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Abstract
We initiate the study of a fundamental combinatorial problem: Given a capacitated 
graph G = (V ,E) , find a shortest walk (“route”) from a source s ∈ V  to a destina-
tion t ∈ V  that includes all vertices specified by a set WP ⊆ V  : the waypoints. This 
Waypoint Routing Problem finds immediate applications in the context of modern 
networked systems. Our main contribution is an exact polynomial-time algorithm 
for graphs of bounded treewidth. We also show that if the number of waypoints is 
logarithmically bounded, exact polynomial-time algorithms exist even for general 
graphs. Our two algorithms provide an almost complete characterization of what can 
be solved exactly in polynomial time: we show that more general problems (e.g., on 
grid graphs of maximum degree 3, with slightly more waypoints) are computation-
ally intractable.

Keywords  Routing · Algorithms · Networks · Virtualization · Distributed systems · 
Disjoint paths · Walks · ��-hardness

1  Introduction

How fast can we find a shortest route, i.e., walk, from a source s to a destination t 
which visits a given subset of vertices, called waypoints, in a graph, but also respects 
edge capacities, limiting the number of traversals? This fundamental combinatorial 

Bibliographical note A preliminary extended abstract appeared in the Proceedings of the 13th Latin 
American Theoretical Informatics Symposium (LATIN 2018), Springer, 2018 [3].
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problem finds immediate applications, e.g., in modern networked systems connect-
ing distributed network functions. However, surprisingly little is known today about 
the fundamental algorithmic problems underlying walks through waypoints.

The problem features interesting connections to the disjoint paths problem, how-
ever, in contrast to disjoint paths, we (1) consider walks (of unit resource demand 
each time an edge is traversed) on capacitated graphs rather than paths on uncapa-
ciatated graphs, and we (2) require that a set of specified vertices are visited. We 
refer to Fig. 1 for two examples.

1.1 � Model

The inputs to the Waypoint Routing Problem (WRP) are: 

1.	 A connected, undirected, capacitated and weighted graph G = (V ,E, c,�) con-
sisting of n = |V| > 1 vertices, where c ∶ E → ℕ represents edge capacities 
and � ∶ E → ℕ represents the edge costs, i.e., their weights.

2.	 A source-destination vertex pair s, t ⊆ V(G).
3.	 A set of k waypoints WP = {w1,… ,wk} ∈ V(G)k.

We observe that the route (describing a walk) can be decomposed to simple paths 
between terminals and waypoints, and we ask whether there is a route R , which 
w.l.o.g. can be decomposed to k + 1 path segments R = P1 ⊕…⊕ Pk+1, s.t. 

1.	 Capacities are respected We assume unit demands and require for every 
edge e ∈ E : |{i ∣ e ∈ Pi ∈ R, i ∈ [1, k + 1]}| ≤ c(e).

2.	 Waypoints are visited Every element in WP appears as an endpoint of exactly two 
distinct paths in route R and s is an endpoint of P1 and t is an endpoint of Pk+1 . 
Note that the k waypoints can be visited in any order.

3.	 Walks are short The length � = |P1| +…+ |Pk+1| of route R w.r.t. edge traversal 
cost � is minimum.

Remark I: Reduction to Edge-Disjoint Problems. Without loss of generality, it suf-
fices to consider capacities c ∶ E → {1, 2} , as shown by Klein and Marx [40, Fig. 1], 
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Fig. 1   Two shortest walks and their decompositions into three paths each: In both graphs, we walk 
through all waypoints from s to  t by first taking the red, then the blue, and lastly the brown path. The 
existence of a solution in the left graph (e.g., a walk of length 7 in this case) relies on one edge incident 
to a waypoint having a capacity of at least two. In the right graph, it is sufficient that all edges have unit 
capacity. Note that no s − t path through all waypoints exists, for either graph (Color figure online)



1786	 Algorithmica (2020) 82:1784–1812

1 3

also stated as Lemma 8 in the “Appendix”: a walk R which traverses an edge e more 
than twice, cannot be a shortest one.

This also gives us a simple reduction of the capacitated problem to an uncapaci-
tated (i.e., unit capacity), edge-disjoint problem variant, by using at most two paral-
lel edges per original edge. Depending on the requirements, we will further subdi-
vide these parallel edges into paths (while preserving distances and graph properties 
such as treewidth, at least approximately).

Remark II: Reduction to Cycles. Without loss of generality and to simplify pres-
entation, we focus on the special case s = t . In the “Appendix” (Lemma 9), we show 
that we can modify instances with s ≠ t to instances with s = t in a distance-preserv-
ing manner and by increasing the treewidth by at most one. Our ��-hardness results 
hold for s = t as well.

1.2 � Our Contributions

We initiate the study of a fundamental waypoint routing problem. We present poly-
nomial-time algorithms to compute shortest routes (walks) through arbitrary way-
points on graphs of bounded treewidth and to compute shortest routes on general 
graphs through a bounded (but not necessarily constant) number of waypoints. We 
show that it is hard to significantly generalize these results both in terms of the fam-
ily of graphs as well as in terms of the number of waypoints, by deriving ��-hard-
ness results: Our exact algorithms cover a good fraction of the problem space for 
which polynomial-time solutions exist. More precisely, we present the following 
results: 

1.	 Shortest Walks on Arbitrary Waypoints While many vertex disjoint problem vari-
ants like Hamiltonian path, TSP, vertex disjoint paths, etc. are often polynomial-
time solvable in graphs of bounded treewidth, their edge-disjoint counterparts are 
sometimes ��-hard already on series-parallel graphs. As WRP is an edge-based 
problem, one might expect that the problem is ��-hard already on bounded-
treewidth graphs, similarly to the edge-disjoint paths problem.

	   Yet, and perhaps surprisingly, we prove that a shortest walk through an arbitrary 
number of waypoints can be computed in polynomial time on graphs of bounded 
treewidth. By employing a simple trick, we transform the capacitated problem 
variant to an uncapacitated edge-disjoint problem: the resulting uncapacitated 
graph has almost the same treewidth. We then employ a well-known dynamic 
programming technique on a nice tree decomposition of the graph. However, 
since the walk is allowed to visit a vertex multiple times, we cannot rely on tech-
niques which are known for vertex-disjoint paths. Moreover, we cannot simply 
use the line graph of the original graph: the resulting graph does not preserve the 
bounded treewidth property. Accordingly, we develop new methods and tools to 
deal with these issues.

2.	 Shortest Walks on Arbitrary Graphs We show that a shortest route through a 
logarithmic number of waypoints can be computed in randomized time on general 
graphs, by reduction to the vertex-disjoint cycle problem [8]. Similarly, we show 
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that a route through a loglog number of waypoints can be computed in determin-
istic polynomial time on general graphs via an algorithm by Kawarabayashi [37].

	   Again, we show that that this is almost tight, in the sense that the problem 
becomes ��-hard for any polynomial number of waypoints. This reduction shows 
that the edge-disjoint paths problem is not harder than the vertex-disjoint prob-
lem on general graphs, and the hardness result also implies that the result by 
Björklund et al. [8] is nearly asymptotically tight in the number of waypoints.

1.3 � A Practical Motivation

The problem of finding routes through waypoints or specified vertices is a natural 
and fundamental one. We sketch just one motivating application, arising in the con-
text of modern networked systems. Whereas traditional computer networks were 
designed with an “end-to-end principle” [60] philosophy in mind, modern networks 
host an increasing number of “middleboxes” or network functions, distributed across 
the network, in order to improve performance (e.g., traffic optimizers, caches, etc.), 
security (e.g., firewalls, intrusion detection systems), or scalability (e.g., network 
address translation). Middleboxes are increasingly virtualized (a trend known as net-
work function virtualization [23]) and can be deployed flexibly at arbitrary locations 
in the network (not only at the edge) and at low costs. This requires more flexible 
routing schemes, e.g., leveraging software-defined network technology [27], to route 
the traffic through these (virtualized) middleboxes to compose more complex net-
work services (also known as service chains [24]). Thus, the resulting traffic routes, 
through capacitated network links, can be modeled as walks, and finding shortest 
routes through such middleboxes (the waypoints) is an instance of WRP.

While our results for a small number of waypoints have a polynomial runtime 
on general graphs, our treewidth results require (small) bounded treewidth to be 
efficient. Runtime aspects of algorithms for bounded-treewidth graphs have already 
been explored over 25 years ago, e.g., by Bodlaender who pointed to certain types of 
expert systems as an example for graphs which have small treewidth in practice [11].

Moreover, in the context of computer networks, backbone, transit, and wide-area 
networks in general are typically of small bounded treewidth, but also virtual net-
works [57]. To investigate the former further, we inspected the data set generated 
by Rost [56], who computed the treewidth of the graphs in the so-called Topology 
Zoo [42], an ongoing project that collects such network topologies from all over the 
world. The 261 contained networks range from 4 to 754 vertices (avg. ≈ 39.65 ), with 
4 to 895 edges (avg. ≈ 48.10 ), with treewidths ranging from 1 to 8 (avg. ≈ 2.53 ). A 
CDF of their treewidth is provided in Fig. 2. Roughly half of the networks have a 
treewidth of at most 2, about 88% have a treewidth of at most 3, respectively 96% 
and 99% with a treewidth of at most 4 and 5. There is only one network each with 
treewidth 7 (Kentucky Datalink) and 8 (Globalcenter), none with a treewidth of 6. 
Whereas the Globalcenter network spans nine sites around the continental US with 
a clique-like topology, the Kentucky Datalink network covers most of the eastern 
US centered around the state of Kentucky, with 754 vertices and 895 edges. In par-
ticular Kentucky Datalink is interesting in our opinion, as it provides an example of 
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a large and highly spread-out topology,1 where at the same time its treewidth is less 
than 1% of its number of vertices. We hence conclude that these networks provide 
a good motivation for the application of our results in practice, beyond the general 
case where the number of waypoints is (logarithmically) small.

1.4 � Related Work

WRP is closely related to disjoint paths problems arising in many applications [44, 
51, 67]. Indeed, assuming unit edge capacities and a single waypoint w, the problem 
of finding a shortest walk (s, w, t) can be seen as a problem of finding two shortest 
(edge-)disjoint paths (s, w) and (w,  t) with a common vertex w. More generally, a 
shortest walk (s,w1,… ,wk, t) in a unit-capacity graph can be seen as a sequence 
of k + 1 disjoint paths. The edge-disjoint and vertex-disjoint paths problem (some-
times called min-sum disjoint paths) is a deep and intensively studied combinatorial 
problem, also in the context of parallel algorithms [38, 39]. Today, we have a fairly 
good understanding of the feasibility of k-disjoint paths: for constant k, polynomial-
time algorithms for general graphs have been found by Ohtsuki [52], Seymour [64], 
Shiloah [65], and Thomassen [69] in the 1980s, and for general k it is ��-hard [36], 
already on series-parallel graphs [50], i.e., graphs of treewidth at most two.

However, the optimization problem (i.e., finding shortest paths) continues to puz-
zle researchers, even for k = 2 . Until recently, despite the progress on polynomial-
time algoritms for special graph families like variants of planar graphs [4, 43, 70] 
or graphs of bounded treewidth [61], no subexponential time algorithm was known 
even for the 2-disjoint paths problem on general graphs [21, 29, 43]. A recent break-
through result shows that optimal solutions can at least be computed in randomized 
polynomial time [9]; however, we still have no deterministic polynomial-time 

Fig. 2   CDF of the treewidth of 261 Topology Zoo [42] networks, values obtained via the analysis of Rost 
[56]

1  A geographical visualization is provided at http://www.topol​ogy-zoo.org/maps/Kdl.jpg.

http://www.topology-zoo.org/maps/Kdl.jpg
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algorithm. Both existing feasible and optimal algorithms are often impractical [9, 
19, 62, 64], and come with high time complexity. We also note that there are results 
on the min-max version of the disjoint paths problem, which asks to minimize the 
length of the longest path. The min-max problem is believed to be harder than min-
sum [35, 43].

The problem of finding shortest (edge- and vertex-disjoint) paths and cycles 
through k waypoints has been studied in different contexts already. The cycle prob-
lem variant is also known as the k -Cycle Problem, wherein the task is to find a cycle 
that goes through k prescribed vertices, has been a central topic of graph theory 
since the 1960’s [54]. A cycle from s through k = 1 waypoints back to t = s can be 
found efficiently by breadth first search, for k = 2 the problem corresponds to find-
ing a integer flow of size 2 between two vertices, and it can still be solved in linear 
time [31, 34] for k = 3 ; a polynomial-time solution for any constant k follows from 
the work on the disjoint paths problem [55]. The best known deterministic algorithm 
to compute feasible (but not necessarily shortest) paths is by Kawarabayashi [37]: it 
finds a cycle for up to k = O((log log n)1∕10) waypoints in deterministic polynomial 
time. Björklund et al. [8] presented a randomized algorithm based on algebraic tech-
niques which finds a shortest simple cycle through a given set of k vertices or edges 
in an n-vertex undirected graph in time 2knO(1) . In contrast , we assume capacitated 
networks and do not enforce routes to be edge or vertex disjoint, but rather consider 
(shortest) walks.

For capacitated graphs, researchers have explored the admission control variant: 
the problem of admitting a maximal number of routing requests such that capacity 
constraints are met. Chekuri et al. [17], Ene et al. [22], and Fleszar et al. [32] pre-
sented approximation algorithms for maximizing the benefit of admitting disjoint 
paths in graphs admitting treelike structures with both edge and vertex capacities. 
Even et al. [25, 26] and Rost et al. [47, 58] initiated the study of approximation algo-
rithms for admitting a maximal number of routing walks through waypoints. There 
is also work on admitting routing requests through a single network function (e.g., 
a multiplexer) whose position is also subject to optimization [45, 46] (akin of the 
virtual network embedding problem [59]). In contrast, we focus on optimally routing 
a single walk.

In the context of capacitated graphs and single walks, the applicability of edge-
disjoint paths algorithms to the so-called ordered WRP was studied by Akhoon-
dian Amiri et  al. [1, 2], where the task is to find k + 1 capacity-respecting paths 
(s,w1), (w1,w2),… , (wk, t) . An extension of their methods to the unordered WRP 
via testing all possible k! orderings falls short of our results: For general graphs, 
only O(1) waypoints can be considered, and for graphs of bounded treewidth, only 
O(log n) waypoints can be routed in polynomial time [1, 2]; both results concern fea-
sibility only, but not shortest routes. We provide algorithms for O(log n) waypoints 
on general graphs and O(n) waypoints in graphs of bounded treewidth, for shortest 
routes.

Lastly, for the case that all edges have a capacity of at least two and s = t , a direct 
connection of WRP to the subset traveling salesman problem (TSP) can be made 
[33]. In the subset TSP, the task is to find a shortest closed walk that visits a given 
subset of the vertices [40]. As optimal routes for WRP and subset TSP traverse 
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every edge at most twice, optimal solutions for both are identical when every edge 
e ∈ E ∶ c(e) ≥ 2 . Hence, we can make use of the subset TSP results of Klein and 
Marx, with time of (2O

�√
k log k

�

+maxe∈E �(e)) ⋅ n
O(1) on planar graphs. Klein and 

Marx also point out applicability of the dynamic programming techniques of Bell-
man and of Held and Karp, allowing subset TSP to be solved in time 2k ⋅ nO(1) . For 
a PTAS on bounded genus graphs, we refer to the work of Borradaile et  al. [15]. 
We would like to note that the technique for s ≠ t of Remark II does not apply if all 
edges must have a capacity of at least two. Similarly, it is in general not clear how 
to directly transfer s = t TSP results to the case of s ≠ t [63]. Notwithstanding, as 
WRP also allows for unit capacity edges (to which subset TSP is oblivious), WRP is 
a generalization of subset TSP.

1.5 � Paper Organization

In Sect. 2 we present our results for bounded-treewidth graphs and Sect. 3 considers 
general graphs. We derive distinct ��-hardness results in Sect.  4 and conclude in 
Sect. 5. In order to improve presentation, some technical contents are deferred to the 
“Appendix”.

2 � Walking Through Waypoints on Bounded Treewidth

The complexity of WRP on bounded-treewidth graphs is of particular interest: while 
vertex-disjoint paths and cycles problems are often polynomial-time solvable on 
bounded treewidth graphs (e.g., vertex disjoint paths [55], vertex coloring, Hamil-
tonian cycles [7], Traveling Salesman [13], see also the works by Bodlaender [11] 
and Fellows et al. [28]) many edge-disjoint problem variants are ��-hard (e.g., edge-
disjoint paths [50], edge coloring [48]). Moreover, the usual line graph construction 
approaches to transform vertex-disjoint to edge-disjoint problems are not applicable 
as such transformations do not preserve bounded treewidth.

Against this backdrop, we show that indeed shortest routes through arbitrary way-
points can be computed in polynomial-time for bounded treewidth graphs.

Theorem 1  WRP can be solved in a runtime of nO(��2)for n-vertex graphs of tree-
width ��.

In other words, WRP is in the complexity class XP [18, 20] w.r.t. treewidth. We 
obtain:

Corollary 1  WRP can be solved in a polynomial runtime for graphs of bounded tree-
width �� = O(1).

Overview We describe our algorithm in terms of a nice tree decomposition, see 
Kloks [41, Def. 13.1.4] (Sect. 2.1). We transform the edge-capacitated problem into 
an edge-disjoint problem (with unit edge capacities Sect. 2.2), leveraging a simple 
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observation on the structure of waypoint walks and preserving distances. We show 
that this transformation changes the treewidth by at most an additive constant. We 
then define the separator signatures (Sect.  2.3) and describe how to inductively 
generate valid signatures in a bottom up manner on the nice tree decomposition, 
applying the forget, join and introduce operations, as performed, e.g., by Kloks [41, 
Def. 13.1.5] (Sect. 2.4).

The correctness of our approach relies on a crucial observation on the underlying 
Eulerian properties of WRP in Lemma 2, allowing us to bound the number of par-
tial walks we need to consider at the separator, see Fig. 3 for an example. Finally in 
Sect. 2.5, we bring together the different bits and pieces, and sketch how to dynami-
cally program [10] the shortest waypoint walk on the rooted separator tree.

2.1 � Treewidth Preliminaries

A tree decomposition T = (T ,X) of a graph G consists of a bijection between a tree 
T and a collection X  , where every element of X  is a set of vertices of G such that: 
(1) each graph vertex is contained in at least one tree node (the bag or separator), 
(2) the tree nodes containing a vertex v form a connected subtree of T, and (3) ver-
tices are adjacent in the graph only when the corresponding subtrees have a node in 
common.

The width of T = (T ,X) is the size of the largest set in X  minus 1, with the tree-
width of G being the minimum width of all possible tree decompositions.

A nice tree decomposition is a tree decomposition such that: (1) it is rooted at 
some vertex r, (2) leaf nodes are mapped to bags of size 1, and (3) inner nodes are of 
one of three types: forget (a vertex leaves the bag in the parent node), join (two bags 
defined over the same vertices are merged) and introduce (a vertex is added to the 
bag in the parent node). The tree can be iteratively constructed by applying simple 
forget, join and introduce types.
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Fig. 3   Two different methods to choose an Eulerian walk, where the numbers from 1 to 11 describe the 
order of the traversal. In the left walk, the separator S is crossed 3 times, but only once in the right walk. 
Furthermore, in the left walk, there are 2 walks each in G[A] (green and blue) and G[B] (brown and red), 
respectively. In the right walk, there is only 1 walk for G[A] (blue) and 1 walk for G[B] (red) (Color fig-
ure online)



1792	 Algorithmica (2020) 82:1784–1812

1 3

Let Xb ∈ X  be a bag of the decomposition corresponding to a node b ∈ V(T) . 
We note that even though the node b and the bag Xb are different, there is a trade-
off between readability and formality when differentiating between both. When it 
is clear from the context, we will slightly abuse notation, e.g., denoting the size of 
a bag Xb by |b| , instead of |Xb| . We further denote by Tb the maximal subtree of T 
which is rooted at bag Xb . By G[b] we denote the subgraph of G induced on the ver-
tices in the bag Xb and by G[Tb] we denote the subgraph of G which is induced on 
vertices in all bags in V(Tb) . We will henceforth assume that a nice tree decomposi-
tion T = (T ,X) of G is given, covering its computation in the final steps of the proof 
of Theorem 1.

2.2 � Unified Graphs

We begin by transforming our graphs into graphs of unit edge capacity, preserving 
distances and approximately preserving treewidth.

Definition 1  (Unification) Let G be an arbitrary, edge-capacitated graph. The uni-
fied graph Gu of G is obtained from G by the following operations on each edge 
e ∈ E(G) : We replace e by c(e) parallel edges e1,… , ec(e) , subdivide each resulting 
parallel edge by creating vertices ve

i
, i ∈ [c(e)] ), and set the weight of each subdi-

vided edge to w(e)/2 (i.e., the total weight is preserved). We set all edge capacities in 
the unified graph to 1. Similarly, given the original problem instance I of WRP, the 
unified instance Iu is obtained by replacing the graph G in I with the graph Gu in Iu , 
without changing the waypoints, the source and the destination.

It follows directly from the construction that I and Iu are equivalent with regards 
to the contained walks. Moreover, as we will see, the unification process approxi-
mately preserves the treewidth. Thus, in the following, we will focus on Gu and Iu 
only, and implictly assume that G and I are unified. Before we proceed further, how-
ever, let us introduce some more definitions. Using Remark I, w.l.o.g., we can focus 
on graphs where for all e ∈ E , c(e) ≤ 2 . The treewidth of G and Gu are preserved up 
to an additive constant.

Lemma 1  Let Gbe an edge-capacitated graph s.t. each edge has capacity at most 2 
and let �� be the treewidth of G. Then Gu has treewidth at most �� + 1.

Proof  Let T = (T ,X) be an optimal tree decomposition of G of width �� . Let Xb be 
an arbitrary bag of T  . We construct the tree decomposition Tu of Gu based on T  as 
follows. First set Tu = T  . For every edge e of capacity 2 in G, which has its end-
points in Xb , we create 2 bags Xi

b
 ( i ∈ {1, 2} ) and set Xi

b
= Xb ∪ ve

i
, i ∈ {1, 2} . Con-

nect all bags Xi
b
 to Xb (i.e., Xi

b
 s are new children of Xb ), creating a tree decomposi-

tion Tu of width ≤ �� + 1 of G. 	�  ◻

Leveraging Eulerian Properties A key insight is that we can leverage the Eule-
rian properties implied by a waypoint route. In particular, we show that the traversal 
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of a single Eulerian walk (e.g., along an optimal solution of WRP) can be arranged 
s.t. it does not traverse a specified separator too often, for which we will later choose 
the root of the nice tree decomposition.

Lemma 2  (Eulerian Separation) Let G be an Eulerian graph. Let S be 
an (A, B)separator of order  |S| in  G. Then there is a set of  � ≤ 2|S| pairwise edge-
disjoint walks W = {W1,… ,W

�
} of  G such that

(1)	 For every W ∈ W , Whas both of its endpoints in A ∩ B.
(2)	 Every walk W ∈ Wis entirely either in G[A](as WA) or in G[B](as WB).
(3)	 Let �Abe the size of the set of vertices used by WAas an endpoint in S. Then, WA

contains at most �Awalks. Analogously, for �B and WB.
(4)	 There is an Eulerian walk Wof Gsuch that: W ∶= W1 ⊕…⊕W

�
.

Proof  We know that G[A] and G[B] share the edges in G[S] . For this proof, we arbi-
trarily distribute the edges in G[S] , resulting in edge-disjoint G′

A
 and G′

B
 , and respec-

tively V(G�
A
) = A and V(G�

B
) = B . As only the vertices in S can have odd degree in 

G′
A
 , we can cover the edges of G′

A
 with open walks, starting and ending in different 

vertices in S , and closed walks, not necessarily containing vertices of S . If a vertex 
in S is the start/end of two different walks, we concatenate these walks into one, 
repeating this process until for all vertices v ∈ S the following holds: At most one 
walk starts or ends at v. Next, we recursively join all closed walks into another walk, 
with which they share some vertex, see also the work by Fleischner [30].

As every vertex in G′
A
 has a path to a vertex in S , we have covered all edges in 

G′
A
 with �A′ (possibly closed) walks WA′ , with �A′ ≤ �A′ ≤ |S| . However, all remain-

ing closed walks end in the separator and are pairwise vertex-disjoint from all other 
(possibly, closed) walks. We perform the same for G′

B
 and obtain an analogous WB′ 

with �B′ ≤ �B′ ≤ |S| walks. Let us inspect the properties of the union of WA′ and WB′

:

–	 All walks have their endpoints in A ∩ B , respecting (1).
–	 All walks are entirely in G[A�] ⊆ G[A] or in G[B�] ⊆ G[B] , respecting (2).
–	 At each v ∈ S , at most one walk each from WA′ and WB′ has its endpoint, respect-

ing (3).
–	 There is no certificate yet that the walks respect (4).

As thus, we will now alter WA′ and WB′ such that their union respects (4).
W.l.o.g., we start in any walk W in WA′ to create a set of closed walks WC′ . We 

traverse the walk W from some endpoint vertex v� ∈ S until we reach its other end-
point v ∈ S , possibly v� = v . As there cannot be any other walks in WA′ with end-
points at v, and v has even degree, there are three options:

First, if W is a closed walk and E(W) = E(G) , we are done. Second, if W is a 
closed walk and E(W) ≠ E(G) , it does not share any vertex with another walk in 
WA′ . Hence, there must be a walk or walks in WB′ containing v. As  v has even 
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degree, we have two options: There could be a closed walk W ′ in WB′ containing v. 
Then, we set both endpoints of W ′ to v, and as W ′ does not share a vertex with any 
other walk in WB′ , we are done. Else, there is an open walk W ′ which just traverses 
v, not having v as an endpoint. We then split W ′ into two open walks at v, increasing 
�B and �B by one.

Third, if W is an open walk, there must be an open walk in WB′ whose start- or 
endpoint is v. We iteratively perform these traversals, switching between WA′ and 
WB′ eventually ending at v again in a closed walk, with every walk having an end-
point in v being traversed.

We now repeat this closed walk generation, each time starting at some not yet 
covered walk. Call this set of closed walks WC′ . If WC′ contains only one closed 
walk, we found a traversal order of the walks in WA′ and WB′ that yields an Eulerian 
walk, respecting 4), finishing the argument for that case. Else, as the graph is con-
nected, there must be two edge-disjoint walks WC1

,WC2
∈ WC� that share a vertex u, 

w.l.o.g., in G[A�] , with u ∈ WA1
∈ WA� , WA1

 being part of WC1
 , and u ∈ WA2

∈ WA� , 
WA2

 being part of WC2
 . Let WA1

 have the endpoints  s1, r1 and WA2
 have the end-

points s2, r2 . We now perform the following, not creating any new endpoints: We cut 
both walks WA1

,WA2
 at u into two walks each. These four walks all have an endpoint 

in u, with the other four ones being s1, s2, r1, r2 . We now turn them into two walks 
again: First, concatenate s1, u with u, s2 as WA1

 , and then, concatenate r1, u with u, r2 
as WA2

 . Now, we can obtain a single closed walk that traverses WC1
 and WC2

 . Recur-
sively iterating this process, we obtain a single closed Eulerian walk, respecting (1) 
to (4). 	�  ◻

2.3 � Signature Generation and Properties

We next introduce the signatures we use to represent previously computed solu-
tions to subproblems implied by the separators in the (nice) tree decomposition. 
For every possible signature, we will determine whether it represents a valid solu-
tion for the subproblem, and if so, we store it along with an exemplary sub-solu-
tion of optimal weight.

In a nutshell, the signature describes endpoints of (partial) walks on each side 
of the separator. These partial walks hence need to be iteratively merged, forming 
signatures of longer walks through the waypoints.

Definition 2  (Signature) Consider a bag Xb ∈ X  . A signature � of Xb ( �b ) is a pair, 
either containing 

1.	  (1) an unordered tuple of pairs of vertices si, ri ∈ Xb , (2) a subset Eb ⊆ E(G[b]) 
with �b =

(((
s1, r1

)
,
(
s2, r2

)
,… ,

(
s
�
, r

�

))
,Eb

)
 s.t. � ≤ |b| , or

2.	  (1) ∅ , (2) ∅ , with �b = (�, �) , also called an empty signature �b,∅.
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Note that in the above definition we may have si = ri for some  i. We can now 
define a valid signature and a sub-solution, where we consider the vertex s = t to be 
a waypoint.

Definition 3  (Valid Signature, Sub-Solution) Let  Xb ∈ X  and let 
either �b =

({(
s1, r1

)
,
(
s2, r2

)
,… ,

(
s
�
, r

�

)}
,Eb

)
 or �b = �b,� be a signature of Xb . 

�b ≠ �b,∅ is called a valid signature if there is a set of pairwise edge-disjoint walks 
W

�b
= {W1,… ,W

�
} such that: 

1.	 If Wi is an open walk then it has both of its endpoints on (si, ri) , otherwise, si = ri 
and si ∈ V(Wi).

2.	 Let � be the size of the set of endpoints used by �b . Then, it holds that � ≥ �.
3.	 For every waypoint  w ∈ V(Tb) it holds that  w is contained in some 

walk Wj, 1 ≤ j ≤ �.
4.	 Every (pairwise edge-disjoint) walk Wj ∈ W

�b
 only uses vertices from V(Tb) and 

only edges from E(Tb) ⧵ Eb , with Eb = E(b) ⧵ Eb.
5.	 Every edge e ∈ Eb is used by a walk in W

�b
.

6.	 Among all such sets of � walks, W
�b

 has minimum total weight.

Additionally, if for a signature �b ≠ �b,∅ there is such a set W
�b

 (possibly abbreviated 
by Wb if clear from the context), we say that W

�b
 is a valid sub-solution in G[Tb] . 

For some waypoint contained in G[Tb] , we call a signature �b,∅ valid, if there is one 
walk W associated with it, s.t. W traverses all waypoints in G[Tb] , does not traverse 
any vertex in V(b) , and among all such walks in G[Tb] has minimum weight. If G[Tb] 
does not contain any waypoints, we call the empty signature �b,∅ valid, if there is no 
walk associated with it.
Lemma 3  (Number of different signatures) There are  2O(|b|2) different signatures 
for Xb ∈ X .

Proof  There is only one empty signature, given the claimed order, it is safe to ignore 
it in counting. For the non-empty signatures, we know that they are consisting of a 
set of endpoints, and a set of edges, the task is to bound the total number of such 
sets.

There are at most 2|b| endpoints and each vertex in a bag can be any of these 2|b| 
endpoints, so there are at most (2|b|)|b| ≤ 2|b|

2 different sets for choices of the end-
points. On the other hand, there are at most 2|b|2 ways to choose edges from a graph 
on |b| vertices. Multiplying these two values gives an upper bound of 2O(|b|2) which 
satisfies the claim. 	�  ◻

2.4 � Programming the Nice Tree Decomposition

The nice tree decomposition directly gives us a constructive way to dynamically pro-
gram WRP in a bottom-up manner. We first cover leaf nodes in Lemma 4, and then 
work our way up via forget (Lemma 5), introduce (Lemma 6), and join (Lemma 7) 
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nodes, until eventually the root node is reached. Along the way, we inductively gen-
erate all valid signatures at every node.

Lemma 4  (Leaf nodes) Let b be a leaf node in the nice tree decomposition T = (T ,X).  
Then, in time O(1)we can find all the valid signatures of Xb.

Proof  We simply enumerate all possible valid signatures. As a leaf node only con-
tains one vertex v from the graph, all possible edge sets in the signatures are empty, 
and we have two options for the pairs: First, (�, �) , second, 

(
(v, v), �

)
 . The second 

option is always valid, but the first (empty) one is only valid when v is not a way-
point. 	�  ◻

Lemma 5  (Forget nodes) Let  bbe a forget node in the nice tree decomposi-
tion  T = (T ,X), with one child  q = child(b), where we have all valid signatures 
for Xq. Then, in time 2O(|b|2)we can find all the valid signatures of Xb.

Proof  Let  v ∈ G be the vertex s.t. V(b) ∪ {v} = V(q) . We create all valid signa-
tures for Xb as follows: First, if the empty signature is valid for Xq , it is also valid 
for Xb . Second, for �b = (P,Eb) , with some  (s,  r) pairs P to be a valid signature 
for Xb , there needs to be a valid signature �q = (P,Eb ∪ E�) , where E′ is a subset of 
all edges incident to v from E(G[q]). For correctness, consider the following: In all 
valid (non-empty) signatures of Xb , all walks need to have their endpoints in V(b) . 
As  v can only be reached from vertices in V(G) ⧵ V(Tb) via vertices in V(b) , any 
walk between vertices of V(G) ⧵ V(Tb) and v must pass V(b) , i.e., the correspond-
ing signature of Xq can be represented as a signature of Xb , with possible additional 
edges. Checking every of the 2O(|b|2) valid signatures of the child as described can be 
done in time linear in the signature size O(|b|2) , with 2O(|b|2) ⋅ O(|b|2) = 2O(|b|

2) . 	�  ◻

Lemma 6  (Introduce nodes) Let b be an introduce node in the nice tree decompo-
sition T = (T ,X), with one child q = child(b), where we have all valid signatures 
for Xq. Then, in time |b|O(|b|

2)we can find all the valid signatures of Xb.

We will exploit the following property for the proof of Lemma 6.

Property 1  Let b be an  introduce node, where q is a child of b, with V(b) = V(q) ∪ {v}.  
Then vis not adjacent to any vertex in V(Tb) ⧵ V(b).

Proof  (Proof of Lemma  6) Let v ∈ G be the vertex s.t. V(q) ∪ {v} = V(b) . Recall 
that v can only have neighbors in V(b) from V(Tb) (Property 1). From valid signa-
tures of Xq , we will then create all valid signatures of Xb.

Suppose there is a valid signature �b and its valid sub-solution Wb . Then we argue 
how Wb can be obtained from some �q and its valid-subsolution Wq . That is we 
perform a case distinction, whether the node v is in the sub-solution Wb or not. The 
latter is the easy case, for the former we argue how v will be part of the solution and 
how we can employ the existing sub-solutions in Wq to obtain �b . Thus, in the rest 
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of the proof we assume there is Wb and we explain how it is built on the existing 
sub-solutions of q. We perform this in two steps. First we explain how to convert 
this imaginary valid sub-solution Wb into an intermediate sub-solution Wq′ (not nec-
essary a valid one) and then we explain how to modify Wq′ to obtain a valid sub-
solution Wq.

From �b and Wb , we now iteratively build a signature �′
q
 and W′

q
 , which in the 

end will represent �q and Wq . A first thought is that by removing all walks from Wb 
and �b that contain v, we initialize �′

q
 and W′

q
 . �′

q
 is already a signature for Xq , as it 

cannot contain v as an endpoint any more, it contains at most |q| walks, but it might 
not be valid yet.

However, �′
q
 and W′

q
 already satisfy Conditions 1, 2, 4 from Definition 3. I.e, all 

endpoints of walks are still in V(q), there are at most as many walks as the size of 
the set of vertices in V(q) used as endpoints, the walks only use the edges they are 
allowed to.

It is left to satisfy Conditions 3 (all waypoints are covered), 5 (all edges specified 
in the signature are used) and 6 (optimality) from Definition 3. For Condition 5, we 
can assume that later we adjust �′

q
 appropriately. We cover Condition 3 next:

If v is a waypoint, we do not need to cover it in �′
q
 . However, the walks W′

q
 might 

not cover all further waypoints. Denote by Wv , the set of all walks in Wb contain-
ing v. Clearly these are the only walks of Wb that are not contained in W′

q
 : Together 

with W′

q
 , they satisfy Condition 3, but they can use the vertex v and edges incident 

to v. Thus, let W′

v
 be the set of walks obtained from Wv after removing all edges 

incident to v and the vertex v, possibly splitting up every walk into multiple walks. 
For every walk (possibly consisting of just a single vertex) in W′

v
 holds: its end-

points are in V(q).
We now add the walks W′

v
 to W′

q
 , one by one, not violating Conditions 1, 2, 4 

(and implicitly, 5). After this process, we will also have visited all waypoints, sat-
isfying Condition  3. We start with any walk W ∈ W

�

v
 : If  W just consists of one 

vertex u, there can be two cases: First, if u is not an endpoint of a walk W � ∈ W
�

q
 , 

then we add  W as a walk to W′

q
 , increasing �′

q
 and �′

q
 from Condition  2 by one, 

still holding |q| ≥ �′
q
≥ �

′
q
 . Second, if  u is an endpoint of a walk W � ∈ W

�

q
 , we 

concatenate  W and W ′ , keeping �′
q
 and �′

q
 identical. The case of  W being a walk 

from u ∈ V(q) to y ∈ V(q) is similar: First, if both u, y are not endpoints of walks 
from W′

q
 , we add W to W′

q
 . Second, if both u, y are endpoints of walks from W′

q
 , we 

use W to concatenate them. If the result is a cycle, we pick w.l.o.g. u as both new 
endpoints. Third, if w.l.o.g. u is an endpoint of a walk W ∈ W

�

q
 , but y is not, we con-

catenate W, W ′.
We now obtained W′

q
 (and implicitly, �′

q
 ) that satisfy Conditions 1 to 5 from Defi-

nition 3, and it is left to show Condition 6 (optimality). Assume there is a Wq with 
smaller length than W′

q
 , both for �′

q
 . Observe that when reversing our reduction pro-

cess, the parts of the walks in G[Vq] ⧵ E(G[q]) are not relevant to our construction, 
only the signature �′

q
 as a starting point. As thus, we can algorithmically (implicitly 

described in the previous parts of the introduce case) derive all valid solutions and 
signatures for b.

It is left to investigate the runtime: For every possible signature of the 
child  (2O(|b|2) many), we combine them with every possible edge set ( 2O(|b|2) 
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combinations). Then, like unique balls (edges) into bins (walks), we distribute the 
edges over the walks, also considering all O(|b|) combinations with empty walks, 
in |b|O(|b|

2) combinations. For every walk, we now obtained an edge set that has to 
be incorporated into the walk, where we can check in time O(|b|2) if it is possible 
and also what the new endpoints have to be (possibly switching both). If the walk is 
closed, we can pick O(|b|) different endpoints. All these factors, also the signature 
size and the number of signatures, are dominated by |b|O(|b|

2) , with |b| ≥ 2 . 	�  ◻

Lemma 7  (Join nodes) Let  b be a join node in the nice tree decomposi-
tion T = (T ,X) , with the two children  q1 = child(b) and  q2 = child(b), where we 
have all valid signatures for Xq1

and Xq2
. Then, in time nO(|b|) ⋅ 2O(|b|2)we can find all 

the valid signatures of Xb.

Our proof for join nodes consists of two parts, making use of the following fact: 
For a given valid signature of Xb , two valid sub-solutions with different path tra-
versals have the same total length, if the set of traversed edges is identical. As thus, 
when trying to re-create a signature of Xb with a valid sub-solution, we do not need 
to create this specific sub-solution, but just any sub-solution using the same set of 
endpoints and edges. We show: 

1.	 We can partition the edges of a valid sub-solution into two parts along a separator, 
resulting in a valid signature for each of the two parts, where each sub-solution 
uses exactly the edges in its part.

2.	 Given a sub-solution for each of the two parts separated, we can merge their edge 
sets, and create all possible signatures and sub-solutions using this merged edge 
set.

Proof of Lemma 7  Let �b be a valid non-empty signature of Xb with edge set Eb , with 
valid sub-solution Wb . Our task is to show that we obtain �b from some valid signa-
tures �q1 , �q2 , with valid sub-solutions Wq1

,Wq2
.

Claim 1  Given valid  �b,  Wb, then there must be valid  �q1 , �q2,  Wq1
,Wq2

, such 
that E(Wq1

) ∪ E(Wq2
) = E(Wb).

Claim 2  Given valid  �q1 , �q2,  Wq1
,Wq2

, we show that we can create every pos-
sible valid signature of Xbwhich has a sub-solution of edge set E(Wq1

) ∪ E(Wq2
) 

in nO(��) ⋅ 2O(|b|2).

Proof of Claim  1  Arbitrarily partition  Eb into some  Eq1
 and  Eq2

 . Then, con-
sider  EW

q1
=
(
E(Wb) ∩ E(Tq1)

)
⧵ Eq2

 and  EW
q2

=
(
E(Wb) ∩ E(Tq1)

)
⧵ Eq1

 , i.e., the 
edges of the subwalks corresponding to each child, obtained by the arbitrary parti-
tion of Eb.

For both EW
q1

 and EW
q2

 , we now generate valid signatures and sub-solutions, where 
the edges of the signatures are already given by Eq1

,Eq2
 . W.l.o.g., we perform this 
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task for EW
q1

 : Starting at some vertex v1 ∈ V(q1) , generate a walk by traversing yet 
unused incident edges, until no more unused incident edges are left, ending at 
some v2 ∈ V(q1) , possibly v1 = v2 and the used edge set may be empty.

Perform this for all vertices in V(q1) not yet used as endpoints, possibly generat-
ing walks consisting just of a vertex and no edges. However, at most |V(q1)| walks 
will be generated, as every endpoint of a walk will not be an endpoint for another 
walk. Note that if there is any uncovered set of edges of EW

q1
 , they form a set of edge-

disjoint cycles, where at least one these cycles will share a vertex with some walk, 
as only vertices in V(q1) can have odd degree w.r.t. the edge set. Then, we can inte-
grate this cycle into a walk, iterating the process until all edges are covered. Denote 
the resulting valid signature by �q1 with edge set Eq1

 . We perform the same for EW
q2

 . 
Hence, starting from a valid signature �b with edge set Eb , we created two valid sig-
natures  �q1

 and  �q2
 for the two children of  t, with  Wq1

,Wq2
 such 

that E(Wq1
) ∪ E(Wq2

) = E(Wb).

Proof of Claim  2  Given  Wq1
,Wq2

 , we have to construct every possible  Wb 
with EWb

= E(Wq1
) ∪ E(Wq2

) , which in turn implies its valid signature �b.
In order to do so, we create every possible ( 2O(|b|2) many) signature  � 

of  Xb , possibly not valid ones as well. However, every such signature  � can 
be checked if it can have a sub-solution using the edges  E(Wq1

) ∪ E(Wq2
) . 

We can obtain the answer to this question via a brute-force approach: We 
assign every edge from  E(Wq1

) ∪ E(Wq2
) to one of the endpoint pairs of  � , 

with |E(Wq1
) ∪ E(Wq2

)| = O(n2) . For a given � with at most |b| walks, the number 
of possibilities are thus in O((n2)|b|) = nO(|b|) . For every endpoint pair (si, ri) of the 
at most |b| walks, we can check in time linear in the number of edges if the assigned 
edge set can be covered by a walk between si and ri : namely, does the edge set form 
a connected component where all vertices except for si ≠ ri have even degree (or, 
in the case of si = ri , do all vertices have even degree)? When we create a signature 
multiple times, we can keep any sub-solution of minimum length. In total, the runt-
ime is in 2O(|b|2) ⋅ nO(��).

It remains to cover the case of �b being empty. By definition, a valid sub-solu-
tion to an empty signatures does not traverse any vertex in V(b) . As such, the only 
way to obtain a valid signature �b in a join is if both valid �q1 , �q2 are empty, with, 
w.l.o.g., Wq2

 empty too. Then, �b = �q1
 , with Wb = Wq1

 . 	�  ◻

2.5 � Putting it All Together

We now have all the necessary tools to prove Theorem 1:

Proof  Dynamically programming a nice tree decomposition Translating an instance 
of WRP to an equivalent one with  s = t and unit edge capacities only increases 
the treewidth by a constant amount, see Remark  II and Lemma  1. Although it is 
��-complete to determine the treewidth of a graph and compute an accord-
ing tree decomposition, there are efficient algorithms for constant treewidth [12, 
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54]. Furthermore, Bodlaender et  al. [14] presented a constant-factor approxima-
tion in a time of 2O(��) ⋅ O(n) , also beyond constant treewidth: Using their algo-
rithm O(log ��) times (via binary search over the unknown treewidth size), we 
obtain a tree decomposition of width O(��) . Following [41], we generate a nice tree 
decomposition of treewidth O(��) with O(��n) = O(n2) nodes in an additional time 
of O(��2n) = O(n3) . The time so far is 2O(��) ⋅ O(n log ��) + O(��2n).

We can now dynamically program WRP on the nice tree decomposition in a bot-
tom-up manner, using Lemma 4 (leaf nodes), Lemma 5 (forget nodes), Lemma 6 
(introduce nodes), and Lemma 7 (join nodes). The time for each programming of a 
node is at most O(��)O(��2) or nO(��) ⋅ 2O(��2) , meaning that we obtain all valid sig-
natures with valid sub-solutions at the root node r, in a combined time of nO(��2) , 
specifically:

Obtaining an optimal solution If an optimal solution I to WRP exists (on the unified 
graph with s = t ), then the traversed edges E∗ and vertices V∗ in I yield an Eulerian 
graph G∗ = (V∗,E∗) . With each bag in the nice tree decomposition having O(��) 
vertices, we can now apply (the Eulerian separation) Lemma  2: There must be a 
valid signature of the root r whose sub-solution uses exactly the edges E∗ . As thus, 
from all the valid sub-solutions at r, we pick any solution to WRP with minimum 
weight, obtaining an optimal solution to WRP. 	�  ◻

3 � Walking Through Logarithmically Many Waypoints

While WRP is generally ��-hard (as we will see below in Sect. 4), we show that 
a shortest walk through a bounded (not necessarily constant) number of waypoints 
can be computed in polynomial time. In the following, we describe reductions to 
shortest vertex-disjoint cycle problems [8, 37],2 where the cycle has to pass through 
specified vertices.

As we study walks on capacitated networks instead, we first introduce parallel 
edges. Interestingly, two edges are sufficient, see Lemma 8 in the “Appendix”. Simi-
larly, for edge weights �(e) , we replace every edge  e with a path of length �(e) . 
Lastly, to obtain a simple graph with unit edge weights and unit capacities, we place 
a vertex on every edge, removing all parallel edges while being distance preserving.

The transformation of the edge-disjoint cycle problem variant into a vertex-
disjoint route problem variant, and accounting for waypoints, however requires 
some additional considerations. The standard method to apply vertex-disjoint path 

(O(��)O(��
2) + nO(��) ⋅ 2O(��

2)) ⋅ O(�� ⋅ n) + 2O(��) ⋅ O(n log ��) + O(��2n).

2  The algorithm by Kawarabayashi [37] is for passing through edges, but a standard reduction also 
allows to use it for passing through vertices. Similarly, an algorithm for passing through vertices can also 
be used for edges [68, p. 22].
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algorithms to the edge-disjoint case [49, 50, 66]3 is to take the line graph L(G) of the 
original graph G. Then, each edge is represented by a vertex (and vice versa), i.e., a 
vertex-disjoint path in the line graph directly translates to an edge-disjoint walk (and 
vice versa), but possibly changing the graph family. However, the line graph con-
struction raises the question of where to place the waypoints. For example, consider 
a waypoint vertex of degree 3, which is transformed into 3 vertices in the line graph: 
which of these vertices should represent the waypoint?

For the case of 2 disjoint paths, Björklund and Husfeldt [9, p. 214] give the fol-
lowing idea: “add an edge to each terminal vertex and apply [the] Algorithm [...] to 
the line graph of the resulting graph”. Their method is sufficient for s, t, but for the 
remaining waypoints, we also need to add extra vertices to the line graph: To pre-
serve shortest paths, every shortest “pass” through the line graph representation of a 
vertex v should have the same length, no matter if the waypoint was already visited 
or not. As thus, we add �(v) further vertices to the line graph, one on each edge con-
necting two edge representations in the line graph, as in Fig. 4.

Next, recall that the algorithm by Björklund et al. [8] computes cycles, whereas 
in WRP, we are interested in walks from s to t, where s may not equal t. However, 
due to Remark II (Lemma 9), we can assume that s = t.

Given this construction, using Björklund et al.’s shortest simple cycle algorithm, 
we obtain polynomial-time complexity for k = O(log n) waypoints:

Theorem 2  For a general graph G with polynomial edge weights, a shortest walk 
through  kwaypoints can be found by a randomized algorithm in time 2knO(1)with 
one-sided error of exponentially small probability in n.

Similarly, we can also adapt the result by Kawarabayashi [37] to derive a deter-
ministic algorithm to compute feasible (not necessarily shortest) walks:

w

w

v1

v2

v3
e1

e2

e3

Fig. 4   Replacing a waypoint vertex in G with an expanded clique in an extended line graph

3  Nishizeki et al [50] mention that not the line graph is taken, but a graph “similar to the line graph”. 
Furthermore, Zhou et al. [71, p. 3] suggest to “[replace] each vertex with a complete bipartite graph”.
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Theorem  3  For a general graph  Gwith polynomial edge weights, a walk 
through k = O

(
(log log n)1∕10

)
 waypoints can be found in deterministic polynomial 

time.

Our formal proof of the Theorems  2 and 3 will be a direct implication of the 
upcoming Corollary 2, for which in turn we need the following Theorem 4.

For our construction, we use an extended waypoint-aware line graph LR(G) construc-
tion in Algorithm 1. The fundamental idea is as follows: Similar to the line graph, we 
place vertices on the edges, implying that every edge may only be used once. Then, the 
original vertices are expanded into sufficiently large cliques, also containing the waypoint, 
s.t. any original edge-disjoint walk can also be performed by a path through the clique 
vertices. For an illustration of this so-called clique expansion, we refer again to Fig. 4.

Theorem  4  Consider an instance  Iof  WRP on   G = (V ,E) . If an edge-dis-
joint route  R of length �1, solving  I, exists on  G, then there is a vertex-disjoint 
path Pfrom sto tthrough all waypoints of length 5�1 on LR(G). Conversely, if such a 
path Pof length �2 exists on LR(G), then there is a route R for Iof length ≤ �2∕5.

Algorithm 1.
      Waypoint Line Graph Construction
      Input: Graph G = (V ,E) , with vertices s, t,w

1

,… ,w
k
∈ V .

      Output: Graph L
R
(G) = (L

R
(V),L

R
(E)) , with vertices s, t,w

1

,… ,w
k
∈ L

R
(V).

      1. Initialize L
R
(E) = E and L

R
(V) = V  , with the same s, t,w

1

,… ,w
k
 allocation.

      2. For each v ∈ L
R
(V)

            (a) Order the incident edges arbitrarily, denoting them locally as e
1

,… , e
�(v) , where �(v) 

denotes the vertex degree.
            (b) Replace every vertex v ∈ L

R
(V) with a clique of  �(v) + 1 vertices, denoted by K

�(v)(v) , 
naming the vertices locally as v

1

,… , v
�(v), v

� , setting any s, t,w
1

,… on v to v′.
            (c) For the edges incident to the original v ∈ L

R
(V) , connect the corresponding e

i
 to their v

i
 , 

for 1 ≤ i ≤ �(v).
      3. For each e ∈ L

R
(E) not contained in any K

�(v)(v)

            (a) Replace e by a path of three edges and two vertices.
      4. For each e ∈ L

R
(E) contained in any K

�(v)(v) , not incident to any v′

            (a) Replace e by a path of two edges and one vertex.

c = 2
c = 1

c = 1

c = 1 c = 1

c = 1 c = 1

Fig. 5   To obtain a simple graph with unit edge capacities, for the left graph, we first split the edge with 
capacity 2 into 2 parallel edges (middle), then remove the parallel edges (right)
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Proof  Given a graph with integer edge weights and capacities, we first transform it 
into a graph with unit edge weights and capacities, while being distance-preserving. 
First, we replace each edge with a capacity 2 with two parallel edges of identical 
weight, cf. Lemma 8. Second, each edge e with a weight of �(e) is replaced by a 
path of length �(e) , which yields a distance-preserved graph with unit capacities. 
Third and last, to remove parallel edges, we place a vertex on every edge, obtain-
ing the desired graph properties. We give an example for an edge e with c(e) = 2 
and �(e) = 1 in Fig. 5.

We now start with the case that an edge-disjoint route R of length �1 exists in G, 
solving I. We translate R into a vertex-disjoint path P in LR(G) of length 5�1 as fol-
lows: First, every edge e ∈ E is represented by a path of length 3 in LR(G) , resulting 
in a length of 3�1 if we could pass through the “clique-expansions” K

�(v)(v) ’s for 
free. Second, observe that all shortest paths through these K

�(v)(v) have a length of at 
most 2 – with sufficient vertex-disjoint paths to represent all crossings through v ∈ V  
performed by R . If v ∈ R contains a waypoint (or s, t), we let one of the crossings 
in LR(G) pass through v′ . When starting on s or ending on t, the path-length through 
each K

�(v)(v) is only 1. As such, we showed the existence of a path P from s to  t 
through all waypoints in LR(G) with a length of 3l1 + 2(l1 − 1) + 1 + 1 = 5�1 . An 
example is given in Figs.  6,  7, where a route of length 5 in G implies a route of 
length 25 in LR(G).

It is left to show that if such a path P of length �2 exists on LR(G) , then there 
is a route R , solving  I, of length ≤ �2∕5 . We can think of  P as follows: It starts 
in some K

�(v1)
(v1) on s, passes through some K

�(v2)
(v2),… ,K

�(vr)
(vr) connected by 

paths of length 3, until it ends in some K
�(vr+1)

(vr+1) on t. In this chain, the K
�(vi)

(vi) ’s 
do not need to be pairwise disjoint. Observe that each of these paths of length  3 
between two of those K

�(v)(v) s in LR(G) directly maps to an edge in  G. By also 

Fig. 6   Graph G with a route 
(dashed) through all waypoints 
of length 5. In order to simplify 
the example, all edges have 
a capacity and weight of 1, 
respectively s w

v u

w

s

w

w

v u

Fig. 7   Graph L
R
(G) with a corresponding (see Fig. 6) route (dashed) of length 5 × 5 = 25 . The dotted 

vertices are a result of the respective edge transformations in our line graph



1804	 Algorithmica (2020) 82:1784–1812

1 3

mapping the vertex v ∈ V  to the expansions K
�(v)(v) , we obtain a one-to-one map-

ping between edge-disjoint walks in  G and vertex-disjoint paths in LR(G) , where 
the expansions K

�(v)(v) are contracted to a single vertex. Following the thoughts for 
the first case, we can shorten P to a path P′ such that every subsequent traversals 
of a K

�(vi)
(vi) in the chain only have a length of 2, which is shortest possible; the 

paths through K
�(v1)

(v1) and K
�(vr+1)

(vr+1) have a length of 1 each (except for the case 
of r = 0 , which means we can set |P�| = 0 ). Performing the translation of the first 
case in reverse, we obtain a solution W for I′ of length |P�|∕5 ≤ |P|∕5 = l2∕5 . 	�  ◻

The statement of Theorem  4 also has implications for shortest solutions. If there 
is a shortest vertex-disjoint path in LR(G) of length � , but there exists a solution in G 
of length �� < �∕5 , then a solution of length less than � would also exist in LR(G) , a 
contradiction.

Let us also briefly consider runtime implications. When modifying the 
graph G = (V ,E) to be a simple graph G� = (V �,E�) with unit edge capacities and 
unit weights, let  f (n) ≥ 1 be the largest edge weight �(e) in G. It then holds that |V ′| 
and |E′| are each at most |V| + 4|E|f (n) . When considering  LR(G�) = (V �

R
,E�

R
) , we 

obtain an upper bound (by a large margin) of 7|V|2 + 48|V||E|f (n) + 96|E|2(f (n))2 
for both  |V ′

R
| and  |E′

R
| , respectively. We further bound this term from above 

via (7 + 48 + 96)|V|4(f (n))2 = 151|V|4(f (n))2 . While this bound can be improved by 
careful inspection, especially in the size of the exponent, it suffices for the purposes of 
polynomiality.

Corollary 2  Let Abe an algorithm that finds a shortest vertex-disjoint solution for a 
path from sto t = s through all specified (waypoint) vertices, with the largest edge 
weight being of size  f(n), in a runtime of �(k, |V|, f (n)). Using the waypoint line 
graph construction, algorithm Acan be used to find a shortest solution to  WRP in a 
runtime of �

(
k, 151|V|4(f (n))2, 1

)
.

In particular, if A has a runtime of 2knO(1) to find a cycle through k specified vertices 
in an n-vertex graph, we can obtain a runtime of 2k(151n4(f (n))2)O(1) for WRP. If f(n) is 
a constant-value function or a fixed polynomial, this reduces to 2knO(1) for n ≥ 2 . Simi-
larly, if � is a polynomial function w.r.t. k, |V|, f(n), it will also be a polynomial function 
in n for the transformed WRP instances with inputs k, 151n4(f (n))2, 1 , given that f(n) is 
a constant-value function or a fixed polynomial, as we can assume k < n.

4 � ��‑Hardness

Given our polynomial-time algorithms to compute shortest walks through arbitrary 
waypoints on bounded-treewidth graphs as well as to compute shortest walks on 
arbitrary graphs through a bounded number of waypoints, one may wonder whether 
exact polynomial-time solutions also exist for more general settings. In the follow-
ing, we show that this is not the case: in both dimensions (number of waypoints and 
more general graph families), we inherently hit computational complexity bounds. 
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Our hardness results follow by reduction from a special subclass of ��-hard Hamil-
tonian cycle problems [5, 16]:

Theorem 5  WRP is  ��-hard for any graph family of degree at most 3, for which the 
Hamiltonian cycle problem is ��-hard.

Proof  Let G = (V ,E) be a graph with maximum degree at most 3, set all edge capac-
ities to 1, take an arbitrary vertex v ∈ V  , and set s ∶= v =∶ t . Set WP ∶= V ⧵ {v} . 
Consider a route R (a feasible walk) which starts and ends at v and visits all other 
vertices. We claim that R is a Hamiltonian cycle for G; on the other hand, it is clear 
that if there is a Hamiltonian cycle of G then it satisfies the requirements of R . We 
start at v and walk along R , directing edges along the way. Every vertex in the result-
ing graph has at least one outgoing directed edge and at least one incoming directed 
edge, see for example Fig. 8.

On the other hand, as the edge capacities are  1, R cannot reuse any edge, so 
the number of directed edges on every vertex must be even: in fact, the number of 
incoming edges equals the number of outgoing edges. The maximum degree of G 
is  3; according to the last two observations, every vertex appears in exactly two 
edges of the walk R , see Fig. 9. As R induces a connected subgraph and all its ver-
tices are of degree two, we conclude that R is a single cycle. As R visits all vertices 
in G, thus it is also a Hamiltonian cycle.

	�  ◻

v

w w

w v

w w

w

Fig. 8   A Hamiltonian cycle (dashed, left) can directly be translated to a feasible walk (dashed, right) 
through all waypoints

w w

Fig. 9   In order to be included in the route, each waypoint vertex needs at least one incoming (and outgo-
ing) edge assigned to the route (dashed). However, using a third edge in the route as well (dotted) is not 
possible, the walk cannot leave (left) or enter (right) the vertex again
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We have the following implication for grid graphs [6, 16, 53] of maximum degree 
3, and use similar ideas for the class of 3-regular bipartite planar graphs.

Corollary 3  For any constant r ≥ 1it holds that  WRP is  ��-hard on grid graphs of 
maximum degree 3, already for k = O(n1∕r) waypoints.

Proof  Our proof will be a reduction from a result of Buro [16] who shows that the 
Hamiltonian cycle problem is ��-hard on grid graphs of maximum degree 3. Our 
reduction will not change these properties of the graph. We also fix some arbi-
trary r ∈ ℝ≥1 , setting r� = ⌈r⌉.

For simplicity, we restrict ourselves to the grid graphs G of maximum degree 3 
obtained [16] by Buro’s ��-hardness reduction. Restricting to G allows us to fol-
low the arguments from Buro [16] to obtain an appropriate embedding in polyno-
mial time.4 For any WRP on G ∈ G with k < n waypoints WP , create a grid drawing 
in the plane. From this drawing, from all vertices with the smallest x-coordinates, 
pick the vertex v with the smallest y coordinate. Say v has coordinates (x(v), y(v)) . 
By construction,  v has at most a degree of two and there are no vertices with 
a smaller  x-coordinate than  v. As such, we can create a vertex  v′ with coordi-
nates (x(v) − 1, y(v)) , and connect it to v with an edge of unit capacity.

Observe that the set of solutions for WRP was not altered: Once v′ is visited, 
no walk can ever leave it. We now extend this idea, creating a path of length nr , 
placing its vertices at the coordinates (x(v) − 2, y(v)), (x(v) − 3, y(v)), … . Denote this 
extended graph by G� = (V �,E�) and observe that its main properties are preserved, 
however, k = O(|V �|1∕r� ) . 	�  ◻

Corollary 4  For any constant  r ≥ 1it holds that  WRP is  ��-hard on 3-regular 
bipartite planar graphs, already for k = O(n1∕r) waypoints.

Proof  Our proof will be a reduction from the result of Akiyama et al. [5], who show 
that the Hamiltonian cycle problem is ��-hard on 3-regular bipartite planar graphs, 
denoted by G3 . Observe that we can assume unit edge capacities, without losing the 
��-hardness property. Again, our reduction will not change these properties of the 
graph, and analogously, we fix some arbitrary r ∈ ℝ≥1 , setting r� = ⌈r⌉.

We can pick any edge e = (u,w) in a graph G3 ∈ G3 and replace the edge with a 
path of length three and capacity one, denoting the added vertices by v and v′ . The 
graph is still bipartite and planar, but v and v′ violate the 3-regularity. Notwithstand-
ing, the feasibility of WRP stays unchanged: The “capacity” of the path between u 
and  w via  v and v′ is still one. Now, we create two full binary trees T , T ′ with a 
roots Tv, T ′

v′
 , each having 2r� − 1 vertices and 2r�−1 leaves. We can connect Tv to  v 

4  As Arkin et al. [6] point out, the first ��-hardness proof for grid graphs G† of maximum degree 3 is 
in an article by Papadimitriou and Vazirani [53]. Following the references given in the article by Arkin 
et al. [6], it is also possible to embed all G† ∈ G

† in polynomial time.
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and T ′
v′
 to v′ , preserving bipartiteness and planarity. A small examplary construction 

can be found in Fig.  10, already illustrating the next construction steps as well. 
Observe that all vertices except the leaves of T , T ′ have a degree of exactly three. 
Next, we pick a standard embedding of  T , T ′ in the plane, s.t., w.l.o.g., the 
leaves v1,… , v2r�−1 have coordinates (0, 1),… , (0, 2r

�−1) , similar for the leaves of T ′ 
with  (0, 2r�−1 + 1),… , (0, 2 ⋅ 2r

�−1) . We now place a vertex  vm
(1,2)

,… , vm
(2r

�−1−1,2r
�−1)

 
between each consecutive pair of leaves of T, 2r�−1 − 1 in total, same for T ′ with ver-
tices vm�

(1,2)
,… , vm�

(2r
�−1−1,2r

�−1)
.

Next, we connect these 2 ⋅ 2r�−1 − 2 vertices Vm and Vm′ with each leaf vertex next 
to them, also  v2r�−1 with v′

1
 and v1 with v�

2r
�−1

 , forming a cycle C through all leaves and 
the new 2 ⋅ 2r�−1 − 2 vertices. All vertices, except the aforementioned Vm and Vm′ 
with a degree of 2, have a degree of 3. Due to the bipartite property, one can color 
the (former) leaf vertices and Vm and Vm′ , with, e.g., blue and red: W.l.o.g., we pick 
red for the (former) leaves of T and Vm′ , blue for the (former) leaves of T ′ and Vm . As 
the last construction step, we connect Vm and Vm′ , as follows, inside the inner face of 
the cycle C: First the two outermost vertices, vm

1,2
 with vm�

(2r
�−1−1,2r

�−1)
 , then going anal-

ogously inwards, lastly connecting vm
(2r

�−1−1,2r
�−1)

 and vm′
1,2

 . Denote this extended graph 
by  G�

3
= (V �

3
,E�

3
) and observe that its main properties are preserved, how-

ever, k = O(|V �
3
|1∕r� ) . 	�  ◻

Our proof techniques also apply to the   k -Cycle Problem studied by, e.g., 
Björklund et al. [8], whose solution is polynomial for logarithmic k. All possible 
edge-disjoint solutions are also vertex-disjoint, due to the restriction of maximum 
degree at most 3.

Corollary 5  For any constant r ≥ 1it holds that the   k -Cycle Problem is  ��-hard 
on (1) 3-regular bipartite planar graphs and (2) grid graphs of maximum degree 3, 
respectively, already for k = O(n1∕r).

u wv

Tv

v1 v2v(1,2)

v′

T ′
v′

v′1 v′2v′(1,2)

Fig. 10   Examplary gadget construction with two full binary trees with two leaves each. The resulting 
graph is 3-regular bipartite and planar
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5 � Conclusion

Motivated by the more general routing models introduced in modern software-
defined and function-virtualized networked systems, we initiated the algorithmic 
study of computing shortest walks through waypoints on capacitated networks. We 
have shown, perhaps surprisingly, that polynomial-time algorithms exist for a wide 
range of problem variants, and in particular for bounded treewidth graphs.

In our dynamic programming approach to the Waypoint Routing Problem, para-
metrized by treewidth, we provided fixed-parameter tractable (FPT) algorithms for 
leaf, forget, and introduce nodes, but an XP algorithm for join nodes. In fact, while 
we do not know whether our problem can be expressed in monadic second-order 
logic MSO2, we can show that simply concatenating child-walks for join nodes does 
not result in all valid parent signatures.

We believe that our paper opens an interesting area for future research. In par-
ticular, it will be interesting to further chart the complexity landscape of the Way-
point Routing Problem, narrowing the gap between problems for which exact pol-
ynomial-time solutions do and do not exist. Moreover, it would be interesting to 
derive a lower bound on the runtime of (deterministic and randomized) algorithms 
on bounded treewidth graphs.
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Appendix: Deferred Claims and Proofs from Sect. 1.1

The idea for the following Lemma 8 can already be found in a figure in a paper by 
Klein and Marx [40, Fig. 1]:

Lemma 8  Let R be a shortest walk solution to  WRP. Then route R visits every edge 
at most twice.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof  Proof by contradiction. Construct an edge-weighted multigraph U as follows. 
The vertices of  U are exactly the vertices of R . For every edge e = {u, v} which 
appears x times in R , insert edges e1,… , ex with endpoints u, v and the same weight 
as e, to U; note that there can be parallel edges in U. As R is a walk with start ver-
tex s and end vertex t, the graph U contains an Eulerian walk which can be obtained 
by following R with respect to the new edges. Thus, every vertex in V(U) ⧵ {s, t} 
has an even degree and s, t have odd degrees. For the sake of contradiction, suppose 
there are two vertices u, v ∈ V(U) s.t.  there are edges e1,… , ex between them s.t. 
x > 2 . We remove e1, e2 from  E(U) to obtain U′ . The resulting graph is still con-
nected, every vertex except  s,  t has even degree, and the graph contains an Eule-
rian walk P′ which starts at s and ends at t. But this walk has a smaller total length 
than R , and it also visits all the waypoints. This contradicts our assumption that R is 
a shortest walk. 	�  ◻

Lemma 9  Consider an instance of  WRP on G = (V ,E), with s ≠ t. By creating a 
new vertex vconnected to both s, t, the following two claims hold after setting v ∶= s

and v ∶= tand creating waypoints on the old placements of sand t: 1)the treewidth 
increases at most by one, and 2) if and only if there is a shortest solution of length �1

in G, the shortest solution of the modified  WRP in G� = (V ∪ {v},E ∪ {(s, v), (v, t)}

is of length �1 + 2.

Proof  We start with the first claim: By placing  v into all bags, the treewidth 
increases at most by one. For the second claim, we start with the case that there is 
a shortest solution of length �1 in G. Then, we can amend this route in G′ to obtain 
a solution of length �1 + 2 . If a shorter solution were to exist in G′ , we would also 
obtain a shorter solution in G. The reverse case holds analogously, with special cov-
erage of the case that the original WRP only contains s, t and no further waypoints: 
Then, due to the placement of waypoints in G′ where s, t were placed in G, finding 
a shortest route of length �1 + 2 in G′ is equivalent to finding a shortest route of 
length �1 in G of the original WRP. 	� ◻
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