Kubernetes operator
that harnesses the recent integration of the Checkpoint/Restore
in Userspace (CRIU) tool into the Kubernetes ecosystem. Our
operator strategically checkpoints stateful containers, transfers
the checkpoint to a target node and restores the container from
that checkpoint in case of a failure. Thereby a checkpoint
includes the container’s entire state. Once the container is
restored from that checkpoint it resumes operation from that
exact state. The application developer does not need to provide
any mechanisms to persist or transfer state.

The main contributions of our work are:

• The design of a Kubernetes operator that provides trans-
parent fault tolerance for containerized applications.

• An experimental evaluation of the solution’s performance
in terms of the downtime and state quality experienced
by the applications in the presence of faults.

• An experimental evaluation of the overhead in terms of
impact on CPU load, network, memory and interference
to application containers when there are no faults.

• A comparison of our operator with a non-transparent
solution in terms of performance and overhead.

Fig. 1: Kubernetes Architecture [2].

II. BACKGROUND

This section provides an overview of the tools and concepts
that our proposed Checkpoint/Restore (C/R) solution builds
upon. In particular, it introduces Kubernetes, CRIU as well as
the details of the recent checkpointing feature in Kubernetes.

A. Kubernetes

Kubernetes is an open source container orchestration frame-
work that is widely used in industry [1]. It has a modular
architecture and enables users to manage containers across
multiple nodes. It handles scheduling, networking, access
control and provides capabilities for data storage. Additional
features include automated rollouts and rollbacks, self-healing,
automated scaling as well as extensibility.

In the following, we provide an overview of the Kubernetes
architecture, the operator concept, and fault tolerance features.

1) Kubernetes architecture: Fig. 1 depicts a high level
overview of the Kubernetes architecture. As can be seen, a
cluster consists of compute machines, called nodes, and the
control plane. The control plane contains the components
needed for managing the cluster. The nodes run the actual user
applications. The control plane is often run on its own physical
device, but it can also be collocated with a compute node.
Moreover, it can also be distributed across multiple devices for
redundancy. Pods are the components that contain application
containers. Pods constitute the scheduling unit in Kubernetes.

The Kubernetes components are described in the following:
• API Server. Exposes the Kubernetes API via HTTP.
• Controller manager. Contains all the standard con-

trollers for the default resources available in Kubernetes.
Resources in the Kubernetes terminology refer to specific
API objects that can be managed by Kubernetes. These
include pods, services, deployments, etc. Each resource
is continuously watched by its corresponding controller
to ensure that its current state matches its desired state.

• etcd. A persistent distributed key-value store, which
stores resources and cluster configuration information.

• Scheduler. Component responsible for determining the
most suitable node for a given pod.

• kubelet. Agent running on each node in a Kubernetes
cluster. It communicates over a REST API with the
API server and is responsible for interacting with the
underlying container runtime.

• Container runtime. Component responsible for man-
aging the containers’ lifecycle. Examples runtimes are
CRI-O2 and Containerd3. Lower level container manage-
ment details are instead handled by tools such as runc4.

• kube-proxy. Enables communication towards pods. It
also implements part of the Service concept, where a
Service refers to a Kubernetes resource used as a unified
way for exposing application pods, regardless of the pods’
underlying IP addresses.

2) Operators in Kubernetes: In addition to the standard
controllers provided by the Controller manager, it is possible
to add custom controllers to Kubernetes via the Operator5

concept. Operators are based on one or multiple controllers
as well as optional Custom Resource Definitions (CRDs).
Operators are typically used to automate complex application
tasks, such as self-healing, scaling and updates. A CRD
defines a specification for custom resources, including the
expected fields and resource metadata. After the CRD is
installed, resources of that type (i.e. specific instances based
on the CRD) can be created and managed in the Kubernetes
cluster. Controllers use the watch capability offered by the
Kubernetes API to continuously monitor associated resources.
Every change in the resource triggers a reconcile loop which
ensures that the current state of the resource matches its
desired state. Since CRDs are optional in an operator, it is
possible to create only the custom controller and configure it to
watch and add additional functionality to standard Kubernetes
resources (e.g., pods).

3) Fault Tolerance in Kubernetes: Kubernetes provides two
mechanisms for fault tolerance, self-healing and replication.
Self-healing refers to the feature that a failing container is
restarted, first on the same node, eventually on another node.
The Kubernetes Service concept provides replication, i.e.,
multiple instances of the same container are run in parallel.
Requests to the service are dispatched to one of the instances.
If one fails, requests are handled by the remaining instances.
Both mechanisms are intended for stateless containers, as state
is not synchronized nor preserved.

B. CRIU

CRIU6 is a tool that can freeze the memory state of a
running Linux application and save it as a collection of files
on disk (checkpointing). These files can then be used to restore
the application at the same state it was frozen at. During
checkpointing CRIU operates on the process tree and uses

2https://cri-o.io/
3https://containerd.io/
4https://github.com/opencontainers/runc
5https://kubernetes.io/docs/concepts/extend-kubernetes/operator
6https://criu.org

the ptrace() system call or cgroups freezer7 to pause the main
process as well as its child processes. This step is needed to
ensure a consistent state during checkpointing. After freezing
the process tree, CRIU writes all process information to image
files. This is mostly information retrieved from /proc, such
as file descriptor information, pipe parameters and memory-
mapped files. To save the memory, all memory pages of the
process need to be exported. This is done using a technique
called parasite code injection8. This parasite code replaces
a part of the original process code and collects the memory
content from within the address space of the process and
writes it to image files. Once this is done, the parasite code
is removed, and the original code is placed in the process
again. At this point, the original process can be killed, or it
can remain running, depending on the use case.

For the restore step, CRIU starts by reading checkpoint files
from disk and then recreating the process tree as it was before
checkpointing. Additionally, CRIU maps all the memory pages
back to their original locations. As a last step, it loads all the
security settings. At this point, the process resumes execution
from the point at which it was checkpointed. Note that CRIU
can also handle C/R for TCP sockets using the TCP_REPAIR
socket option, which is available since kernel version 3.5.9

C. Integration of Minimal Checkpointing in Kubernetes

With Kubernetes v1.25, minimal checkpointing support was
added as an alpha feature. A main use case for the feature was
forensic analysis [3], where the main idea is to checkpoint
a suspicious container and inspect the checkpointed version
without impacting the original one.

To enable minimal checkpointing the ContainerCheckpoint
feature gate must be enabled in the Kubernetes cluster,
CRI-O must be selected as container runtime, and CRIU
support must be enabled in CRI-O. Note that Contain-
erd does not yet support CRIU. Checkpointing is then
available via the kubelet API. To perform a checkpoint,
an HTTP POST request has to be sent to the follow-
ing endpoint https://<node_ip>:10250/checkpoint/

<namespace>/<pod>/<container> where <node_ip> is
the IP address of the node where the pod is running and
10250 is the kubelet port number. It is also necessary to
specify the kubelet’s self-signed certificates for authentication.
Once this request is submitted to the kubelet, it will be
forwarded to CRI-O, then runc and finally CRIU. Upon
successful checkpoint creation, a tar archive will be available
at var/lib/kubelet/checkpoints/checkpoint-<pod>

-<namespace>-<container>-<timestamp>.tar.
Unlike checkpointing, the restore process cannot be per-

formed via the kubelet API. Instead, the process consists of
the following two steps. First, the checkpoint tar archive must
be converted into an image format that can be pushed to a
registry. The Open Container Initiative (OCI) format can be
used for this purpose, since it is a standardized image format

7https://criu.org/freezing the tree
8https://criu.org/Parasite code
9https://criu.org/tcp connection

that includes the file system layers and metadata. Addition-
ally, the following annotation needs to be added to the im-
age: io.kubernetes.cri-o.annotations.checkpoint.
name=<container> to indicate that it is a checkpoint. Next,
the created image must be used in the pod specification. When
the kubelet instructs CRI-O to create a container using this
image, CRI-O will detect that the image refers to a checkpoint
rather than a standard container image. As a result, it will
restore the container based on this checkpoint.

Finally, since C/R feature in Kubernetes is still experimen-
tal, it comes with some noteworthy limitations. The security
risks that come with C/R are not yet fully analyzed. The
checkpoint image format used for restore purposes is not yet
standardized. It is currently only supported by CRI-O.

III. RELATED WORK

Transparent fault tolerance was first investigated in the
1990s and 2000s for applications on an operating system [4],
and subsequently studied for web services [5], [6], virtual
machines [7]–[9], and high-performance computing [10].
With the emergence of containers and orchestration frame-
works such as Kubernetes, fault tolerance research received
increased attention. Thereby, the only work with explicit focus
on transparency is Borges et al. [11]. It proposes a transparent
state machine replication solution that harnesses Kubernetes.
Netto et al. [12]–[14] adds explicit state synchronization to
Kubernetes’ replication using the Raft consensus protocol [15].
Vayghan et al. [16], [17] propose a mechanism that uses a
Kubernetes controller and a forwarding process to duplicate
the network traffic to a standby node. Thus, by providing the
same inputs to each instance, the states shall be implicitly
synchronized. The downside of such synchronization is that
establishing the same level of redundancy after a failover
requires some additional form of synchronization, since a
newly started standby must be brought to the same state as
the currently running instance. Moreover, the container logic
must be deterministic. Johansson et al. [18] compare setups
with hot standby to a setup with cold standby in the contexts of
virtual distributed controller nodes in Kubernetes. By contrast,
our proposed solution should be classified neither as a hot
nor a cold, but as a warm standby solution. Whereas the
standby container is not running until a failover occurs, the
state is continuously transferred to the target node. Moreover,
the container image is pulled to the target node a priori.

Note that except Vayghan and Borges’ work all mentioned
solutions are non-transparent. Harnessing C/R technology can
avoid this problem. Most work on C/R addresses migration of
containers from one machine to another [19]–[30]. Thereby the
authors explore different strategies and aspects of migration,
with the objective to minimize downtime and transferred data
volume. In particular, Oh et al. [25] discuss some limita-
tions of container migration using persistent volumes, such
as the need to modify the underlying application to support
saving/restoring state to the volume. Another line of C/R
research focuses on optimizing CRIU on the level of the Linux
kernel [31]–[35].

Finally, there is some limited work on using C/R in Kuber-
netes. Rattihalli et al. [21] harnesses C/R for fast auto-scaling
in Kubernetes and for optimizing the allocation in cluster by
migrating containers to underutilized nodes. Similarly, Schret-
tenbrunner [27] implements integrated Kubernetes components
to enable migration of pods to other machines. Müller et
al. [36] propose an architecture for migration and failover with
Kubernetes pods while maintaining and replaying network
connections using an interceptor. Their work constitutes a good
starting point for integration of C/R into Kubernetes, but it
lacks an experimental evaluation of the proposed architecture.

IV. MODEL AND DESIGN GOALS

In containerized systems, faults can happen at the node,
container, application or network level [37]. Thereby the
different levels have typical fault causes: hardware or VM
failures lead to node failures [23], [38], software bugs lead
to application failures [36], etc. Our work considers faults on
any level as long as they affect the application container’s
execution or communication to the Control plane. Moreover,
we assume a fail-stop model [31], [32]. Byzantine faults are
ignored. The two prime fault scenarios are node crashes and
node isolation due to network failures. Both scenarios require
a failover of the application to another node. Applications
are assumed stateful and critical, i.e., downtime shall be
minimized. Finally, the effort for the application developers
to enable failovers for their application shall be negligible, or
even zero (full transparency).

V. PROPOSED SOLUTION: C/R OPERATOR

The proposed C/R Operator implements C/R operations
for use in failover scenarios. For the checkpoint step, it
uses the experimental checkpoint feature in Kubernetes. As
for the restore, it is handled directly by the CRE. In this
section, we provide a detailed description of the components
of the C/R Operator. Then, we discuss practical aspects of the
implementation, including challenges and known limitations.

A. Design

Fig. 2 depicts the architecture of the C/R operator. At a high
level, the operator is comprised of two main components:

• Controller Manager. Contains all the controllers needed
to perform the C/R operator functionalities. In addition,
it is responsible for coordinating Agents running on each
node. It can be further be broken down into four con-
trollers and two handlers. Each controller is responsible
for watching changes to one resource type in the cluster.
As for the handlers, they are responsible for checking the
liveness of Pods and for instructing agents to perform
checkpoint-related operations.

• Agents. Components based on the Kubernetes Daemonset
concept, i.e., one agent runs on each node. They are
responsible for checkpointing containers, creating check-
point images and transferring them between nodes.

In the following, we provide more details about the design of
each of these components.

1) Node Controller: This controller watches node resources
and is notified upon node state change. It maintains an internal
node list and adds a label to each node to identify it by
its internal cluster IP. These labels are later used by the
Liveness Handler to select the appropriate recovery node. It
is worth noting that the node IP address is already available
in other parts of the node data structure. However, to ensure
compatibility with the scheduler requirements, it is specified
as a label, too.

2) Agent Controller: This controller is responsible for
watching the DaemonSets representing Agents. More specifi-
cally, it listens to changes made to this DaemonSet and records
those changes in the available Agents.

3) Config Controller: This controller watches Deployments
and filters them based on a custom annotation that we call
cr mode. This annotation identifies Deployments that should
be checkpointed. In addition, such deployments should have
the cr interval annotation to indicate the checkpointing inter-
val. The Config Controller maintains a list of all Deployments
having those annotations and it notifies the Checkpoint Han-
dler and the Liveness Handler when such Deployments are
created.

4) C/R Controller: This controller watches Pod resources
and keeps track of all the Pods belonging to the Deployments
configured for checkpointing. Additionally, it determines the
recovery node using the node information provided by the
Node Controller.

5) Checkpoint Handler: The Checkpoint Handler uses in-
formation provided by the Config Controller, the Node Con-
troller and the C/R Controller to checkpoint Pods of monitored
Deployments. More specifically, the Config Controller pro-
vides the Checkpoint Handler with the configured checkpoint
interval, whereas the C/R controller provides it with the infor-
mation of the Pods belonging to the Deployment. The Node
Controller provides the Checkpoint Handler with the node list,
including the information needed to reach the Kubelet. This
information is then used to request a checkpoint via Kubelet
API. Once the checkpoint is created, the Checkpoint Handler
instructs the Agent running on the node of the checkpointed
pod to convert the checkpoint into an OCI image. To achieve
this, the Agent uses the Buildah image build tool10. As a last
step, the Checkpoint Handler instructs the Agent to transfer
the OCI image to the predetermined recovery node.

6) Liveness Handler: The Liveness Handler uses the in-
formation retrieved from the Config Controller to execute
liveness probes. In the standard Kubernetes architecture, when
a Pod is configured with liveness probes, it is the Kubelet’s
responsibility to execute those probes. If a node goes down,
a timeout of 40 seconds is observed, after which the node
will be considered NotReady. This timeout can be configured
using the --node-monitor-grace-period option of the
Kubernetes Controller Manager11. Reducing this grace period
arbitrarily can lead to an unstable system with quick and

10https://buildah.io/
11https://kubernetes.io/docs/reference/command-line-tools-reference/

kube-controller-manager/

Control plane node Worker node 2Worker node 1

cr_mode: "cr"

Checkpoint
Handler

Liveness
Handler

Node
Controller

C/R
Controller

Pull State Operator

1. Notify about new deployment

Agent pod

Agent pod
Agent pod

Application
pod 2':Perform liveness check

API Server

2: Request checkpoint

kubelet

5: Transfer checkpoint image to recovery node

3: Request checkpoint
conversion to OCI image

4: Request Image transfer
CRI-O Image store

6: Insert image into store

labels:
 internal-ip: y

labels:
 internal-ip: z

labels:
 internal-ip: x

Agent
Controller

Config
Controller

7. When a node failure occurs, delete
 old pod and create new pod
based on checkpoint image

Legend:

Kubernetes
component

C/R operator
component

Application
Part of resource spec
configured by C/R operator

Annotation needed
by C/R operator

New application
pod

nodeSelector:
 internal-ip: z

...
image: <some-registry>/

checkpoint:latest

Fig. 2: C/R Operator component interactions.

frequent node state changes. Once the node monitor grace
period is over, the standard Pod toleration timeout12 of 5
minutes will start. After both timeouts have elapsed, the Pods
are restarted on other Nodes. Even if shorter liveness probe
intervals are configured, the Pods are only restarted after their
eviction from the unreachable node. To mitigate the slow
detection of the Pod failure, our C/R operator implements its
own Liveness Handler by performing HTTP requests to the
configured endpoint. The liveness probe is considered failed
if either the request fails or if the status code is outside the
range 200 − 299. If three consecutive liveness probes fail,
the Liveness Handler will initiate the recovery process. This
process consists in the deletion of the old Pod and the creation
of a new Pod. In this step, deleting the old pod and relying
on the ReplicaSet to create a replacement pod is not enough,
since the ReplicaSet Controller will perform multiple attempts
at recreating the pod on the same node before moving it to
a different one. To prevent this, the C/R operator creates the
pod itself on the target node using the original ReplicaSet
information. The created pod also uses the checkpoint image
as the container image. The container runtime of the target
node will detect that the provided image is a checkpoint image
and it will delegate the actual restore to runc and CRIU.

B. Implementation Details

Since writing a Kubernetes operator from scratch is a
complex process that requires a deep knowledge of Kubernetes
internals, multiple open source libraries and tools have been
created to facilitate this task. In this work, we used the
Operator Software Development Kit 13. The Operator SDK
can bootstrap operators with all the necessary components
and Kubernetes resources. As the C/R Operator targets an
existing Kubernetes resource (i.e. Deployments having the

12https://kubernetes.io/docs/reference/access-authn-authz/
admission-controllers/#defaulttolerationsecond

13https://sdk.operatorframework.io/

cr-mode annotation), we omitted the creation of a CRD when
we bootstrapped the operator. After obtaining the components
generated from the Operator SDK, we modified them to
include our custom logic, namely the functionality of the
Node Controller, C/R Controller, Config Controller and Agent
Controller. We also implemented the Checkpoint Handler and
the Liveness Handler from scratch.14

In the following, we outline some generic known limitations
of our system, as well as practical considerations that need to
be observed for a successful restore process. Due to space
limitations, we highlight the most important ones here and list
additional ones in the README of our GitHub repository.

1) Known limitations: Our C/R Operator assumes that Pods
have exactly one container, i.e., it cannot checkpoint Pods
with more than one container. Since it is considered best
practice to have one container per Pod and Pods with more
than one container are rare in practice, this limitation is
acceptable. At the the Kubelet API level, checkpointing Pods
with multiple containers is not supported yet. However, it is
possible to checkpoint a single container from a Pod with
multiple containers.

2) Special considerations for the Restore Step:

• During restore, CRI-O needs to first setup all the con-
tainer mounts correctly. As a result, it is necessary that the
filesystem on the source and target nodes are the same.

• To ensure a successful process restore, it is necessary
that everything is exactly the same as it was during
checkpointing. In particular, the exact same container
image needs to be available at the target node, as CRI-O
matches the image name and tag to restore containers. At
the time of conducting this work, we noticed that due to
a bug, CRI-O lacks a check of the image version.

14The C/R Operator source code is available at https://github.com/
hitachienergy/checkpoint-restore-operator.

• Incompatibilities between the source and target system
in terms of CPU architecture often lead to illegal in-
structions being executed upon restoring a process. Most
applications that support different CPU flags scan these
during startup and do not expect the hardware to change
while the process is running. So, the exact CPU flags
need to be recorded during checkpointing. The restore
can only happen on systems with the same architecture
and a superset of the flags.

VI. BASELINE: PULL STATE OPERATOR

For the sake of the evaluation (VII), we implemented
an alternative operator called Pull State (PS) Operator. PS
Operator enables fault tolerance similarly to C/R Operator.
However, in contrast to the C/R Operator, the PS Operator
does so in a non-transparent manner. The design principle of
PS Operator is as follows. The application provides an API that
can be queried by the operator to retrieve and restore the state.
The operator periodically pulls the state from the application
and transfers it to the target node. When a fault occurs, the
application is started on the target node and the operator calls
the restore API to restore the state. This approach is similar to
the built-in readiness or liveness probes used by Kubernetes.

The architecture of the PS Operator is largely similar
to the C/R Operator’s architecture, with a few differences
regarding naming and functionality. Like the C/R Operator
it is comprised of two main components:

• Controller Manager. Responsible for retrieving the state
from monitored applications via the APIs they provide.
In addition, it selects recovery nodes and acts as a
coordinator between the Helper Pods.

• Helper Pods. Components based on a DaemonSet with
similar functionality as C/R Operator’s Agents. They
store the application state on the target nodes and restore
it when a failover occurs.

The Controller Manager contains the following controllers
and handlers.

• Helper Controller. Listens for changes in the Helper
DaemonSet resources and ensures that the list of the
Helper Pods is up to date.

• Node Controller. Similar to the Node Controller in C/R
Operator.

• Pod Controller. Watches for pod changes and maintains
the list of pods including pod states for every monitored
Deployment. Additionally, it notifies the Restore Handler
whenever a pod is created or deleted.

• Pull State Controller. Watches Deployments for cus-
tom annotations that contain parameters related to state
pulling, such as ps_port, the API’s port for pulling the
state, and ps_interval, the time interval between the
pulls.

• Liveness Handler. Similar to the Liveness Handler in
the C/R Operator: when three consecutive liveness checks
fail, it initiates the recovery by deleting the old Pod and
creating a new pod on the recovery node.

• State Handler. Monitors deployments for changes in pod
states and distributes up-to-date pod state information to
all Helper Pods.

• Restore Handler. Collects deleted pod and new pod
events and determines whether there are pods that must be
restored. If there are, it instructs the Helper Pod running
on the recovery node to restore the application container’s
state using the respective application API.

Like with C/R Operator, the PS Operator uses the Operator
SDK to generate the boilerplate code for the controllers.

VII. EVALUATION

By means of experiments in a Kubernetes test bed with two
stateful test applications, we assess the performance of the
proposed C/R Operator. We reveal the tradeoffs between the
failover quality and the entailed overhead, and we compare it
to the non-transparent PS Operator’s performance.

A. Test Applications

We use two containerized stateful applications for the sake
of our evaluation, a simple counter application, called Count,
and the popular in-memory key-value database Redis15 as a
real-world application example. Count serves as a worst case
example for C/R, since the ratio of checkpoint size and actual
state is maximal.

1) Count Application: Count has a single counter c as
internal state. Starting from c = 0, the application logic is to
increase c periodically, i.e., every 100 ms by default. Count’s
state c can be queried from outside via HTTP GET request
and set via HTTP POST request at /state. Count’s health
can be queried at /health. We implemented Count as a
Nodejs16 application using the expressjs17 framework.

2) Redis: To simulate realistic stateful applications, we
enhanced the official Redis container image available on
Docker Hub18 with a health check interface and the option
to fill the database with a given amount of random data upon
start. For the sake of the evaluation, we use four configurations
of our Redis application, one without any data, and the others
with 1 MB, 10 MB and 100 MB of random data. We refer to
those variants as Redis, Redis1m, Redis10m, and Redis100m.

B. Experimental Setup

We performed the experiments on a two-node Kubernetes
cluster using the two mentioned applications, Count and
Redis. More details on the setup are given in the following.

1) Kubernetes Cluster: The test bed cluster consists of
two physical machines which are connected via a 100 Mbit/s
Fast Ethernet switch. The first machine, which we denote as
Source node, has an Intel Xeon E5-2660 v2 CPU with 8 cores
and advanced vector extension (AVX) version 1. The second,
called Target node, has an Intel Xeon E5-2660 v3 CPU with
10 cores and AVX2. Both machines have 64 GB of RAM.

15https://redis.com/
16https://nodejs.org
17https://expressjs.com
18https://hub.docker.com/ /redis/

Each machine hosts a Kubernetes compute node. The Target
node additionally hosts all Kubernetes control plane compo-
nents as well as the operators. The test application runs on the
Source node initially. The Target node acts as standby node,
i.e., execution should continue on the Target node in case of
a failure on the Source node.

Note that the roles of the two nodes must be chosen as
described due to the different AVX versions. According to the
restrictions mentioned in Section V-B2, a checkpoint produced
on a device with AVX2 fails to restore on a device with AVX.
In the concrete case of Count, the contained OpenSSL library
uses AVX2 instructions to speed up hash calculations if AVX2
is available. Restoring the application on a device without
AVX2 leads to illegal instructions.

2) Container Orchestration Stack: The used Kubernetes
version was 1.25.4. It was installed through Kubeadm with
the ContainerCheckpoint feature flag enabled. As container
runtime engine, we used a modified version of CRI-O 1.25.4.
Our modification19 fixes an issue with the C/R functionality,
and it disables the cleanup of the CRIU logs. The latter
modification allowed us to harness the logs for performance
analysis and debugging. At the lowest level, Runc20 is used
to run the containers. Finally, container networking is set up
using Flannel21 and the Flannel CNI plugin22.

C. Fault Injection
We implemented two options for simulating node failures:

rebooting the host device, and manipulating IP tables so as
to inhibit the relevant Ethernet communication between the
failing node and the control plane, i.e., between the Source
node and the Target node in our case.

We manually confirmed that the fault tolerance mechanism
works in both cases. For the automated execution of perfor-
mance evaluation experiments, we decided to use the option
of IP tables manipulation, since it enabled us to repeat the
experiments more quickly and more reliably.

D. Metrics
We are interested in the performance during the failover,

i.e., when there are faults and the system recovers from the
faults, as well as in the overhead when there are no faults.

1) Failover Metrics: The following metrics are used for
assessing the failover quality.

• Recovery time, i.e., the time between the occurrence of a
fault that renders the application unavailable and the time
at which the application is reachable again with recovered
state. Moreover, we are interested in the breakdown of the
recovery time, i.e., which operations of the detection and
restoration process take how long.

• State discrepancy, i.e., the difference of the recovered
application state and the application state at fault time.
The lower the discrepancy, the higher is the state quality.

19https://github.com/hitachienergy/checkpoint-restore-operator/blob/main/
0001-customization.patch

20https://github.com/opencontainers/runc
21https://github.com/flannel-io/flannel
22https://github.com/flannel-io/cni-plugin

Recovery time is measured by the Python script that auto-
mates the experiment execution. The script measures the time
difference between the time when it injects the fault, i.e., the
Source node is disconnected, and the time when the new pod
instance has restored its state and serves HTTP requests again.

State discrepancy is defined for the Count application as
∆c = cpre − cpost, where cpre is the last value of the counter
variable c before the failover, and cpost is the first value
of c after the failover. The state discrepancy ∆c of Count
is also measured by the experiment automation script. The
script queries the application state, c̃pre, via an HTTP request
right before it disconnects the node. As soon as the pod
has recovered the script retrieves the state, c̃post, via HTTP
request and approximates ∆c by c̃pre − c̃post. Note that state
discrepancy is not evaluated for the Redis applications.

2) Overhead Metrics: The following metrics are used for
assessing the overhead.

• General device resource consumption metrics, i.e., CPU
load, memory, and disk usage.

• Network usage, i.e., the number of bytes sent and received
per time unit on each node.

• Frozen time, i.e., the time span in which an application
container’s execution is ceased during checkpointing.

• Application response times as perceived by a user of the
application.

The CPU load, memory, disk, and network usage were mea-
sured using Prometheus23 and its Node Exporter24 plugin.
Thereby, we set the data granularity to 1 s, which is the lowest
value recommended by Prometheus.

Frozen time and application response times are closely re-
lated and allow us to measure the impact of the checkpointing
on availability. Thereby, frozen time is calculated from CRIU
logs, and the response times are gathered via a measuring app
developed specifically for this purpose (next section).

E. Response Time Measuring App

To reflect how a user perceives the service that is deployed
with the fault tolerance mechanisms, we wrote a measuring
app in Python that continuously issues a request to the test
application, Count or Redis. The measuring app thereby
issues a request and waits for the response. When the response
is received, it records the response time along with the time
the request was issued. Then it issues the next request. The
response time is measured by the difference between the time
a request is issued and the time the response is received.
Requests are issued with a timeout of 1 s. Hence, if the service
is unavailable for more than a second, we expect to see
multiple consecutive entries of 1 s.

F. Experiment Scenarios

All experiments follow one of two basic scenarios: appli-
cation execution with failover, or without failover. The latter
type is used when measuring overhead.

23https://prometheus.io
24https://github.com/prometheus/node exporter

TABLE I: Failover Experiments Overview

Metrics Operators Apps p N Fig
Response times C/R Count 10s 1 3
Failover breakdown C/R Count, Redis 10s 100 4
Recovery times C/R, PS Count, Redis 10s 100 –
State quality C/R, PS Count 1..10s 100 5

TABLE II: Overhead Experiments Overview

Metrics Operators Apps p D Fig
Response times C/R Count 10s 5 min 6
Frozen Time C/R Count, Redis 10s 6 h 7
CPU, mem, disk C/R, PS Count 1..10s 30 min 8,9
Network C/R, PS Count 1..10s 30 min 10

A failover experiment provokes one failover of the applica-
tion from the Source node to the Target node. Concretely, in
a failover experiment, the monitored application is started on
the Source node and the operator is allowed to register and
checkpoint the new pod. A failure of the Source node is then
simulated by adding IP tables rules that disconnect it from the
Kubernetes cluster. After disconnection, the operator detects
the fault and restores the Pod on the Target node from the
latest checkpoint.

An overhead experiment runs the system for a sufficiently
long duration while the application on the Source node. No
faults are simulated. No failovers are expected.

Tables I and II provide an overview of conducted experi-
ments. Thereby, if Redis is listed as a tested app, we mean all
four variants of Redis. p indicates the used checkpointing in-
terval. N is the number of experiment repetitions. D indicates
the duration of one overhead experiment.

G. Experiment Results

We start the presentation of results with Fig. 3, which illus-
trates how the system with the C/R Operator behaves from an
application user’s perspective. The plot shows the application
response times of the Count application as measured by the
measuring app. We can see the delayed response due to the
checkpointing about every 10 s, where a single request takes
between 500 ms to 800 ms to be answered. At 23 s, we observe
that the injected fault causes 5 subsequent requests to time out
after 1 s before the recovery on the Target node has completed,
and response times are back to single digit milliseconds.

In the remainder, we first investigate the speed (VII-G1)
and state quality (VII-G2) of the failovers, before exploring
the checkpointing overhead (VII-G3).

1) Failover Breakdown and Recovery Times: Fig. 4 con-
tains the breakdown of the restore operation into individual
steps. The figure shows the average durations for each phase
per test application. The steps are

1) Pod scheduling and creation. Kubernetes decides on
which node the Pod should be scheduled and creates
the Pod in CRI-O.

Fig. 3: Response times w/ fault at 23 s.

Fig. 4: Breakdown of restore w/ C/R Operator.

2) CRI-O restore. CRI-O creates all resources for the
restore and prepare everything Conmon needs for the
restore.

3) Conmon setup. The container runtime monitor Con-
mon25 is set up and calls Runc.

4) Runc runtime. Runc sets up namespaces, mounts, and
other resources.

5) CRIU version check. Runc calls CRIU to verify com-
patibility.

6) CRIU restore. The actual restore process.
7) Container startup. CRI-O container setup.
8) Network setup. Network communication is set up.
The data shows that the three phases, pod scheduling and

creation, CRI-O restore, and network setup, dominate the
restore phase, each taking up a bit less than 1 s. We also
observe that the two phases growing most with the checkpoint
size are the CRI-O restore and the CRIU restore phase,
which is probably due to the increased amount of data that
is processed in those phases.

The comparison of recovery times, which include fault
detection and restore, shows that both C/R and PS Operator
achieve recovery times between 4.5 s to 7.5 s. The C/R Oper-
ator exhibits a median of 5.87 s and PS a median of 5.94 s.

Since both operators issue liveness probes every 1 s and
initiate a failover after three consecutive failed probes, the fault
detection takes about 3 s. The result suggests that the failover

25https://github.com/containers/conmon

Fig. 5: State quality comparison of PS and C/R Operator.

takes about 3 s as well, which is in line with our findings
regarding the failover breakdown.

It is more of a surprise that also with the PS Operator
restore takes about 3 s, even though the state to be restored
by Count is much smaller. However, while less time is spent
on restoring state, more time is spent on starting the container
instance and initializing the application. In fact, Quick startup
of containers that otherwise take long to initialize is one of
the known use cases of CRIU [39]. Accordingly, depending
on application startup, recovery times for the C/R Operator
can be significantly faster than for the PS Operator.

2) State Quality: The worst case regarding state quality is
if the fault happens just before a checkpointing, and thus the
latest available checkpoint is p old. In the case of Count,
which increments its counter every 100 ms, the checkpoint
would lack 10p increments. Accordingly, we expect the state
discrepancy to be between 0 and 10p.

Fig. 5 shows the distributions of experienced state discrep-
ancies before and after a failover of Count depending on the
checkpointing interval p. With PS, the expected upper bound
of 10p is visible for all p. With C/R, the upper bound is only
visible for p ≤ 5 s. For smaller values of p, the slower process
of checkpointing and checkpoint transfer causes the states
to deviate by more than 25 consistently. Another noteworthy
phenomenon is that we encounter some negative values. Since
the state is measured by an HTTP request, such cases may
happen if the reconnection to the network concludes only after
the restored Count has already incremented c a few times, and
the measured c̃post is larger than c̃pre.

3) Checkpointing Overhead: Fig. 6 shows an example of
the response times with C/R as experienced by the measuring
app. The visible peaks of about 900 ms every p = 10 s are
caused by the process freezing during checkpointing. The
distributions of frozen times as logged by CRIU are shown
in Fig. 7 along with the average amount of memory written
during one checkpointing operation for the different container
types. Note that the frozen times are well below the observed

Fig. 6: Application response times with C/R, no faults.

Fig. 7: Distribution of frozen times and average amount of
memory written per checkpoint.

response times. The reason is that the frozen time collected
by CRIU is the time tasks were in frozen state, which is lower
than the freezing time, i.e., the ‘time it took CRIU to freeze
the process tree’26. Additionally, the processing of the request
and networking adds to the response time. When comparing
the different applications, there is a clear linear dependency of
frozen time and checkpoint size on the amount of data added
to Redis. Moreover, we can observe that despite the minimal
state, our Count implementation requires 25 MB while the
highly optimized Redis container uses only 1 MB. The reason
for the large footprint of Count is Nodejs.

Fig. 8 and 9 compare the average CPU load and disk
usage for both the C/R and the PS Operator depending on
the checkpointing interval. Note that Fig. 9 uses a logarithmic
scale. The data shows that PS causes an almost constant CPU
and disk usage. By contrast, C/R’s CPU and disk usage is
at a significantly higher level and grows with shorter check-
pointing interval. The higher usage is caused by the vastly
more complex checkpointing. Moreover, the usage is similarly
high on the Target node due to the checkpoint reception and
storage, whereas the overhead of storing Count’s c counter is
negligible in the case of PS.

The memory usage measurements revealed that while there
is a slight but inconsistent trend of higher usage with shorter
checkpoint interval, there are no statistically relevant differ-
ences between C/R and PS. All measured values were between

26https://criu.org/Statistics

Fig. 8: Average CPU usage, no faults.

Fig. 9: Average disk usage, no faults.

2.5 GB and 3.6 GB. Memory usage without applications and
operators running was at 2.5 GB.

Fig. 10 shows the transmitted (TX) and received (RX)
network data for the Source and Target node depending on the
checkpointing interval. Note the logarithmic scale. The results
for C/R suggest a net data flow from Source to Target node
due to the checkpoint transfers in the order of 1 MB/s, with
a maximum of 1.4 MB/s for p = 1 s. PS causes significantly
lower network traffic, in the order of 10 kB/s to 25 kB/s. In
fact, the network usage with PS is so low that the numbers
are dominated by the measurement data gathering mechanism
with the effect that transmission is higher than reception on
both nodes. Note that the nodes send the measurement data to
Prometheus, which is on a third device.

VIII. CONCLUSION AND FUTURE WORK

The presented C/R Operator provides transparent fault toler-
ance for stateful applications in Kubernetes. It yields recovery
from node failures in about 6 s. Thereby, state changes of
1 s or more are typically lost due to the time needed for
checkpointing and checkpoint transfer.

Fig. 10: Average network usage for checkpoint transfers.

Our evaluation shows that compared to a non-transparent
Pull State solution, C/R’s transparency comes at the expense of
runtime overhead. For checkpoint intervals of 10 s or shorter,
the CPU load overhead with our test apps is at 2-6%, disk and
network usage overhead is in the order of 1 MB/s. Moreover,
C/R causes intermittent unavailability of more than 600 ms
due to application freezing. Memory usage does not increase
significantly. While the focus of our work was on transparency
and minimal downtime during failovers, the overhead can be
reduced if availability and state quality requirements are less
stringent. If losing minutes or even hours of state is tolerable
during a failover, the frequency of checkpointing, and thus
also the overhead, can be drastically reduced.

The question of whether the runtime overhead of a trans-
parent solution such as the C/R Operator is worth the saved
development effort needed for a more efficient custom solution
for managing, storing and recovering state depends on the
particular application’s availability requirements, complexity,
and expected lifetime. C/R is a promising solution in cases
where the development of other state preserving mechanisms
is costly. Such cases include the containerization of monolithic
or otherwise complex legacy software, where an application’s
state is often greatly intertwined with the logic and dispersed
across components. Moreover, no developers who are knowl-
edgeable of the code might be available. Another use case is if
state quality or availability requirements are less pronounced.
Then the runtime overhead can be kept small and thus C/R is
an easy way to make a stateful application fault-tolerant.

One caveat when considering C/R is the restrictions on
cluster heterogeneity. Concretely, restore is only possible on
nodes where the CPU architecture implements a superset of
the source node instruction set.

A promising direction for future work is to make C/R
more efficient by supporting incremental checkpointing, i.e.,
calculating only the difference of state when checkpointing
repeatedly instead of a full checkpoint. CRIU’s incremental
memory dumps27 might be harnessed for this purpose.

27https://criu.org/Incremental dumps

REFERENCES

[1] Cloud Native Computing Foundation. Cncf annual survey 2022. [On-
line]. Available: https://www.cncf.io/reports/cncf-annual-survey-2022/

[2] RedHat, Inc. Introduction to kubernetes architecture. [Online]. Available:
https://www.redhat.com/en/topics/containers/kubernetes-architecture

[3] A. Reber. Forensic container checkpointing in kuber-
netes. [Online]. Available: https://kubernetes.io/blog/2022/12/05/
forensic-container-checkpointing-alpha/

[4] T. Bressoud, “Tft: a software system for application-transparent fault tol-
erance,” in 28th International Symposium on Fault-Tolerant Computing
(FTCS), 1998, pp. 128–137.

[5] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck, “Trans-
parent fault tolerance for web services based architectures,” in Euro-
Par 2002 Parallel Processing: 8th International Euro-Par Conference
Paderborn, Germany. Springer, 2002, pp. 889–898.

[6] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Eternal—a
component-based framework for transparent fault-tolerant corba,” Soft-
ware: Practice and Experience, vol. 32, no. 8, pp. 771–788, 2002.

[7] H. Jo, H. Kim, J.-W. Jang, J. Lee, and S. Maeng, “Transparent fault
tolerance of device drivers for virtual machines,” IEEE Transactions on
Computers, vol. 59, no. 11, pp. 1466–1479, 2010.

[8] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 4, pp. 30–39, 2010.

[9] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in 2010 IEEE
Network Operations and Management Symposium-NOMS 2010. IEEE,
2010, pp. 32–39.

[10] R. Stewart, P. Maier, and P. Trinder, “Transparent fault tolerance for
scalable functional computation,” Journal of functional programming,
vol. 26, p. e5, 2016.

[11] F. Borges, L. Pacheco, E. Alchieri, M. F. Caetano, and P. Solis,
“Transparent state machine replication for kubernetes,” in Advanced
Information Networking and Applications: Proceedings of the 33rd
International Conference on Advanced Information Networking and
Applications (AINA-2019) 33. Springer, 2020, pp. 859–871.

[12] H. Netto, C. Pereira Oliveira, L. d. O. Rech, and E. Alchieri, “Incorporat-
ing the raft consensus protocol in containers managed by kubernetes: an
evaluation,” International Journal of Parallel, Emergent and Distributed
Systems, vol. 35, no. 4, pp. 433–453, 2020.

[13] H. V. Netto, A. F. Luiz, M. Correia, L. de Oliveira Rech, and C. P.
Oliveira, “Koordinator: A service approach for replicating docker con-
tainers in kubernetes,” in 2018 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2018, pp. 00 058–00 063.

[14] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. Sá de
Souza, “State machine replication in containers managed by kubernetes,”
Journal of Systems Architecture, vol. 73, pp. 53–59, 2017.

[15] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm (extended version),” in Proceeding of USENIX annual tech-
nical conference, USENIX ATC, 2014, pp. 19–20.

[16] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Ku-
bernetes as an availability manager for microservice applications,”
arXiv:1901.04946, 2019.

[17] ——, “A Kubernetes controller for managing the availability of elastic
microservice based stateful applications,” Journal of Systems and Soft-
ware, vol. 175, p. 110924, 2021.

[18] B. Johansson, M. Rågberger, T. Nolte, and A. V. Papadopoulos, “Kuber-
netes orchestration of high availability distributed control systems,” in
2022 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2022, pp. 1–8.

[19] P. S. Junior, D. Miorandi, and G. Pierre, “Good shepherds care for
their cattle: Seamless pod migration in geo-distributed kubernetes,” in
2022 IEEE 6th International Conference on Fog and Edge Computing
(ICFEC). IEEE, 2022, pp. 26–33.

[20] M. Gundall, J. Stegmann, M. Reichardt, and H. D. Schotten,
“Downtime optimized live migration of industrial real-time control
services.” [Online]. Available: http://arxiv.org/abs/2203.12935

[21] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
kubernetes,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 33–40.

[22] K. Govindaraj and A. Artemenko, “Container live migration for latency
critical industrial applications on edge computing,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2018, pp. 83–90.

[23] J. Cao, M. Simonin, G. Cooperman, and C. Morin, “Checkpointing as a
service in heterogeneous cloud environments,” in 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE,
2015, pp. 61–70.

[24] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
container state migration,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2137–
2142.

[25] S. Oh and J. Kim, “Stateful container migration employing checkpoint-
based restoration for orchestrated container clusters,” in 2018 Inter-
national Conference on Information and Communication Technology
Convergence (ICTC). IEEE, 2018, pp. 25–30.

[26] B. Xu, S. Wu, J. Xiao, H. Jin, Y. Zhang, G. Shi, T. Lin, J. Rao,
L. Yi, and J. Jiang, “Sledge: Towards efficient live migration of docker
containers,” in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 2020, pp. 321–328.

[27] J. Schrettenbrunner, “Migrating pods in kubernetes,” Ph.D. dissertation,
Hochschule Darmstadt, 12 2020.

[28] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via
docker container migration,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 2017, pp. 1–13.

[29] R. Stoyanov and M. J. Kollingbaum, “Efficient live migration of linux
containers,” in High Performance Computing, R. Yokota, M. Weiland,
J. Shalf, and S. Alam, Eds. Springer International Publishing, 2018, vol.
11203, pp. 184–193, series Title: Lecture Notes in Computer Science.

[30] M. Terneborg, J. K. Ronnberg, and O. Schelen, “Application agnostic
container migration and failover,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN). IEEE, 2021, pp. 565–572.

[31] D. Zhou and Y. Tamir, “Fault-tolerant containers using NiLiCon,” in
2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2020, pp. 1082–1091.

[32] ——, “HyCoR: Fault-tolerant replicated containers based on checkpoint
and replay,” arXiv:2101.09584, 2021. [Online]. Available: http:
//arxiv.org/abs/2101.09584

[33] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska,
“Fast in-memory CRIU for docker containers,” in Proceedings of the
International Symposium on Memory Systems. ACM, 2019, pp. 53–65.

[34] X. Chen, J.-H. Jiang, and Q. Jiang, “A method of self-adaptive pre-
copy container checkpoint,” in 2015 IEEE 21st Pacific Rim International
Symposium on Dependable Computing (PRDC). IEEE, 2015, pp. 290–
300.

[35] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing
checkpoints using NVM as virtual memory,” in 2013 IEEE 27th Inter-
national Symposium on Parallel and Distributed Processing. IEEE,
2013, pp. 29–40.

[36] R. H. Müller, C. Meinhardt, and O. M. Mendizabal, “An architecture
proposal for checkpoint/restore on stateful containers,” in Proceedings
of the 37th ACM/SIGAPP Symposium on Applied Computing. ACM,
2022, pp. 267–270.

[37] W. Li, A. Kanso, and A. Gherbi, “Leveraging linux containers to
achieve high availability for cloud services,” in 2015 IEEE International
Conference on Cloud Engineering. IEEE, 2015, pp. 76–83.

[38] T. Louati, H. Abbes, and C. Cérin, “LXCloudFT: Towards high avail-
ability, fault tolerant cloud system based linux containers,” Journal of
Parallel and Distributed Computing, vol. 122, pp. 51–69, 2018.

[39] A. Reber, “Kubernetes and checkpoint/restore,” 2023, Free and Open
source Software Developers’ European Meeting (FOSDEM) 2023.
[Online]. Available: https://fosdem.org/2023/schedule/event/container
kubernetes criu/

