
Vol:.(1234567890)

Algorithmica (2020) 82:1784–1812
https://doi.org/10.1007/s00453-020-00672-z

1 3

Walking Through Waypoints

Saeed Akhoondian Amiri1  · Klaus‑Tycho Foerster2  · Stefan Schmid2 

Received: 30 April 2018 / Accepted: 7 January 2020 / Published online: 20 January 2020
© The Author(s) 2020

Abstract
We initiate the study of a fundamental combinatorial problem: Given a capacitated
graph G = (V ,E) , find a shortest walk (“route”) from a source s ∈ V to a destina-
tion t ∈ V that includes all vertices specified by a set WP ⊆ V  : the waypoints. This
Waypoint Routing Problem finds immediate applications in the context of modern
networked systems. Our main contribution is an exact polynomial-time algorithm
for graphs of bounded treewidth. We also show that if the number of waypoints is
logarithmically bounded, exact polynomial-time algorithms exist even for general
graphs. Our two algorithms provide an almost complete characterization of what can
be solved exactly in polynomial time: we show that more general problems (e.g., on
grid graphs of maximum degree 3, with slightly more waypoints) are computation-
ally intractable.

Keywords  Routing · Algorithms · Networks · Virtualization · Distributed systems ·
Disjoint paths · Walks · ��-hardness

1  Introduction

How fast can we find a shortest route, i.e., walk, from a source s to a destination t
which visits a given subset of vertices, called waypoints, in a graph, but also respects
edge capacities, limiting the number of traversals? This fundamental combinatorial

Bibliographical note A preliminary extended abstract appeared in the Proceedings of the 13th Latin
American Theoretical Informatics Symposium (LATIN 2018), Springer, 2018 [3].

 *	 Klaus‑Tycho Foerster
	 klaus‑tycho.foerster@univie.ac.at

	 Saeed Akhoondian Amiri
	 amiri@informatik.uni‑koeln.de

	 Stefan Schmid
	 stefan_schmid@univie.ac.at

1	 Universität Köln, Cologne, Germany
2	 Faculty of Computer Science, University of Vienna, Vienna, Austria

http://orcid.org/0000-0002-7402-2662
http://orcid.org/0000-0003-4635-4480
http://orcid.org/0000-0002-7798-1711
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00672-z&domain=pdf

1785

1 3

Algorithmica (2020) 82:1784–1812	

problem finds immediate applications, e.g., in modern networked systems connect-
ing distributed network functions. However, surprisingly little is known today about
the fundamental algorithmic problems underlying walks through waypoints.

The problem features interesting connections to the disjoint paths problem, how-
ever, in contrast to disjoint paths, we (1) consider walks (of unit resource demand
each time an edge is traversed) on capacitated graphs rather than paths on uncapa-
ciatated graphs, and we (2) require that a set of specified vertices are visited. We
refer to Fig. 1 for two examples.

1.1 � Model

The inputs to the Waypoint Routing Problem (WRP) are:

1.	 A connected, undirected, capacitated and weighted graph G = (V ,E, c,�) con-
sisting of n = |V| > 1 vertices, where c ∶ E → ℕ represents edge capacities
and � ∶ E → ℕ represents the edge costs, i.e., their weights.

2.	 A source-destination vertex pair s, t ⊆ V(G).
3.	 A set of k waypoints WP = {w1,… ,wk} ∈ V(G)k.

We observe that the route (describing a walk) can be decomposed to simple paths
between terminals and waypoints, and we ask whether there is a route R , which
w.l.o.g. can be decomposed to k + 1 path segments R = P1 ⊕…⊕ Pk+1, s.t.

1.	 Capacities are respected We assume unit demands and require for every
edge e ∈ E : |{i ∣ e ∈ Pi ∈ R, i ∈ [1, k + 1]}| ≤ c(e).

2.	 Waypoints are visited Every element in WP appears as an endpoint of exactly two
distinct paths in route R and s is an endpoint of P1 and t is an endpoint of Pk+1 .
Note that the k waypoints can be visited in any order.

3.	 Walks are short The length � = |P1| +…+ |Pk+1| of route R w.r.t. edge traversal
cost � is minimum.

Remark I: Reduction to Edge-Disjoint Problems. Without loss of generality, it suf-
fices to consider capacities c ∶ E → {1, 2} , as shown by Klein and Marx [40, Fig. 1],

s

w

t

w

s tw

w

w

Fig. 1   Two shortest walks and their decompositions into three paths each: In both graphs, we walk
through all waypoints from s to t by first taking the red, then the blue, and lastly the brown path. The
existence of a solution in the left graph (e.g., a walk of length 7 in this case) relies on one edge incident
to a waypoint having a capacity of at least two. In the right graph, it is sufficient that all edges have unit
capacity. Note that no s − t path through all waypoints exists, for either graph (Color figure online)

1786	 Algorithmica (2020) 82:1784–1812

1 3

also stated as Lemma 8 in the “Appendix”: a walk R which traverses an edge e more
than twice, cannot be a shortest one.

This also gives us a simple reduction of the capacitated problem to an uncapaci-
tated (i.e., unit capacity), edge-disjoint problem variant, by using at most two paral-
lel edges per original edge. Depending on the requirements, we will further subdi-
vide these parallel edges into paths (while preserving distances and graph properties
such as treewidth, at least approximately).

Remark II: Reduction to Cycles. Without loss of generality and to simplify pres-
entation, we focus on the special case s = t . In the “Appendix” (Lemma 9), we show
that we can modify instances with s ≠ t to instances with s = t in a distance-preserv-
ing manner and by increasing the treewidth by at most one. Our ��-hardness results
hold for s = t as well.

1.2 � Our Contributions

We initiate the study of a fundamental waypoint routing problem. We present poly-
nomial-time algorithms to compute shortest routes (walks) through arbitrary way-
points on graphs of bounded treewidth and to compute shortest routes on general
graphs through a bounded (but not necessarily constant) number of waypoints. We
show that it is hard to significantly generalize these results both in terms of the fam-
ily of graphs as well as in terms of the number of waypoints, by deriving ��-hard-
ness results: Our exact algorithms cover a good fraction of the problem space for
which polynomial-time solutions exist. More precisely, we present the following
results:

1.	 Shortest Walks on Arbitrary Waypoints While many vertex disjoint problem vari-
ants like Hamiltonian path, TSP, vertex disjoint paths, etc. are often polynomial-
time solvable in graphs of bounded treewidth, their edge-disjoint counterparts are
sometimes ��-hard already on series-parallel graphs. As WRP is an edge-based
problem, one might expect that the problem is ��-hard already on bounded-
treewidth graphs, similarly to the edge-disjoint paths problem.

	  Yet, and perhaps surprisingly, we prove that a shortest walk through an arbitrary
number of waypoints can be computed in polynomial time on graphs of bounded
treewidth. By employing a simple trick, we transform the capacitated problem
variant to an uncapacitated edge-disjoint problem: the resulting uncapacitated
graph has almost the same treewidth. We then employ a well-known dynamic
programming technique on a nice tree decomposition of the graph. However,
since the walk is allowed to visit a vertex multiple times, we cannot rely on tech-
niques which are known for vertex-disjoint paths. Moreover, we cannot simply
use the line graph of the original graph: the resulting graph does not preserve the
bounded treewidth property. Accordingly, we develop new methods and tools to
deal with these issues.

2.	 Shortest Walks on Arbitrary Graphs We show that a shortest route through a
logarithmic number of waypoints can be computed in randomized time on general
graphs, by reduction to the vertex-disjoint cycle problem [8]. Similarly, we show

1787

1 3

Algorithmica (2020) 82:1784–1812	

that a route through a loglog number of waypoints can be computed in determin-
istic polynomial time on general graphs via an algorithm by Kawarabayashi [37].

	  Again, we show that that this is almost tight, in the sense that the problem
becomes ��-hard for any polynomial number of waypoints. This reduction shows
that the edge-disjoint paths problem is not harder than the vertex-disjoint prob-
lem on general graphs, and the hardness result also implies that the result by
Björklund et al. [8] is nearly asymptotically tight in the number of waypoints.

1.3 � A Practical Motivation

The problem of finding routes through waypoints or specified vertices is a natural
and fundamental one. We sketch just one motivating application, arising in the con-
text of modern networked systems. Whereas traditional computer networks were
designed with an “end-to-end principle” [60] philosophy in mind, modern networks
host an increasing number of “middleboxes” or network functions, distributed across
the network, in order to improve performance (e.g., traffic optimizers, caches, etc.),
security (e.g., firewalls, intrusion detection systems), or scalability (e.g., network
address translation). Middleboxes are increasingly virtualized (a trend known as net-
work function virtualization [23]) and can be deployed flexibly at arbitrary locations
in the network (not only at the edge) and at low costs. This requires more flexible
routing schemes, e.g., leveraging software-defined network technology [27], to route
the traffic through these (virtualized) middleboxes to compose more complex net-
work services (also known as service chains [24]). Thus, the resulting traffic routes,
through capacitated network links, can be modeled as walks, and finding shortest
routes through such middleboxes (the waypoints) is an instance of WRP.

While our results for a small number of waypoints have a polynomial runtime
on general graphs, our treewidth results require (small) bounded treewidth to be
efficient. Runtime aspects of algorithms for bounded-treewidth graphs have already
been explored over 25 years ago, e.g., by Bodlaender who pointed to certain types of
expert systems as an example for graphs which have small treewidth in practice [11].

Moreover, in the context of computer networks, backbone, transit, and wide-area
networks in general are typically of small bounded treewidth, but also virtual net-
works [57]. To investigate the former further, we inspected the data set generated
by Rost [56], who computed the treewidth of the graphs in the so-called Topology
Zoo [42], an ongoing project that collects such network topologies from all over the
world. The 261 contained networks range from 4 to 754 vertices (avg. ≈ 39.65 ), with
4 to 895 edges (avg. ≈ 48.10 ), with treewidths ranging from 1 to 8 (avg. ≈ 2.53 ). A
CDF of their treewidth is provided in Fig. 2. Roughly half of the networks have a
treewidth of at most 2, about 88% have a treewidth of at most 3, respectively 96%
and 99% with a treewidth of at most 4 and 5. There is only one network each with
treewidth 7 (Kentucky Datalink) and 8 (Globalcenter), none with a treewidth of 6.
Whereas the Globalcenter network spans nine sites around the continental US with
a clique-like topology, the Kentucky Datalink network covers most of the eastern
US centered around the state of Kentucky, with 754 vertices and 895 edges. In par-
ticular Kentucky Datalink is interesting in our opinion, as it provides an example of

1788	 Algorithmica (2020) 82:1784–1812

1 3

a large and highly spread-out topology,1 where at the same time its treewidth is less
than 1% of its number of vertices. We hence conclude that these networks provide
a good motivation for the application of our results in practice, beyond the general
case where the number of waypoints is (logarithmically) small.

1.4 � Related Work

WRP is closely related to disjoint paths problems arising in many applications [44,
51, 67]. Indeed, assuming unit edge capacities and a single waypoint w, the problem
of finding a shortest walk (s, w, t) can be seen as a problem of finding two shortest
(edge-)disjoint paths (s, w) and (w, t) with a common vertex w. More generally, a
shortest walk (s,w1,… ,wk, t) in a unit-capacity graph can be seen as a sequence
of k + 1 disjoint paths. The edge-disjoint and vertex-disjoint paths problem (some-
times called min-sum disjoint paths) is a deep and intensively studied combinatorial
problem, also in the context of parallel algorithms [38, 39]. Today, we have a fairly
good understanding of the feasibility of k-disjoint paths: for constant k, polynomial-
time algorithms for general graphs have been found by Ohtsuki [52], Seymour [64],
Shiloah [65], and Thomassen [69] in the 1980s, and for general k it is ��-hard [36],
already on series-parallel graphs [50], i.e., graphs of treewidth at most two.

However, the optimization problem (i.e., finding shortest paths) continues to puz-
zle researchers, even for k = 2 . Until recently, despite the progress on polynomial-
time algoritms for special graph families like variants of planar graphs [4, 43, 70]
or graphs of bounded treewidth [61], no subexponential time algorithm was known
even for the 2-disjoint paths problem on general graphs [21, 29, 43]. A recent break-
through result shows that optimal solutions can at least be computed in randomized
polynomial time [9]; however, we still have no deterministic polynomial-time

Fig. 2   CDF of the treewidth of 261 Topology Zoo [42] networks, values obtained via the analysis of Rost
[56]

1  A geographical visualization is provided at http://www.topol​ogy-zoo.org/maps/Kdl.jpg.

http://www.topology-zoo.org/maps/Kdl.jpg

1789

1 3

Algorithmica (2020) 82:1784–1812	

algorithm. Both existing feasible and optimal algorithms are often impractical [9,
19, 62, 64], and come with high time complexity. We also note that there are results
on the min-max version of the disjoint paths problem, which asks to minimize the
length of the longest path. The min-max problem is believed to be harder than min-
sum [35, 43].

The problem of finding shortest (edge- and vertex-disjoint) paths and cycles
through k waypoints has been studied in different contexts already. The cycle prob-
lem variant is also known as the k -Cycle Problem, wherein the task is to find a cycle
that goes through k prescribed vertices, has been a central topic of graph theory
since the 1960’s [54]. A cycle from s through k = 1 waypoints back to t = s can be
found efficiently by breadth first search, for k = 2 the problem corresponds to find-
ing a integer flow of size 2 between two vertices, and it can still be solved in linear
time [31, 34] for k = 3 ; a polynomial-time solution for any constant k follows from
the work on the disjoint paths problem [55]. The best known deterministic algorithm
to compute feasible (but not necessarily shortest) paths is by Kawarabayashi [37]: it
finds a cycle for up to k = O((log log n)1∕10) waypoints in deterministic polynomial
time. Björklund et al. [8] presented a randomized algorithm based on algebraic tech-
niques which finds a shortest simple cycle through a given set of k vertices or edges
in an n-vertex undirected graph in time 2knO(1) . In contrast , we assume capacitated
networks and do not enforce routes to be edge or vertex disjoint, but rather consider
(shortest) walks.

For capacitated graphs, researchers have explored the admission control variant:
the problem of admitting a maximal number of routing requests such that capacity
constraints are met. Chekuri et al. [17], Ene et al. [22], and Fleszar et al. [32] pre-
sented approximation algorithms for maximizing the benefit of admitting disjoint
paths in graphs admitting treelike structures with both edge and vertex capacities.
Even et al. [25, 26] and Rost et al. [47, 58] initiated the study of approximation algo-
rithms for admitting a maximal number of routing walks through waypoints. There
is also work on admitting routing requests through a single network function (e.g.,
a multiplexer) whose position is also subject to optimization [45, 46] (akin of the
virtual network embedding problem [59]). In contrast, we focus on optimally routing
a single walk.

In the context of capacitated graphs and single walks, the applicability of edge-
disjoint paths algorithms to the so-called ordered WRP was studied by Akhoon-
dian Amiri et al. [1, 2], where the task is to find k + 1 capacity-respecting paths
(s,w1), (w1,w2),… , (wk, t) . An extension of their methods to the unordered WRP
via testing all possible k! orderings falls short of our results: For general graphs,
only O(1) waypoints can be considered, and for graphs of bounded treewidth, only
O(log n) waypoints can be routed in polynomial time [1, 2]; both results concern fea-
sibility only, but not shortest routes. We provide algorithms for O(log n) waypoints
on general graphs and O(n) waypoints in graphs of bounded treewidth, for shortest
routes.

Lastly, for the case that all edges have a capacity of at least two and s = t , a direct
connection of WRP to the subset traveling salesman problem (TSP) can be made
[33]. In the subset TSP, the task is to find a shortest closed walk that visits a given
subset of the vertices [40]. As optimal routes for WRP and subset TSP traverse

1790	 Algorithmica (2020) 82:1784–1812

1 3

every edge at most twice, optimal solutions for both are identical when every edge
e ∈ E ∶ c(e) ≥ 2 . Hence, we can make use of the subset TSP results of Klein and
Marx, with time of (2O

�√
k log k

�

+maxe∈E �(e)) ⋅ n
O(1) on planar graphs. Klein and

Marx also point out applicability of the dynamic programming techniques of Bell-
man and of Held and Karp, allowing subset TSP to be solved in time 2k ⋅ nO(1) . For
a PTAS on bounded genus graphs, we refer to the work of Borradaile et al. [15].
We would like to note that the technique for s ≠ t of Remark II does not apply if all
edges must have a capacity of at least two. Similarly, it is in general not clear how
to directly transfer s = t TSP results to the case of s ≠ t [63]. Notwithstanding, as
WRP also allows for unit capacity edges (to which subset TSP is oblivious), WRP is
a generalization of subset TSP.

1.5 � Paper Organization

In Sect. 2 we present our results for bounded-treewidth graphs and Sect. 3 considers
general graphs. We derive distinct ��-hardness results in Sect. 4 and conclude in
Sect. 5. In order to improve presentation, some technical contents are deferred to the
“Appendix”.

2 � Walking Through Waypoints on Bounded Treewidth

The complexity of WRP on bounded-treewidth graphs is of particular interest: while
vertex-disjoint paths and cycles problems are often polynomial-time solvable on
bounded treewidth graphs (e.g., vertex disjoint paths [55], vertex coloring, Hamil-
tonian cycles [7], Traveling Salesman [13], see also the works by Bodlaender [11]
and Fellows et al. [28]) many edge-disjoint problem variants are ��-hard (e.g., edge-
disjoint paths [50], edge coloring [48]). Moreover, the usual line graph construction
approaches to transform vertex-disjoint to edge-disjoint problems are not applicable
as such transformations do not preserve bounded treewidth.

Against this backdrop, we show that indeed shortest routes through arbitrary way-
points can be computed in polynomial-time for bounded treewidth graphs.

Theorem 1  WRP can be solved in a runtime of nO(��2)for n-vertex graphs of tree-
width ��.

In other words, WRP is in the complexity class XP [18, 20] w.r.t. treewidth. We
obtain:

Corollary 1  WRP can be solved in a polynomial runtime for graphs of bounded tree-
width �� = O(1).

Overview We describe our algorithm in terms of a nice tree decomposition, see
Kloks [41, Def. 13.1.4] (Sect. 2.1). We transform the edge-capacitated problem into
an edge-disjoint problem (with unit edge capacities Sect. 2.2), leveraging a simple

1791

1 3

Algorithmica (2020) 82:1784–1812	

observation on the structure of waypoint walks and preserving distances. We show
that this transformation changes the treewidth by at most an additive constant. We
then define the separator signatures (Sect. 2.3) and describe how to inductively
generate valid signatures in a bottom up manner on the nice tree decomposition,
applying the forget, join and introduce operations, as performed, e.g., by Kloks [41,
Def. 13.1.5] (Sect. 2.4).

The correctness of our approach relies on a crucial observation on the underlying
Eulerian properties of WRP in Lemma 2, allowing us to bound the number of par-
tial walks we need to consider at the separator, see Fig. 3 for an example. Finally in
Sect. 2.5, we bring together the different bits and pieces, and sketch how to dynami-
cally program [10] the shortest waypoint walk on the rooted separator tree.

2.1 � Treewidth Preliminaries

A tree decomposition T = (T ,X) of a graph G consists of a bijection between a tree
T and a collection X  , where every element of X is a set of vertices of G such that:
(1) each graph vertex is contained in at least one tree node (the bag or separator),
(2) the tree nodes containing a vertex v form a connected subtree of T, and (3) ver-
tices are adjacent in the graph only when the corresponding subtrees have a node in
common.

The width of T = (T ,X) is the size of the largest set in X minus 1, with the tree-
width of G being the minimum width of all possible tree decompositions.

A nice tree decomposition is a tree decomposition such that: (1) it is rooted at
some vertex r, (2) leaf nodes are mapped to bags of size 1, and (3) inner nodes are of
one of three types: forget (a vertex leaves the bag in the parent node), join (two bags
defined over the same vertices are merged) and introduce (a vertex is added to the
bag in the parent node). The tree can be iteratively constructed by applying simple
forget, join and introduce types.

s1

s2

s3

a1

a2

b1

b2

b3

SA B

1

5

6

11

10
9

8

7

2
3

4
s1

s2

s3

a1

a2

b1

b2

b3

SA B

1

2
3

4

5

6

7
8

9

10

11

Fig. 3   Two different methods to choose an Eulerian walk, where the numbers from 1 to 11 describe the
order of the traversal. In the left walk, the separator S is crossed 3 times, but only once in the right walk.
Furthermore, in the left walk, there are 2 walks each in G[A] (green and blue) and G[B] (brown and red),
respectively. In the right walk, there is only 1 walk for G[A] (blue) and 1 walk for G[B] (red) (Color fig-
ure online)

1792	 Algorithmica (2020) 82:1784–1812

1 3

Let Xb ∈ X be a bag of the decomposition corresponding to a node b ∈ V(T) .
We note that even though the node b and the bag Xb are different, there is a trade-
off between readability and formality when differentiating between both. When it
is clear from the context, we will slightly abuse notation, e.g., denoting the size of
a bag Xb by |b| , instead of |Xb| . We further denote by Tb the maximal subtree of T
which is rooted at bag Xb . By G[b] we denote the subgraph of G induced on the ver-
tices in the bag Xb and by G[Tb] we denote the subgraph of G which is induced on
vertices in all bags in V(Tb) . We will henceforth assume that a nice tree decomposi-
tion T = (T ,X) of G is given, covering its computation in the final steps of the proof
of Theorem 1.

2.2 � Unified Graphs

We begin by transforming our graphs into graphs of unit edge capacity, preserving
distances and approximately preserving treewidth.

Definition 1  (Unification) Let G be an arbitrary, edge-capacitated graph. The uni-
fied graph Gu of G is obtained from G by the following operations on each edge
e ∈ E(G) : We replace e by c(e) parallel edges e1,… , ec(e) , subdivide each resulting
parallel edge by creating vertices ve

i
, i ∈ [c(e)] ), and set the weight of each subdi-

vided edge to w(e)/2 (i.e., the total weight is preserved). We set all edge capacities in
the unified graph to 1. Similarly, given the original problem instance I of WRP, the
unified instance Iu is obtained by replacing the graph G in I with the graph Gu in Iu ,
without changing the waypoints, the source and the destination.

It follows directly from the construction that I and Iu are equivalent with regards
to the contained walks. Moreover, as we will see, the unification process approxi-
mately preserves the treewidth. Thus, in the following, we will focus on Gu and Iu
only, and implictly assume that G and I are unified. Before we proceed further, how-
ever, let us introduce some more definitions. Using Remark I, w.l.o.g., we can focus
on graphs where for all e ∈ E , c(e) ≤ 2 . The treewidth of G and Gu are preserved up
to an additive constant.

Lemma 1  Let Gbe an edge-capacitated graph s.t. each edge has capacity at most 2
and let �� be the treewidth of G. Then Gu has treewidth at most �� + 1.

Proof  Let T = (T ,X) be an optimal tree decomposition of G of width �� . Let Xb be
an arbitrary bag of T  . We construct the tree decomposition Tu of Gu based on T as
follows. First set Tu = T  . For every edge e of capacity 2 in G, which has its end-
points in Xb , we create 2 bags Xi

b
 ( i ∈ {1, 2} ) and set Xi

b
= Xb ∪ ve

i
, i ∈ {1, 2} . Con-

nect all bags Xi
b
 to Xb (i.e., Xi

b
 s are new children of Xb ), creating a tree decomposi-

tion Tu of width ≤ �� + 1 of G. 	� ◻

Leveraging Eulerian Properties A key insight is that we can leverage the Eule-
rian properties implied by a waypoint route. In particular, we show that the traversal

1793

1 3

Algorithmica (2020) 82:1784–1812	

of a single Eulerian walk (e.g., along an optimal solution of WRP) can be arranged
s.t. it does not traverse a specified separator too often, for which we will later choose
the root of the nice tree decomposition.

Lemma 2  (Eulerian Separation) Let G be an Eulerian graph. Let S be
an (A, B)separator of order |S| in G. Then there is a set of � ≤ 2|S| pairwise edge-
disjoint walks W = {W1,… ,W

�
} of G such that

(1)	 For every W ∈ W , Whas both of its endpoints in A ∩ B.
(2)	 Every walk W ∈ Wis entirely either in G[A](as WA) or in G[B](as WB).
(3)	 Let �Abe the size of the set of vertices used by WAas an endpoint in S. Then, WA

contains at most �Awalks. Analogously, for �B and WB.
(4)	 There is an Eulerian walk Wof Gsuch that: W ∶= W1 ⊕…⊕W

�
.

Proof  We know that G[A] and G[B] share the edges in G[S] . For this proof, we arbi-
trarily distribute the edges in G[S] , resulting in edge-disjoint G′

A
 and G′

B
 , and respec-

tively V(G�
A
) = A and V(G�

B
) = B . As only the vertices in S can have odd degree in

G′
A
 , we can cover the edges of G′

A
 with open walks, starting and ending in different

vertices in S , and closed walks, not necessarily containing vertices of S . If a vertex
in S is the start/end of two different walks, we concatenate these walks into one,
repeating this process until for all vertices v ∈ S the following holds: At most one
walk starts or ends at v. Next, we recursively join all closed walks into another walk,
with which they share some vertex, see also the work by Fleischner [30].

As every vertex in G′
A
 has a path to a vertex in S , we have covered all edges in

G′
A
 with �A′ (possibly closed) walks WA′ , with �A′ ≤ �A′ ≤ |S| . However, all remain-

ing closed walks end in the separator and are pairwise vertex-disjoint from all other
(possibly, closed) walks. We perform the same for G′

B
 and obtain an analogous WB′

with �B′ ≤ �B′ ≤ |S| walks. Let us inspect the properties of the union of WA′ and WB′

:

–	 All walks have their endpoints in A ∩ B , respecting (1).
–	 All walks are entirely in G[A�] ⊆ G[A] or in G[B�] ⊆ G[B] , respecting (2).
–	 At each v ∈ S , at most one walk each from WA′ and WB′ has its endpoint, respect-

ing (3).
–	 There is no certificate yet that the walks respect (4).

As thus, we will now alter WA′ and WB′ such that their union respects (4).
W.l.o.g., we start in any walk W in WA′ to create a set of closed walks WC′ . We

traverse the walk W from some endpoint vertex v� ∈ S until we reach its other end-
point v ∈ S , possibly v� = v . As there cannot be any other walks in WA′ with end-
points at v, and v has even degree, there are three options:

First, if W is a closed walk and E(W) = E(G) , we are done. Second, if W is a
closed walk and E(W) ≠ E(G) , it does not share any vertex with another walk in
WA′ . Hence, there must be a walk or walks in WB′ containing v. As v has even

1794	 Algorithmica (2020) 82:1784–1812

1 3

degree, we have two options: There could be a closed walk W ′ in WB′ containing v.
Then, we set both endpoints of W ′ to v, and as W ′ does not share a vertex with any
other walk in WB′ , we are done. Else, there is an open walk W ′ which just traverses
v, not having v as an endpoint. We then split W ′ into two open walks at v, increasing
�B and �B by one.

Third, if W is an open walk, there must be an open walk in WB′ whose start- or
endpoint is v. We iteratively perform these traversals, switching between WA′ and
WB′ eventually ending at v again in a closed walk, with every walk having an end-
point in v being traversed.

We now repeat this closed walk generation, each time starting at some not yet
covered walk. Call this set of closed walks WC′ . If WC′ contains only one closed
walk, we found a traversal order of the walks in WA′ and WB′ that yields an Eulerian
walk, respecting 4), finishing the argument for that case. Else, as the graph is con-
nected, there must be two edge-disjoint walks WC1

,WC2
∈ WC� that share a vertex u,

w.l.o.g., in G[A�] , with u ∈ WA1
∈ WA� , WA1

 being part of WC1
 , and u ∈ WA2

∈ WA� ,
WA2

 being part of WC2
 . Let WA1

 have the endpoints s1, r1 and WA2
 have the end-

points s2, r2 . We now perform the following, not creating any new endpoints: We cut
both walks WA1

,WA2
 at u into two walks each. These four walks all have an endpoint

in u, with the other four ones being s1, s2, r1, r2 . We now turn them into two walks
again: First, concatenate s1, u with u, s2 as WA1

 , and then, concatenate r1, u with u, r2
as WA2

 . Now, we can obtain a single closed walk that traverses WC1
 and WC2

 . Recur-
sively iterating this process, we obtain a single closed Eulerian walk, respecting (1)
to (4). 	� ◻

2.3 � Signature Generation and Properties

We next introduce the signatures we use to represent previously computed solu-
tions to subproblems implied by the separators in the (nice) tree decomposition.
For every possible signature, we will determine whether it represents a valid solu-
tion for the subproblem, and if so, we store it along with an exemplary sub-solu-
tion of optimal weight.

In a nutshell, the signature describes endpoints of (partial) walks on each side
of the separator. These partial walks hence need to be iteratively merged, forming
signatures of longer walks through the waypoints.

Definition 2  (Signature) Consider a bag Xb ∈ X  . A signature � of Xb ( �b ) is a pair,
either containing

1.	 (1) an unordered tuple of pairs of vertices si, ri ∈ Xb , (2) a subset Eb ⊆ E(G[b])
with �b =

(((
s1, r1

)
,
(
s2, r2

)
,… ,

(
s
�
, r

�

))
,Eb

)
 s.t. � ≤ |b| , or

2.	 (1) ∅ , (2) ∅ , with �b = (�, �) , also called an empty signature �b,∅.

1795

1 3

Algorithmica (2020) 82:1784–1812	

Note that in the above definition we may have si = ri for some i. We can now
define a valid signature and a sub-solution, where we consider the vertex s = t to be
a waypoint.

Definition 3  (Valid Signature, Sub-Solution) Let Xb ∈ X and let
either �b =

({(
s1, r1

)
,
(
s2, r2

)
,… ,

(
s
�
, r

�

)}
,Eb

)
 or �b = �b,� be a signature of Xb .

�b ≠ �b,∅ is called a valid signature if there is a set of pairwise edge-disjoint walks
W

�b
= {W1,… ,W

�
} such that:

1.	 If Wi is an open walk then it has both of its endpoints on (si, ri) , otherwise, si = ri
and si ∈ V(Wi).

2.	 Let � be the size of the set of endpoints used by �b . Then, it holds that � ≥ �.
3.	 For every waypoint w ∈ V(Tb) it holds that w is contained in some

walk Wj, 1 ≤ j ≤ �.
4.	 Every (pairwise edge-disjoint) walk Wj ∈ W

�b
 only uses vertices from V(Tb) and

only edges from E(Tb) ⧵ Eb , with Eb = E(b) ⧵ Eb.
5.	 Every edge e ∈ Eb is used by a walk in W

�b
.

6.	 Among all such sets of � walks, W
�b

 has minimum total weight.

Additionally, if for a signature �b ≠ �b,∅ there is such a set W
�b

 (possibly abbreviated
by Wb if clear from the context), we say that W

�b
 is a valid sub-solution in G[Tb] .

For some waypoint contained in G[Tb] , we call a signature �b,∅ valid, if there is one
walk W associated with it, s.t. W traverses all waypoints in G[Tb] , does not traverse
any vertex in V(b) , and among all such walks in G[Tb] has minimum weight. If G[Tb]
does not contain any waypoints, we call the empty signature �b,∅ valid, if there is no
walk associated with it.
Lemma 3  (Number of different signatures) There are 2O(|b|2) different signatures
for Xb ∈ X .

Proof  There is only one empty signature, given the claimed order, it is safe to ignore
it in counting. For the non-empty signatures, we know that they are consisting of a
set of endpoints, and a set of edges, the task is to bound the total number of such
sets.

There are at most 2|b| endpoints and each vertex in a bag can be any of these 2|b|
endpoints, so there are at most (2|b|)|b| ≤ 2|b|

2 different sets for choices of the end-
points. On the other hand, there are at most 2|b|2 ways to choose edges from a graph
on |b| vertices. Multiplying these two values gives an upper bound of 2O(|b|2) which
satisfies the claim. 	� ◻

2.4 � Programming the Nice Tree Decomposition

The nice tree decomposition directly gives us a constructive way to dynamically pro-
gram WRP in a bottom-up manner. We first cover leaf nodes in Lemma 4, and then
work our way up via forget (Lemma 5), introduce (Lemma 6), and join (Lemma 7)

1796	 Algorithmica (2020) 82:1784–1812

1 3

nodes, until eventually the root node is reached. Along the way, we inductively gen-
erate all valid signatures at every node.

Lemma 4  (Leaf nodes) Let b be a leaf node in the nice tree decomposition T = (T ,X).
Then, in time O(1)we can find all the valid signatures of Xb.

Proof  We simply enumerate all possible valid signatures. As a leaf node only con-
tains one vertex v from the graph, all possible edge sets in the signatures are empty,
and we have two options for the pairs: First, (�, �) , second,

(
(v, v), �

)
 . The second

option is always valid, but the first (empty) one is only valid when v is not a way-
point. 	� ◻

Lemma 5  (Forget nodes) Let bbe a forget node in the nice tree decomposi-
tion T = (T ,X), with one child q = child(b), where we have all valid signatures
for Xq. Then, in time 2O(|b|2)we can find all the valid signatures of Xb.

Proof  Let v ∈ G be the vertex s.t. V(b) ∪ {v} = V(q) . We create all valid signa-
tures for Xb as follows: First, if the empty signature is valid for Xq , it is also valid
for Xb . Second, for �b = (P,Eb) , with some (s, r) pairs P to be a valid signature
for Xb , there needs to be a valid signature �q = (P,Eb ∪ E�) , where E′ is a subset of
all edges incident to v from E(G[q]). For correctness, consider the following: In all
valid (non-empty) signatures of Xb , all walks need to have their endpoints in V(b) .
As v can only be reached from vertices in V(G) ⧵ V(Tb) via vertices in V(b) , any
walk between vertices of V(G) ⧵ V(Tb) and v must pass V(b) , i.e., the correspond-
ing signature of Xq can be represented as a signature of Xb , with possible additional
edges. Checking every of the 2O(|b|2) valid signatures of the child as described can be
done in time linear in the signature size O(|b|2) , with 2O(|b|2) ⋅ O(|b|2) = 2O(|b|

2) . 	� ◻

Lemma 6  (Introduce nodes) Let b be an introduce node in the nice tree decompo-
sition T = (T ,X), with one child q = child(b), where we have all valid signatures
for Xq. Then, in time |b|O(|b|

2)we can find all the valid signatures of Xb.

We will exploit the following property for the proof of Lemma 6.

Property 1  Let b be an introduce node, where q is a child of b, with V(b) = V(q) ∪ {v}.
Then vis not adjacent to any vertex in V(Tb) ⧵ V(b).

Proof  (Proof of Lemma 6) Let v ∈ G be the vertex s.t. V(q) ∪ {v} = V(b) . Recall
that v can only have neighbors in V(b) from V(Tb) (Property 1). From valid signa-
tures of Xq , we will then create all valid signatures of Xb.

Suppose there is a valid signature �b and its valid sub-solution Wb . Then we argue
how Wb can be obtained from some �q and its valid-subsolution Wq . That is we
perform a case distinction, whether the node v is in the sub-solution Wb or not. The
latter is the easy case, for the former we argue how v will be part of the solution and
how we can employ the existing sub-solutions in Wq to obtain �b . Thus, in the rest

1797

1 3

Algorithmica (2020) 82:1784–1812	

of the proof we assume there is Wb and we explain how it is built on the existing
sub-solutions of q. We perform this in two steps. First we explain how to convert
this imaginary valid sub-solution Wb into an intermediate sub-solution Wq′ (not nec-
essary a valid one) and then we explain how to modify Wq′ to obtain a valid sub-
solution Wq.

From �b and Wb , we now iteratively build a signature �′
q
 and W′

q
 , which in the

end will represent �q and Wq . A first thought is that by removing all walks from Wb
and �b that contain v, we initialize �′

q
 and W′

q
 . �′

q
 is already a signature for Xq , as it

cannot contain v as an endpoint any more, it contains at most |q| walks, but it might
not be valid yet.

However, �′
q
 and W′

q
 already satisfy Conditions 1, 2, 4 from Definition 3. I.e, all

endpoints of walks are still in V(q), there are at most as many walks as the size of
the set of vertices in V(q) used as endpoints, the walks only use the edges they are
allowed to.

It is left to satisfy Conditions 3 (all waypoints are covered), 5 (all edges specified
in the signature are used) and 6 (optimality) from Definition 3. For Condition 5, we
can assume that later we adjust �′

q
 appropriately. We cover Condition 3 next:

If v is a waypoint, we do not need to cover it in �′
q
 . However, the walks W′

q
 might

not cover all further waypoints. Denote by Wv , the set of all walks in Wb contain-
ing v. Clearly these are the only walks of Wb that are not contained in W′

q
 : Together

with W′

q
 , they satisfy Condition 3, but they can use the vertex v and edges incident

to v. Thus, let W′

v
 be the set of walks obtained from Wv after removing all edges

incident to v and the vertex v, possibly splitting up every walk into multiple walks.
For every walk (possibly consisting of just a single vertex) in W′

v
 holds: its end-

points are in V(q).
We now add the walks W′

v
 to W′

q
 , one by one, not violating Conditions 1, 2, 4

(and implicitly, 5). After this process, we will also have visited all waypoints, sat-
isfying Condition 3. We start with any walk W ∈ W

�

v
 : If W just consists of one

vertex u, there can be two cases: First, if u is not an endpoint of a walk W � ∈ W
�

q
 ,

then we add W as a walk to W′

q
 , increasing �′

q
 and �′

q
 from Condition 2 by one,

still holding |q| ≥ �′
q
≥ �

′
q
 . Second, if u is an endpoint of a walk W � ∈ W

�

q
 , we

concatenate W and W ′ , keeping �′
q
 and �′

q
 identical. The case of W being a walk

from u ∈ V(q) to y ∈ V(q) is similar: First, if both u, y are not endpoints of walks
from W′

q
 , we add W to W′

q
 . Second, if both u, y are endpoints of walks from W′

q
 , we

use W to concatenate them. If the result is a cycle, we pick w.l.o.g. u as both new
endpoints. Third, if w.l.o.g. u is an endpoint of a walk W ∈ W

�

q
 , but y is not, we con-

catenate W, W ′.
We now obtained W′

q
 (and implicitly, �′

q
 ) that satisfy Conditions 1 to 5 from Defi-

nition 3, and it is left to show Condition 6 (optimality). Assume there is a Wq with
smaller length than W′

q
 , both for �′

q
 . Observe that when reversing our reduction pro-

cess, the parts of the walks in G[Vq] ⧵ E(G[q]) are not relevant to our construction,
only the signature �′

q
 as a starting point. As thus, we can algorithmically (implicitly

described in the previous parts of the introduce case) derive all valid solutions and
signatures for b.

It is left to investigate the runtime: For every possible signature of the
child (2O(|b|2) many), we combine them with every possible edge set ( 2O(|b|2)

1798	 Algorithmica (2020) 82:1784–1812

1 3

combinations). Then, like unique balls (edges) into bins (walks), we distribute the
edges over the walks, also considering all O(|b|) combinations with empty walks,
in |b|O(|b|

2) combinations. For every walk, we now obtained an edge set that has to
be incorporated into the walk, where we can check in time O(|b|2) if it is possible
and also what the new endpoints have to be (possibly switching both). If the walk is
closed, we can pick O(|b|) different endpoints. All these factors, also the signature
size and the number of signatures, are dominated by |b|O(|b|

2) , with |b| ≥ 2 . 	� ◻

Lemma 7  (Join nodes) Let b be a join node in the nice tree decomposi-
tion T = (T ,X) , with the two children q1 = child(b) and q2 = child(b), where we
have all valid signatures for Xq1

and Xq2
. Then, in time nO(|b|) ⋅ 2O(|b|2)we can find all

the valid signatures of Xb.

Our proof for join nodes consists of two parts, making use of the following fact:
For a given valid signature of Xb , two valid sub-solutions with different path tra-
versals have the same total length, if the set of traversed edges is identical. As thus,
when trying to re-create a signature of Xb with a valid sub-solution, we do not need
to create this specific sub-solution, but just any sub-solution using the same set of
endpoints and edges. We show:

1.	 We can partition the edges of a valid sub-solution into two parts along a separator,
resulting in a valid signature for each of the two parts, where each sub-solution
uses exactly the edges in its part.

2.	 Given a sub-solution for each of the two parts separated, we can merge their edge
sets, and create all possible signatures and sub-solutions using this merged edge
set.

Proof of Lemma 7  Let �b be a valid non-empty signature of Xb with edge set Eb , with
valid sub-solution Wb . Our task is to show that we obtain �b from some valid signa-
tures �q1 , �q2 , with valid sub-solutions Wq1

,Wq2
.

Claim 1  Given valid �b, Wb, then there must be valid �q1 , �q2, Wq1
,Wq2

, such
that E(Wq1

) ∪ E(Wq2
) = E(Wb).

Claim 2  Given valid �q1 , �q2, Wq1
,Wq2

, we show that we can create every pos-
sible valid signature of Xbwhich has a sub-solution of edge set E(Wq1

) ∪ E(Wq2
)

in nO(��) ⋅ 2O(|b|2).

Proof of Claim 1  Arbitrarily partition Eb into some Eq1
 and Eq2

 . Then, con-
sider EW

q1
=
(
E(Wb) ∩ E(Tq1)

)
⧵ Eq2

 and EW
q2

=
(
E(Wb) ∩ E(Tq1)

)
⧵ Eq1

 , i.e., the
edges of the subwalks corresponding to each child, obtained by the arbitrary parti-
tion of Eb.

For both EW
q1

 and EW
q2

 , we now generate valid signatures and sub-solutions, where
the edges of the signatures are already given by Eq1

,Eq2
 . W.l.o.g., we perform this

1799

1 3

Algorithmica (2020) 82:1784–1812	

task for EW
q1

 : Starting at some vertex v1 ∈ V(q1) , generate a walk by traversing yet
unused incident edges, until no more unused incident edges are left, ending at
some v2 ∈ V(q1) , possibly v1 = v2 and the used edge set may be empty.

Perform this for all vertices in V(q1) not yet used as endpoints, possibly generat-
ing walks consisting just of a vertex and no edges. However, at most |V(q1)| walks
will be generated, as every endpoint of a walk will not be an endpoint for another
walk. Note that if there is any uncovered set of edges of EW

q1
 , they form a set of edge-

disjoint cycles, where at least one these cycles will share a vertex with some walk,
as only vertices in V(q1) can have odd degree w.r.t. the edge set. Then, we can inte-
grate this cycle into a walk, iterating the process until all edges are covered. Denote
the resulting valid signature by �q1 with edge set Eq1

 . We perform the same for EW
q2

 .
Hence, starting from a valid signature �b with edge set Eb , we created two valid sig-
natures �q1

 and �q2
 for the two children of t, with Wq1

,Wq2
 such

that E(Wq1
) ∪ E(Wq2

) = E(Wb).

Proof of Claim 2  Given Wq1
,Wq2

 , we have to construct every possible Wb
with EWb

= E(Wq1
) ∪ E(Wq2

) , which in turn implies its valid signature �b.
In order to do so, we create every possible ( 2O(|b|2) many) signature �

of Xb , possibly not valid ones as well. However, every such signature � can
be checked if it can have a sub-solution using the edges E(Wq1

) ∪ E(Wq2
) .

We can obtain the answer to this question via a brute-force approach: We
assign every edge from E(Wq1

) ∪ E(Wq2
) to one of the endpoint pairs of � ,

with |E(Wq1
) ∪ E(Wq2

)| = O(n2) . For a given � with at most |b| walks, the number
of possibilities are thus in O((n2)|b|) = nO(|b|) . For every endpoint pair (si, ri) of the
at most |b| walks, we can check in time linear in the number of edges if the assigned
edge set can be covered by a walk between si and ri : namely, does the edge set form
a connected component where all vertices except for si ≠ ri have even degree (or,
in the case of si = ri , do all vertices have even degree)? When we create a signature
multiple times, we can keep any sub-solution of minimum length. In total, the runt-
ime is in 2O(|b|2) ⋅ nO(��).

It remains to cover the case of �b being empty. By definition, a valid sub-solu-
tion to an empty signatures does not traverse any vertex in V(b) . As such, the only
way to obtain a valid signature �b in a join is if both valid �q1 , �q2 are empty, with,
w.l.o.g., Wq2

 empty too. Then, �b = �q1
 , with Wb = Wq1

 . 	� ◻

2.5 � Putting it All Together

We now have all the necessary tools to prove Theorem 1:

Proof  Dynamically programming a nice tree decomposition Translating an instance
of WRP to an equivalent one with s = t and unit edge capacities only increases
the treewidth by a constant amount, see Remark II and Lemma 1. Although it is
��-complete to determine the treewidth of a graph and compute an accord-
ing tree decomposition, there are efficient algorithms for constant treewidth [12,

1800	 Algorithmica (2020) 82:1784–1812

1 3

54]. Furthermore, Bodlaender et al. [14] presented a constant-factor approxima-
tion in a time of 2O(��) ⋅ O(n) , also beyond constant treewidth: Using their algo-
rithm O(log ��) times (via binary search over the unknown treewidth size), we
obtain a tree decomposition of width O(��) . Following [41], we generate a nice tree
decomposition of treewidth O(��) with O(��n) = O(n2) nodes in an additional time
of O(��2n) = O(n3) . The time so far is 2O(��) ⋅ O(n log ��) + O(��2n).

We can now dynamically program WRP on the nice tree decomposition in a bot-
tom-up manner, using Lemma 4 (leaf nodes), Lemma 5 (forget nodes), Lemma 6
(introduce nodes), and Lemma 7 (join nodes). The time for each programming of a
node is at most O(��)O(��2) or nO(��) ⋅ 2O(��2) , meaning that we obtain all valid sig-
natures with valid sub-solutions at the root node r, in a combined time of nO(��2) ,
specifically:

Obtaining an optimal solution If an optimal solution I to WRP exists (on the unified
graph with s = t ), then the traversed edges E∗ and vertices V∗ in I yield an Eulerian
graph G∗ = (V∗,E∗) . With each bag in the nice tree decomposition having O(��)
vertices, we can now apply (the Eulerian separation) Lemma 2: There must be a
valid signature of the root r whose sub-solution uses exactly the edges E∗ . As thus,
from all the valid sub-solutions at r, we pick any solution to WRP with minimum
weight, obtaining an optimal solution to WRP. 	� ◻

3 � Walking Through Logarithmically Many Waypoints

While WRP is generally ��-hard (as we will see below in Sect. 4), we show that
a shortest walk through a bounded (not necessarily constant) number of waypoints
can be computed in polynomial time. In the following, we describe reductions to
shortest vertex-disjoint cycle problems [8, 37],2 where the cycle has to pass through
specified vertices.

As we study walks on capacitated networks instead, we first introduce parallel
edges. Interestingly, two edges are sufficient, see Lemma 8 in the “Appendix”. Simi-
larly, for edge weights �(e) , we replace every edge e with a path of length �(e) .
Lastly, to obtain a simple graph with unit edge weights and unit capacities, we place
a vertex on every edge, removing all parallel edges while being distance preserving.

The transformation of the edge-disjoint cycle problem variant into a vertex-
disjoint route problem variant, and accounting for waypoints, however requires
some additional considerations. The standard method to apply vertex-disjoint path

(O(��)O(��
2) + nO(��) ⋅ 2O(��

2)) ⋅ O(�� ⋅ n) + 2O(��) ⋅ O(n log ��) + O(��2n).

2  The algorithm by Kawarabayashi [37] is for passing through edges, but a standard reduction also
allows to use it for passing through vertices. Similarly, an algorithm for passing through vertices can also
be used for edges [68, p. 22].

1801

1 3

Algorithmica (2020) 82:1784–1812	

algorithms to the edge-disjoint case [49, 50, 66]3 is to take the line graph L(G) of the
original graph G. Then, each edge is represented by a vertex (and vice versa), i.e., a
vertex-disjoint path in the line graph directly translates to an edge-disjoint walk (and
vice versa), but possibly changing the graph family. However, the line graph con-
struction raises the question of where to place the waypoints. For example, consider
a waypoint vertex of degree 3, which is transformed into 3 vertices in the line graph:
which of these vertices should represent the waypoint?

For the case of 2 disjoint paths, Björklund and Husfeldt [9, p. 214] give the fol-
lowing idea: “add an edge to each terminal vertex and apply [the] Algorithm [...] to
the line graph of the resulting graph”. Their method is sufficient for s, t, but for the
remaining waypoints, we also need to add extra vertices to the line graph: To pre-
serve shortest paths, every shortest “pass” through the line graph representation of a
vertex v should have the same length, no matter if the waypoint was already visited
or not. As thus, we add �(v) further vertices to the line graph, one on each edge con-
necting two edge representations in the line graph, as in Fig. 4.

Next, recall that the algorithm by Björklund et al. [8] computes cycles, whereas
in WRP, we are interested in walks from s to t, where s may not equal t. However,
due to Remark II (Lemma 9), we can assume that s = t.

Given this construction, using Björklund et al.’s shortest simple cycle algorithm,
we obtain polynomial-time complexity for k = O(log n) waypoints:

Theorem 2  For a general graph G with polynomial edge weights, a shortest walk
through kwaypoints can be found by a randomized algorithm in time 2knO(1)with
one-sided error of exponentially small probability in n.

Similarly, we can also adapt the result by Kawarabayashi [37] to derive a deter-
ministic algorithm to compute feasible (not necessarily shortest) walks:

w

w

v1

v2

v3
e1

e2

e3

Fig. 4   Replacing a waypoint vertex in G with an expanded clique in an extended line graph

3  Nishizeki et al [50] mention that not the line graph is taken, but a graph “similar to the line graph”.
Furthermore, Zhou et al. [71, p. 3] suggest to “[replace] each vertex with a complete bipartite graph”.

1802	 Algorithmica (2020) 82:1784–1812

1 3

Theorem 3  For a general graph Gwith polynomial edge weights, a walk
through k = O

(
(log log n)1∕10

)
 waypoints can be found in deterministic polynomial

time.

Our formal proof of the Theorems 2 and 3 will be a direct implication of the
upcoming Corollary 2, for which in turn we need the following Theorem 4.

For our construction, we use an extended waypoint-aware line graph LR(G) construc-
tion in Algorithm 1. The fundamental idea is as follows: Similar to the line graph, we
place vertices on the edges, implying that every edge may only be used once. Then, the
original vertices are expanded into sufficiently large cliques, also containing the waypoint,
s.t. any original edge-disjoint walk can also be performed by a path through the clique
vertices. For an illustration of this so-called clique expansion, we refer again to Fig. 4.

Theorem 4  Consider an instance Iof WRP on G = (V ,E) . If an edge-dis-
joint route R of length �1, solving I, exists on G, then there is a vertex-disjoint
path Pfrom sto tthrough all waypoints of length 5�1 on LR(G). Conversely, if such a
path Pof length �2 exists on LR(G), then there is a route R for Iof length ≤ �2∕5.

Algorithm 1.
 Waypoint Line Graph Construction
 Input: Graph G = (V ,E) , with vertices s, t,w

1

,… ,w
k
∈ V .

 Output: Graph L
R
(G) = (L

R
(V),L

R
(E)) , with vertices s, t,w

1

,… ,w
k
∈ L

R
(V).

 1. Initialize L
R
(E) = E and L

R
(V) = V  , with the same s, t,w

1

,… ,w
k
 allocation.

 2. For each v ∈ L
R
(V)

 (a) Order the incident edges arbitrarily, denoting them locally as e
1

,… , e
�(v) , where �(v)

denotes the vertex degree.
 (b) Replace every vertex v ∈ L

R
(V) with a clique of �(v) + 1 vertices, denoted by K

�(v)(v) ,
naming the vertices locally as v

1

,… , v
�(v), v

� , setting any s, t,w
1

,… on v to v′.
 (c) For the edges incident to the original v ∈ L

R
(V) , connect the corresponding e

i
 to their v

i
 ,

for 1 ≤ i ≤ �(v).
 3. For each e ∈ L

R
(E) not contained in any K

�(v)(v)

 (a) Replace e by a path of three edges and two vertices.
 4. For each e ∈ L

R
(E) contained in any K

�(v)(v) , not incident to any v′

 (a) Replace e by a path of two edges and one vertex.

c = 2
c = 1

c = 1

c = 1 c = 1

c = 1 c = 1

Fig. 5   To obtain a simple graph with unit edge capacities, for the left graph, we first split the edge with
capacity 2 into 2 parallel edges (middle), then remove the parallel edges (right)

1803

1 3

Algorithmica (2020) 82:1784–1812	

Proof  Given a graph with integer edge weights and capacities, we first transform it
into a graph with unit edge weights and capacities, while being distance-preserving.
First, we replace each edge with a capacity 2 with two parallel edges of identical
weight, cf. Lemma 8. Second, each edge e with a weight of �(e) is replaced by a
path of length �(e) , which yields a distance-preserved graph with unit capacities.
Third and last, to remove parallel edges, we place a vertex on every edge, obtain-
ing the desired graph properties. We give an example for an edge e with c(e) = 2
and �(e) = 1 in Fig. 5.

We now start with the case that an edge-disjoint route R of length �1 exists in G,
solving I. We translate R into a vertex-disjoint path P in LR(G) of length 5�1 as fol-
lows: First, every edge e ∈ E is represented by a path of length 3 in LR(G) , resulting
in a length of 3�1 if we could pass through the “clique-expansions” K

�(v)(v) ’s for
free. Second, observe that all shortest paths through these K

�(v)(v) have a length of at
most 2 – with sufficient vertex-disjoint paths to represent all crossings through v ∈ V
performed by R . If v ∈ R contains a waypoint (or s, t), we let one of the crossings
in LR(G) pass through v′ . When starting on s or ending on t, the path-length through
each K

�(v)(v) is only 1. As such, we showed the existence of a path P from s to t
through all waypoints in LR(G) with a length of 3l1 + 2(l1 − 1) + 1 + 1 = 5�1 . An
example is given in Figs. 6, 7, where a route of length 5 in G implies a route of
length 25 in LR(G).

It is left to show that if such a path P of length �2 exists on LR(G) , then there
is a route R , solving I, of length ≤ �2∕5 . We can think of P as follows: It starts
in some K

�(v1)
(v1) on s, passes through some K

�(v2)
(v2),… ,K

�(vr)
(vr) connected by

paths of length 3, until it ends in some K
�(vr+1)

(vr+1) on t. In this chain, the K
�(vi)

(vi) ’s
do not need to be pairwise disjoint. Observe that each of these paths of length 3
between two of those K

�(v)(v) s in LR(G) directly maps to an edge in G. By also

Fig. 6   Graph G with a route
(dashed) through all waypoints
of length 5. In order to simplify
the example, all edges have
a capacity and weight of 1,
respectively s w

v u

w

s

w

w

v u

Fig. 7   Graph L
R
(G) with a corresponding (see Fig. 6) route (dashed) of length 5 × 5 = 25 . The dotted

vertices are a result of the respective edge transformations in our line graph

1804	 Algorithmica (2020) 82:1784–1812

1 3

mapping the vertex v ∈ V to the expansions K
�(v)(v) , we obtain a one-to-one map-

ping between edge-disjoint walks in G and vertex-disjoint paths in LR(G) , where
the expansions K

�(v)(v) are contracted to a single vertex. Following the thoughts for
the first case, we can shorten P to a path P′ such that every subsequent traversals
of a K

�(vi)
(vi) in the chain only have a length of 2, which is shortest possible; the

paths through K
�(v1)

(v1) and K
�(vr+1)

(vr+1) have a length of 1 each (except for the case
of r = 0 , which means we can set |P�| = 0 ). Performing the translation of the first
case in reverse, we obtain a solution W for I′ of length |P�|∕5 ≤ |P|∕5 = l2∕5 . 	� ◻

The statement of Theorem 4 also has implications for shortest solutions. If there
is a shortest vertex-disjoint path in LR(G) of length � , but there exists a solution in G
of length �� < �∕5 , then a solution of length less than � would also exist in LR(G) , a
contradiction.

Let us also briefly consider runtime implications. When modifying the
graph G = (V ,E) to be a simple graph G� = (V �,E�) with unit edge capacities and
unit weights, let f (n) ≥ 1 be the largest edge weight �(e) in G. It then holds that |V ′|
and |E′| are each at most |V| + 4|E|f (n) . When considering LR(G�) = (V �

R
,E�

R
) , we

obtain an upper bound (by a large margin) of 7|V|2 + 48|V||E|f (n) + 96|E|2(f (n))2
for both |V ′

R
| and |E′

R
| , respectively. We further bound this term from above

via (7 + 48 + 96)|V|4(f (n))2 = 151|V|4(f (n))2 . While this bound can be improved by
careful inspection, especially in the size of the exponent, it suffices for the purposes of
polynomiality.

Corollary 2  Let Abe an algorithm that finds a shortest vertex-disjoint solution for a
path from sto t = s through all specified (waypoint) vertices, with the largest edge
weight being of size f(n), in a runtime of �(k, |V|, f (n)). Using the waypoint line
graph construction, algorithm Acan be used to find a shortest solution to WRP in a
runtime of �

(
k, 151|V|4(f (n))2, 1

)
.

In particular, if A has a runtime of 2knO(1) to find a cycle through k specified vertices
in an n-vertex graph, we can obtain a runtime of 2k(151n4(f (n))2)O(1) for WRP. If f(n) is
a constant-value function or a fixed polynomial, this reduces to 2knO(1) for n ≥ 2 . Simi-
larly, if � is a polynomial function w.r.t. k, |V|, f(n), it will also be a polynomial function
in n for the transformed WRP instances with inputs k, 151n4(f (n))2, 1 , given that f(n) is
a constant-value function or a fixed polynomial, as we can assume k < n.

4 � ��‑Hardness

Given our polynomial-time algorithms to compute shortest walks through arbitrary
waypoints on bounded-treewidth graphs as well as to compute shortest walks on
arbitrary graphs through a bounded number of waypoints, one may wonder whether
exact polynomial-time solutions also exist for more general settings. In the follow-
ing, we show that this is not the case: in both dimensions (number of waypoints and
more general graph families), we inherently hit computational complexity bounds.

1805

1 3

Algorithmica (2020) 82:1784–1812	

Our hardness results follow by reduction from a special subclass of ��-hard Hamil-
tonian cycle problems [5, 16]:

Theorem 5  WRP is ��-hard for any graph family of degree at most 3, for which the
Hamiltonian cycle problem is ��-hard.

Proof  Let G = (V ,E) be a graph with maximum degree at most 3, set all edge capac-
ities to 1, take an arbitrary vertex v ∈ V  , and set s ∶= v =∶ t . Set WP ∶= V ⧵ {v} .
Consider a route R (a feasible walk) which starts and ends at v and visits all other
vertices. We claim that R is a Hamiltonian cycle for G; on the other hand, it is clear
that if there is a Hamiltonian cycle of G then it satisfies the requirements of R . We
start at v and walk along R , directing edges along the way. Every vertex in the result-
ing graph has at least one outgoing directed edge and at least one incoming directed
edge, see for example Fig. 8.

On the other hand, as the edge capacities are 1, R cannot reuse any edge, so
the number of directed edges on every vertex must be even: in fact, the number of
incoming edges equals the number of outgoing edges. The maximum degree of G
is 3; according to the last two observations, every vertex appears in exactly two
edges of the walk R , see Fig. 9. As R induces a connected subgraph and all its ver-
tices are of degree two, we conclude that R is a single cycle. As R visits all vertices
in G, thus it is also a Hamiltonian cycle.

	� ◻

v

w w

w v

w w

w

Fig. 8   A Hamiltonian cycle (dashed, left) can directly be translated to a feasible walk (dashed, right)
through all waypoints

w w

Fig. 9   In order to be included in the route, each waypoint vertex needs at least one incoming (and outgo-
ing) edge assigned to the route (dashed). However, using a third edge in the route as well (dotted) is not
possible, the walk cannot leave (left) or enter (right) the vertex again

1806	 Algorithmica (2020) 82:1784–1812

1 3

We have the following implication for grid graphs [6, 16, 53] of maximum degree
3, and use similar ideas for the class of 3-regular bipartite planar graphs.

Corollary 3  For any constant r ≥ 1it holds that WRP is ��-hard on grid graphs of
maximum degree 3, already for k = O(n1∕r) waypoints.

Proof  Our proof will be a reduction from a result of Buro [16] who shows that the
Hamiltonian cycle problem is ��-hard on grid graphs of maximum degree 3. Our
reduction will not change these properties of the graph. We also fix some arbi-
trary r ∈ ℝ≥1 , setting r� = ⌈r⌉.

For simplicity, we restrict ourselves to the grid graphs G of maximum degree 3
obtained [16] by Buro’s ��-hardness reduction. Restricting to G allows us to fol-
low the arguments from Buro [16] to obtain an appropriate embedding in polyno-
mial time.4 For any WRP on G ∈ G with k < n waypoints WP , create a grid drawing
in the plane. From this drawing, from all vertices with the smallest x-coordinates,
pick the vertex v with the smallest y coordinate. Say v has coordinates (x(v), y(v)) .
By construction, v has at most a degree of two and there are no vertices with
a smaller x-coordinate than v. As such, we can create a vertex v′ with coordi-
nates (x(v) − 1, y(v)) , and connect it to v with an edge of unit capacity.

Observe that the set of solutions for WRP was not altered: Once v′ is visited,
no walk can ever leave it. We now extend this idea, creating a path of length nr ,
placing its vertices at the coordinates (x(v) − 2, y(v)), (x(v) − 3, y(v)), … . Denote this
extended graph by G� = (V �,E�) and observe that its main properties are preserved,
however, k = O(|V �|1∕r�) . 	� ◻

Corollary 4  For any constant r ≥ 1it holds that WRP is ��-hard on 3-regular
bipartite planar graphs, already for k = O(n1∕r) waypoints.

Proof  Our proof will be a reduction from the result of Akiyama et al. [5], who show
that the Hamiltonian cycle problem is ��-hard on 3-regular bipartite planar graphs,
denoted by G3 . Observe that we can assume unit edge capacities, without losing the
��-hardness property. Again, our reduction will not change these properties of the
graph, and analogously, we fix some arbitrary r ∈ ℝ≥1 , setting r� = ⌈r⌉.

We can pick any edge e = (u,w) in a graph G3 ∈ G3 and replace the edge with a
path of length three and capacity one, denoting the added vertices by v and v′ . The
graph is still bipartite and planar, but v and v′ violate the 3-regularity. Notwithstand-
ing, the feasibility of WRP stays unchanged: The “capacity” of the path between u
and w via v and v′ is still one. Now, we create two full binary trees T , T ′ with a
roots Tv, T ′

v′
 , each having 2r� − 1 vertices and 2r�−1 leaves. We can connect Tv to v

4  As Arkin et al. [6] point out, the first ��-hardness proof for grid graphs G† of maximum degree 3 is
in an article by Papadimitriou and Vazirani [53]. Following the references given in the article by Arkin
et al. [6], it is also possible to embed all G† ∈ G

† in polynomial time.

1807

1 3

Algorithmica (2020) 82:1784–1812	

and T ′
v′
 to v′ , preserving bipartiteness and planarity. A small examplary construction

can be found in Fig. 10, already illustrating the next construction steps as well.
Observe that all vertices except the leaves of T , T ′ have a degree of exactly three.
Next, we pick a standard embedding of T , T ′ in the plane, s.t., w.l.o.g., the
leaves v1,… , v2r�−1 have coordinates (0, 1),… , (0, 2r

�−1) , similar for the leaves of T ′
with (0, 2r�−1 + 1),… , (0, 2 ⋅ 2r

�−1) . We now place a vertex vm
(1,2)

,… , vm
(2r

�−1−1,2r
�−1)

between each consecutive pair of leaves of T, 2r�−1 − 1 in total, same for T ′ with ver-
tices vm�

(1,2)
,… , vm�

(2r
�−1−1,2r

�−1)
.

Next, we connect these 2 ⋅ 2r�−1 − 2 vertices Vm and Vm′ with each leaf vertex next
to them, also v2r�−1 with v′

1
 and v1 with v�

2r
�−1

 , forming a cycle C through all leaves and
the new 2 ⋅ 2r�−1 − 2 vertices. All vertices, except the aforementioned Vm and Vm′
with a degree of 2, have a degree of 3. Due to the bipartite property, one can color
the (former) leaf vertices and Vm and Vm′ , with, e.g., blue and red: W.l.o.g., we pick
red for the (former) leaves of T and Vm′ , blue for the (former) leaves of T ′ and Vm . As
the last construction step, we connect Vm and Vm′ , as follows, inside the inner face of
the cycle C: First the two outermost vertices, vm

1,2
 with vm�

(2r
�−1−1,2r

�−1)
 , then going anal-

ogously inwards, lastly connecting vm
(2r

�−1−1,2r
�−1)

 and vm′
1,2

 . Denote this extended graph
by G�

3
= (V �

3
,E�

3
) and observe that its main properties are preserved, how-

ever, k = O(|V �
3
|1∕r�) . 	� ◻

Our proof techniques also apply to the k -Cycle Problem studied by, e.g.,
Björklund et al. [8], whose solution is polynomial for logarithmic k. All possible
edge-disjoint solutions are also vertex-disjoint, due to the restriction of maximum
degree at most 3.

Corollary 5  For any constant r ≥ 1it holds that the k -Cycle Problem is ��-hard
on (1) 3-regular bipartite planar graphs and (2) grid graphs of maximum degree 3,
respectively, already for k = O(n1∕r).

u wv

Tv

v1 v2v(1,2)

v′

T ′
v′

v′1 v′2v′(1,2)

Fig. 10   Examplary gadget construction with two full binary trees with two leaves each. The resulting
graph is 3-regular bipartite and planar

1808	 Algorithmica (2020) 82:1784–1812

1 3

5 � Conclusion

Motivated by the more general routing models introduced in modern software-
defined and function-virtualized networked systems, we initiated the algorithmic
study of computing shortest walks through waypoints on capacitated networks. We
have shown, perhaps surprisingly, that polynomial-time algorithms exist for a wide
range of problem variants, and in particular for bounded treewidth graphs.

In our dynamic programming approach to the Waypoint Routing Problem, para-
metrized by treewidth, we provided fixed-parameter tractable (FPT) algorithms for
leaf, forget, and introduce nodes, but an XP algorithm for join nodes. In fact, while
we do not know whether our problem can be expressed in monadic second-order
logic MSO2, we can show that simply concatenating child-walks for join nodes does
not result in all valid parent signatures.

We believe that our paper opens an interesting area for future research. In par-
ticular, it will be interesting to further chart the complexity landscape of the Way-
point Routing Problem, narrowing the gap between problems for which exact pol-
ynomial-time solutions do and do not exist. Moreover, it would be interesting to
derive a lower bound on the runtime of (deterministic and randomized) algorithms
on bounded treewidth graphs.

Acknowledgements  Open access funding provided by University of Vienna. The authors would like to
thank Riko Jacob for helpful discussions and feedback, Matthias Rost for his assistance regarding the
treewidth of the Topology Zoo networks, as well as the anonymous reviewers and editors of LATIN 2018
and Algorithmica. Saeed Akhoondian Amiri’s research was partly supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
Agreement No 648527).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix: Deferred Claims and Proofs from Sect. 1.1

The idea for the following Lemma 8 can already be found in a figure in a paper by
Klein and Marx [40, Fig. 1]:

Lemma 8  Let R be a shortest walk solution to WRP. Then route R visits every edge
at most twice.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1809

1 3

Algorithmica (2020) 82:1784–1812	

Proof  Proof by contradiction. Construct an edge-weighted multigraph U as follows.
The vertices of U are exactly the vertices of R . For every edge e = {u, v} which
appears x times in R , insert edges e1,… , ex with endpoints u, v and the same weight
as e, to U; note that there can be parallel edges in U. As R is a walk with start ver-
tex s and end vertex t, the graph U contains an Eulerian walk which can be obtained
by following R with respect to the new edges. Thus, every vertex in V(U) ⧵ {s, t}
has an even degree and s, t have odd degrees. For the sake of contradiction, suppose
there are two vertices u, v ∈ V(U) s.t. there are edges e1,… , ex between them s.t.
x > 2 . We remove e1, e2 from E(U) to obtain U′ . The resulting graph is still con-
nected, every vertex except s, t has even degree, and the graph contains an Eule-
rian walk P′ which starts at s and ends at t. But this walk has a smaller total length
than R , and it also visits all the waypoints. This contradicts our assumption that R is
a shortest walk. 	� ◻

Lemma 9  Consider an instance of WRP on G = (V ,E), with s ≠ t. By creating a
new vertex vconnected to both s, t, the following two claims hold after setting v ∶= s

and v ∶= tand creating waypoints on the old placements of sand t: 1)the treewidth
increases at most by one, and 2) if and only if there is a shortest solution of length �1

in G, the shortest solution of the modified WRP in G� = (V ∪ {v},E ∪ {(s, v), (v, t)}

is of length �1 + 2.

Proof  We start with the first claim: By placing v into all bags, the treewidth
increases at most by one. For the second claim, we start with the case that there is
a shortest solution of length �1 in G. Then, we can amend this route in G′ to obtain
a solution of length �1 + 2 . If a shorter solution were to exist in G′ , we would also
obtain a shorter solution in G. The reverse case holds analogously, with special cov-
erage of the case that the original WRP only contains s, t and no further waypoints:
Then, due to the placement of waypoints in G′ where s, t were placed in G, finding
a shortest route of length �1 + 2 in G′ is equivalent to finding a shortest route of
length �1 in G of the original WRP. 	� ◻

References

	 1.	 Akhoondian Amiri, S., Foerster, K.T., Jacob, R., Parham, M., Schmid, S.: Waypoint routing in spe-
cial networks. In: Proceedings of IFIP Networking Conference (2018)

	 2.	 Akhoondian Amiri, S., Foerster, K.T., Jacob, R., Schmid, S.: Charting the algorithmic complexity of
waypoint routing. ACM SIGCOMM Comput. Commun. Rev. 48(1), 42–48 (2018)

	 3.	 Akhoondian Amiri, S., Foerster, K.T., Schmid, S.: Walking through waypoints. In: Proceedings of
LATIN, Lecture Notes in Computer Science, vol. 10807, pp. 37–51. Springer (2018)

	 4.	 Akhoondian Amiri, S., Golshani, A., Kreutzer, S., Siebertz, S.: Vertex disjoint paths in upward pla-
nar graphs. In: Proceedings of CSR (2014)

	 5.	 Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the hamiltonian cycle problem for bipar-
tite graphs. J. Inf. Process. Lett. 3(2), 73–76 (1980)

	 6.	 Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodríguez, Y.N., Polishchuk, V.,
Rappaport, D., Xiao, H.: Not being (super)thin or solid is hard: a study of grid hamiltonicity. Com-
put. Geom. 42(6–7), 582–605 (2009)

1810	 Algorithmica (2020) 82:1784–1812

1 3

	 7.	 Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

	 8.	 Björklund, A., Husfeld, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings
of SODA (2012)

	 9.	 Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. In: Proceedings of
ICALP (2014)

	10.	 Bodlaender, H.: Dynamic programming on graphs with bounded treewidth. In: Proceedings of
ICALP (1988)

	11.	 Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)
	12.	 Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput. 25(6), 1305–1317 (1996)
	13.	 Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-

rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)
	14.	 Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An approxi-

mation algorithm for treewidth. In: Proceedings of FOCS (2013)
	15.	 Borradaile, G., Demaine, E.D., Tazari, S.: Polynomial-time approximation schemes for subset-connec-

tivity problems in bounded-genus graphs. Algorithmica 68(2), 287–311 (2014)
	16.	 Buro, M.: Simple amazons endgames and their connection to hamilton circuits in cubic subgrid graphs.

In: Proceedings of Computers and Games (2000)
	17.	 Chekuri, C., Khanna, S., Shepherd, F.B.: A note on multiflows and treewidth. Algorithmica 54(3), 400–

412 (2009)
	18.	 Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer, Berlin (2015)
	19.	 Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: The planar directed k-vertex-disjoint paths problem

is fixed-parameter tractable. In: Proceedings of FOCS (2013)
	20.	 Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
	21.	 Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math. 85(2), 113–138 (1998)
	22.	 Ene, A., Mnich, M., Pilipczuk, M., Risteski, A.: On routing disjoint paths in bounded treewidth graphs.

In: Proceedings of SWAT (2016)
	23.	 ETSI: Network functions virtualisation. White Paper (2013)
	24.	 ETSI: Network functions virtualisation (nfv); use cases. http://www.etsi.org/deliv​er/etsi_gs/

NFV/001_099/001/01.01.01_60/gs_NFV00​1v010​101p.pdf (2014). Accessed 7 Jan 2020
	25.	 Even, G., Medina, M., Patt-Shamir, B.: Online path computation and function placement in SDNs. In:

Proceedings of SSS (2016)
	26.	 Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation and function place-

ment in SDNs. In: Proceedings of SIROCCO (2016)
	27.	 Feamster, N., Rexford, J., Zegura, E.: The road to SDN. Queue 11, 12 (2013)
	28.	 Fellows, M., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On

the complexity of some colorful problems parameterized by treewidth. In: Proceedings of COCOA.
Springer (2007)

	29.	 Fenner, T., Lachish, O., Popa, A.: Min-sum 2-paths problems. Theory Comput. Syst. 58(1), 94–110
(2016)

	30.	 Fleischner, H.: Eulerian Graphs and Related Topics. Part 1, Volume 2, chap. Chapter X: Algorithms for
Eulerian Trails and Cycle Decompositions, Maze Search Algorithms, pp. X.1 – X.34. North-Holland
(1991)

	31.	 Fleischner, H., Woeginger, G.J.: Detecting cycles through three fixed vertices in a graph. Inf. Process.
Lett. 42(1), 29–33 (1992)

	32.	 Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths based on tree-like-
ness. Math. Program. 171(1), 433–461 (2018)

	33.	 Foerster, K.T., Parham, M., Schmid, S.: A walk in the clouds: Routing through vnfs on bidirected net-
works. In: Proceedings of ALGOCLOUD (2017)

	34.	 Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Com-
put. Sci. 10, 111–121 (1980)

	35.	 Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length con-
straints. Networks 12(3), 277–286 (1982)

	36.	 Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)
	37.	 Kawarabayashi, K.: An improved algorithm for finding cycles through elements. In: Proceedings of

IPCO (2008)

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

1811

1 3

Algorithmica (2020) 82:1784–1812	

	38.	 Khuller, S., Mitchell, S.G., Vazirani, V.V.: Processor efficient parallel algorithms for the two disjoint
paths problem and for finding a Kuratowski homeomorph. SIAM J. Comput. 21(3), 486–506 (1992)

	39.	 Khuller, S., Schieber, B.: Efficient parallel algorithms for testing k-connectivity and finding disjoint s-t
paths in graphs. SIAM J. Comput. 20(2), 352–375 (1991)

	40.	 Klein, P.N., Marx, D.: A subexponential parameterized algorithm for subset TSP on planar graphs. In:
Proceedings of SODA (2014)

	41.	 Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Computer Science, vol.
842. Springer (1994)

	42.	 Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.: The internet topology zoo. IEEE J.
Sel. Areas Commun. 29(9), 1765–1775 (2011)

	43.	 Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. In: Proceedings of ISAAC (2009)
	44.	 Korte, B., Lovasz, L., Prömel, H.J., Schrijver, L.: Paths, Flows, and VLSI-Layout. Springer, Berlin

(1990)
	45.	 Lukovszki, T., Rost, M., Schmid, S.: It’s a match! near-optimal and incremental middlebox deployment.

ACM SIGCOMM Comput. Commun. Rev. 46(1), 30–36 (2016)
	46.	 Lukovszki, T., Rost, M., Schmid, S.: Approximate and incremental network function placement. In:

Journal of Parallel and Distributed Computing (JPDC) (2018)
	47.	 Lukovszki, T., Schmid, S.: Online admission control and embedding of service chains. In: SIROCCO

(2015)
	48.	 Marx, D.: List edge multicoloring in graphs with few cycles. Inf. Process. Lett. 89(2), 85–90 (2004)
	49.	 Naves, G., Sebő, A.: Multiflow feasibility: an annotated tableau. In: Cook, W.J., Lovász, L., Vygen, J.

(eds.) Research Trends in Combinatorial Optimization, pp. 261–283. Springer, Berlin (2008)
	50.	 Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series-parallel

graphs. Discrete Appl. Math. 115, 177–186 (2001)
	51.	 Ogier, R.G., Rutenburg, V., Shacham, N.: Distributed algorithms for computing shortest pairs of dis-

joint paths. IEEE Trans. Inf. Theory 39(2), 443–455 (1993)
	52.	 Ohtsuki, T.: The two disjoint path problem and wire routing design. In: Graph Theory and Algorithms,

pp. 207–216. Springer (1981)
	53.	 Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the traveling salesman prob-

lem. J. Algorithms 5(2), 231–246 (1984)
	54.	 Perković, L., Reed, B.A.: An improved algorithm for finding tree decompositions of small width. Int. J.

Found. Comput. Sci. 11(3), 365–371 (2000)
	55.	 Robertson, N., Seymour, P.D.: Graph Minors.XIII. The disjoint paths problem. J. Comb. Theory Ser. B

63(1), 65–110 (1995)
	56.	 Rost, M.: Topologyzoo treewidth analysis. https​://githu​b.com/Matth​iasRo​st/topol​ogyzo​o-treew​idth-

analy​sis (2019). Accessed 7 Jan 2020
	57.	 Rost, M., Döhne, E., Schmid, S.: Parametrized complexity of virtual network embeddings: dynamic and

linear programming approximations. ACM SIGCOMM Comput. Commun. Rev. 49(1), 3–10 (2019)
	58.	 Rost, M., Schmid, S.: Service chain and virtual network embeddings: approximations using randomized

rounding. arXiv preprint 1604.02180 (2016)
	59.	 Rost, M., Schmid, S.: Virtual network embedding approximations: Leveraging randomized rounding.

In: Proceedings of IEEE/ACM Transactions on Networking (ToN) (2019)
	60.	 Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans. Comput.

Syst. 2(4), 277–288 (1984)
	61.	 Scheffler, P.: A Practical Linear Time Algorithm for Disjoint Paths in Graphs with Bounded Tree-

Width. Technical Report, TU Berlin (1994)
	62.	 Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput. 23(4), 780–788

(1994)
	63.	 Sebő, A., van Zuylen, A.: The salesman’s improved paths: A 3/2+1/34 approximation. In: Proceedings

of FOCS (2016)
	64.	 Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29(3), 293–309 (1980)
	65.	 Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM 27(3), 445–456

(1980)
	66.	 Shiloach, Y., Perl, Y.: Finding two disjoint paths between two pairs of vertices in a graph. J. ACM

25(1), 1–9 (1978)
	67.	 Srinivas, A., Modiano, E.: Finding minimum energy disjoint paths in wireless ad-hoc networks. Wirel.

Netw. 11(4), 401–417 (2005)

https://github.com/MatthiasRost/topologyzoo-treewidth-analysis
https://github.com/MatthiasRost/topologyzoo-treewidth-analysis

1812	 Algorithmica (2020) 82:1784–1812

1 3

	68.	 Taslaman, N.: Exponential-time algorithms and complexity of NP-hard graph problems. Ph.D. thesis,
IT University of Copenhagen, Denmark (2013)

	69.	 Thomassen, C.: 2-linked graphs. Eur. J. Comb. 1(4), 371–378 (1980)
	70.	 de Verdière, E., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar graphs. ACM Trans.

Algorithms 7(2), 19 (2011)
	71.	 Zhou, X., Tamura, S., Nishizeki, T.: Finding edge-disjoint paths in partial k-trees. Algorithmica 26(1),

3–30 (2000)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Walking Through Waypoints
	Abstract
	1 Introduction
	1.1 Model
	1.2 Our Contributions
	1.3 A Practical Motivation
	1.4 Related Work
	1.5 Paper Organization

	2 Walking Through Waypoints on Bounded Treewidth
	2.1 Treewidth Preliminaries
	2.2 Unified Graphs
	2.3 Signature Generation and Properties
	2.4 Programming the Nice Tree Decomposition
	2.5 Putting it All Together

	3 Walking Through Logarithmically Many Waypoints
	4 -Hardness
	5 Conclusion
	Acknowledgements
	References

