
DaRTree: Deadline-Aware Multicast Transfers in
Reconfigurable Wide-Area Networks

Long Luo
∗‡

Klaus-Tycho Foerster
‡

Stefan Schmid
‡

Hongfang Yu
∗

∗
University of Electronic Science and Technology of China, P.R. China

‡
Faculty of Computer Science, University of Vienna, Austria

ABSTRACT
The increasing amount of data replication across datacenters intro-

duces a need for efficient bulk data transfer protocols which meet

QoS guarantees, notably timely completion. We present DaRTree
which leverages emerging optical reconfiguration technologies, to

jointly optimize topology and multicast transfers, and thereby max-

imize throughput and acceptance ratio of transfer requests subject

to deadlines. DaRTree is based on a novel integer linear program

relaxation and deterministic rounding scheme. To this end, DaRTree
uses multicast Steiner trees and adaptive routing based on the cur-

rent network load. DaRTree provides its guarantees without need
for rescheduling or preemption. Our evaluations show that DaRTree
increases the network throughput and the number of accepted re-

quests by up to 70%, especially for larger Wide-Area Networks

(WANs). In fact, we also find that DaRTree even outperforms state-

of-the-art solutions when the network scheduler is only capable of

routing unicast transfers or when the WAN topology is bound to

be non-reconfigurable.

CCS CONCEPTS
•Networks→Network algorithms, performance evaluation.

KEYWORDS
multicast transfers, deadline, reconfigurable networks

1 INTRODUCTION
With the increasing popularity of online services on many fronts

(health, business, streaming, or social networking), datacenters

will continue to grow explosively in the coming years, both in

size and numbers [7]. Datacenters hence become a critical infras-

tructure of our digital society. This also introduces increasingly

stringent availability and dependability requirements, which in turn

require data replication across multiple datacenters. Such replica-

tion can result in bulk transfers ranging in sizes from terabytes to

petabytes [14, 15, 20, 29, 34].

Such replication-related bulk transfers are often one-to-many.
E.g., for availability, many cloud services typically require data or

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00

https://doi.org/10.1145/3326285.3329063

content (e.g., search indices, video files, and backups) to be dynam-

ically copied from the datacenter hosting data to many destina-

tion datacenters that rely on such replica to run services. Another

characteristic of such multicast transfers is their timely completion

time constraints, according to Service Level Agreements (SLAs) and

Quality of Service (QoS) requirements [16, 24, 28]. Indeed, a majority

of bulk transfers have hard deadlines for completion times [16, 34],

but are not very sensitive to delay nor bandwidth. In fact, a re-

cent survey of Wide-Area Network (WAN) customers at Microsoft

showed that 88% of them incur penalties on missed deadlines [16].

In order to guarantee QoS requirements and maximize network

utilization, network operators employ innovative traffic engineer-

ing mechanisms (e.g., facilitated by Software-Defined Networking

(SDN) [14, 15]), as well as admission control mechanisms [24, 34].

Notwithstanding, most bulk-transfer approaches today are limited

to unicast transfers (e.g., Amoeba [34]), with only few multicast

proposals surfacing [17, 25, 26]. As the latter approaches only use

a single forwarding tree or are load-oblivious, selecting multiple

adaptive trees could greatly improve performance.

Also, an interesting new opportunity for optimizing bulk trans-

fers is currently emerging, related to optics: the physical layer

workhorse of networking. In contrast to the innovations mentioned

above which are software-based, optical technologies allow to opti-

mize also the physical layer [8, 13, 18, 19, 31]. Recent optical WAN

technology allows to reconfigure the network topology by flexibly

and rapidly shifting wavelengths across fibers. Wavelengths, the

vehicle to send data across fibers, hence become reconfigurable. In
turn, this enables demand-aware [5] network topologies, which

adjust the network’s capacity to current traffic demands [18, 19].

However, today we do not have a good understanding of how

to exploit such technologies toward efficient bulk data transfers.

While recent work highlights the potential of reconfigurations,

these solutions are still limited to unicast transfers [18, 19], and

hence are not well suited for multicast transfers.

Contributions. In this paper, we initiate the study of how to jointly

optimize one-to-many bulk transfers subject to strict deadlines,

leveraging both multicasting and reconfigurable topologies in our

DaRTree1 approach. DaRTree is based on a deterministic mixed

integer linear programming (MILP) rounding scheme and comes

with several attractive properties. In particular, we show that while

DaRTree combines multicast transfer and topology reconfiguration

optimizations, DaRTree outperforms state-of-the-art of approaches

already even with only one of these optimizations:

• Even under a unicast workload, DaRTree outperforms prior

work such as Owan [19] (which is based on local search

1DaRTree stands for Deadline-aware Reconfigurable Trees.

https://doi.org/10.1145/3326285.3329063

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu

heuristics to reconfigure the WAN), by efficiently relaxing

and rounding an integer program formulation.

• Even if the WAN topology is static, i.e., wavelengths can-

not be reconfigured, DaRTree outperforms prior multicast

approaches like MTree [17] as well. DaRTree generates mul-

ticast Steiner trees with the current network load in mind,

i.e., performs adaptive routing.

• Moreover, DaRTree does not rely on rescheduling or preemp-

tion, and always guarantees deadlines.

• Our extensive simulations on real-world topologies show

that the joint optimization of DaRTree greatly improves on

the state of the art. We can increase the network through-

put and the number of accepted requests by up to 70%, in

particular for larger real-world topologies.

Motivating Example: Consider the four node WAN in Fig. 1,

where we initially have one wavelength (black edge) connecting

s and v , two wavelengths between v and d1,d2, respectively, and
three between d1 and d2. Assume that there is a data transfer re-

quest from s to two destinations d1,d2. As there is a bottleneck

between s and v , a unicast transfer as in Plan A in Fig. 1(a), using

e.g. Amoeba [34], takes twice as long as a multicast transfer as in

Plan B in Fig. 1(b), using e.g. MTree [17]. Both methods can be sped

up by reconfiguring the wavelengths across this WAN, as shown in

Fig. 1(c). Now, unicast transfers finish in half the time using Plan C

(see Fig. 1(d)) that may be found by Owan proposed in [19]. In our

approach DaRTree, we will combine both multicasting and recon-

figuration, as in Plan D in Fig. 1(e). The objective is to improve the

network throughput and accept more requests with tight deadlines.

As seen in Fig. 1(f), only DaRTree can meet a deadline of 0.5, the

other approaches need deadlines of 1 to 2.

2 BACKGROUND AND PRELIMINARIES
In this section, we first give a technological background on recon-

figurable WANs, which we integrate into our formal model, closely

following the assumptions of prior work in this area [18, 19]. We

then provide an overview of our problem setting, formalized in §3.

Background on reconfigurable WANs. Our work is focused on

multicast bulk transfers in WANs connecting multiple DCNs, em-

powered by SDN to centrally control the networking devices and

equipment. However, it can also directly be applied by ISPs that offer

bulk transfer services to clients[19]. A reconfigurable WAN con-

sists of Reconfigurable Optical Add/Drop Multiplexers (ROADMs),

which in turn are connected by optical fiber cables. The optical

fibers are used to transmit wavelengths, whose number and band-

width depends on the technology. For example, using Wavelength

Division Multiplexing (WDM) and On-Off Keying (OOK), 40 wave-

lengths at 10 Gbps can be supported simultaneously [1]. Newer

technologies can support e.g. 88 or more wavelengths using dense

WDM, at higher data rates of 40/100 Gbps [1, 2].

While these WANs are manually configured by default (e.g., for

initial setup), ROADMs also allow to dynamically reconfigure the

wavelength allocations on the fly in the order of hundreds of mil-

liseconds [19]. The number of deployed wavelengths per ROADM is

limited by its number of transponders, where the receiving and send-

ing parts are commonly bundled into bidirectional wavelengths, but

may also be separated [30]. Previous work highlighted the potential

of reconfigurable WANs, but so far focused on (single-hop [18])

s

v

d1 d2

0.5 0.5

(a) Plan A

s

v

d1 d2

1.0

1.0
1.0

(b) Plan B

s

v

d1 d2

(c) Reconfiguration

s

v

d1 d2

1.0 1.0

(d) Plan C

s

v

d1 d2

2.0

(e) Plan D

PlanA

Time

1
1

0.5
Plan C
PlanD

PlanB
2

(f) Completion time

Figure 1: Example for the power of multicast transfers and
topology reconfiguration. Initially, the wavelengths (black
edges) are configured as shown in Fig. 1(a), where each wave-
length connecting two nodes can carry 1 unit of traffic per
second. When the node s wants to replicate a volume of 1
unit data to both d1 and d2, the transmission speed is lim-
ited to 1 unit at node v. As such, 2 seconds are needed ac-
cording to Plan A using unicast transfers (Fig. 1(a)) and 1
second with Plan B using multicast transfers along Steiner
trees (Fig. 1(b)). However, when the wavelengths are recon-
figured as in Fig. 1(c), the transfer times are halved: 1 second
with PlanCusing unicast transfers (Fig. 1(d)) and just 0.5 sec-
onds according to Plan D with multicast transfers (Fig. 1(e)).
unicast bulk transfers [19]. We go beyond these works by incorpo-

rating multicast transfers and by providing an efficient algorithmic

framework based on integer program relaxation and rounding.

Preliminaries.We model a reconfigurable WAN by an undirected

graphG = (V ,E), where the nodesV represent ROADMs connected

to DCNs and the edges E are the fibers connecting them. Each fiber

e ∈ E has a maximum number of wavelengths Ce ∈ N it can

carry and each node vi ∈ V can send Csi ∈ N and receive Cri ∈ N
wavelengths via its transponders in total, respectively. In order to

model the proper wavelength assignment via transponders to the

fibers, we introduce two directed (virtual) links L for each fiber

e ∈ E, in opposite directions: a link l ∈ L from vi to vj on e can be

assigned at most min{Csi ,C
s
j ,Ce } wavelengths.

Problem overview. In this paper, we aim to maximize the number

of multicast data transfers that satisfy their deadlines by jointly

optimizing the network topology together with the routing and

bandwidth allocation dynamically. We assume all the requests

have a strict deadline on the completion time of their data trans-

fers and have the same priority. An extension to different priori-

ties is straightforward hierarchical schemes can be applied. More-

over, requests appear online at discrete timeslots and cannot be

aborted/modified once initiated (no preemption) in order to prevent

thrashing. Note that maximizing the number of transfers to be ad-

mitted under deadlines is NP-hard [6], already for fixed topologies.

3 OFFLINE PROBLEM FORMULATION
Although we focus on the online data transfer problem in this work,

we first introduce its offline version in order to 1) introduce key

notation and 2) provide a mixed integer linear programming (MILP)

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

formulation which we adapt in the later sections to an efficient

online scheme. Note that in the offline case, all submitted multicast

data transfer requests Rall are known a priori. The key notations

are presented in Table 1.

Maximizing the number of successful transfers. The objective
is to maximize the number of data transfers that can finish the data

transmission before their deadlines. Let the binary variable zR
denote whether a data transfer R can complete before its deadline,

then the objective can be expressed by (1).

max

∑
R∈Rall

zR (1)

Planning the topology configuration. Planning the network

topology configuration is carried out by assigning the wavelengths

to inter-datacenter links. Let integer variable дl,t ≥ 0 denote the

number of wavelengths assigned to link l at timeslot t . When deter-

mining which directed link should carry how many wavelengths,

the wavelength capacity of nodes and edges should be taken into

account. Inequalities (2)-(4) express the wavelength constraints on

nodes and edges, respectively. Inequalities (5) enforce the valid

values of variables дl,t ,∀(l , t).
∀i, t :

∑
l

I (l ∈ Li,out)дl,t ≤ Csi,t (2)

∀i, t :
∑
l

I (l ∈ Li,in)дl,t ≤ Cri,t (3)

∀e, t :
∑
l

I (l ∈ e)дl,t ≤ Ce,t (4)

∀l , t : дl,t ∈ N (5)

The indicator I (l ∈ Li,out) denotes whether the directed link l is
an outgoing link connection of node i , and Li,out denotes a set of
the outgoing links that connect to node i .

The indicator I (l ∈ Li,in) denotes whether the directed link l is
an incoming link of node i , and Li,in denotes a set of the incoming

links that connect to node i . Lastly, the indicator I (l ∈ e) denotes
whether the directed link l goes through edge e .
Allocating the transmission rate. We assume that each wave-

length carries a bandwidth of c , hence the capacity of link l is cдl,t
at time t . As this work considers multicast transfers, we use multi-

ple forwarding trees for delivering the data. More specifically, we

compute k Steiner trees for every transfer and plan at which rate

each tree transmits data, we will describe the corresponding details

later in §4.2. In the following, let KR denote a set of Steiner trees,

each connecting the source and all the receivers of data transfer R.
Let xR,κ,t denote the data transmission rate of tree κ of request R
at time t . Inequality (6) then enforces that all the data should be

transferred before the deadline. Inequality (7) states that the traffic

load on each link should not exceed the link capacity at any time,

where I (l ∈ κ) denotes whether a link l is traversed by tree κ, as
the link load should not exceed the capacity. Lastly, Inequalities

(8)-(10) enforce valid ranges for the variables z and x .

∀R :

t dlR∑
t=t arrR

∑
κ ∈KR

xR,κ,t = zR fR (6)

∀l , t :
∑

R∈Rall

∑
κ ∈KR

xR,κ,t I (l ∈ κ) ≤ cдl,t (7)

Table 1: Key notations used in the problem formulation
Network model

V the set of all datacenters (i.e., the nodes)

E the set of all inter-datacenter fibers (i.e., the edges)

L the set of all inter-datacenter directed link connections

Csi,t the number of wavelengths that node i ∈ V can send at time t

Cri,t the number of wavelengths that node i ∈ V can receive at time t

Ce,t the number of wavelengths that edge e ∈ E can carry at time t
c the bandwidth capacity carried with per wavelength

Transfer request R
s the source datacenter

d the set of receivers: d ⊆ V \ {s}
f the volume of to-be-transferred data

tarr the arrival time of request R

tdl the deadline required to complete the data transfer R
K a set of k forwarding trees: K = {κ1, · · · ,κk }, each connecting

the source to the receivers

Rall the set of all transfer requests

Internal and decision variables
дl,t the number of wavelengths assigned to link l at time t
xR,κ the transmission rate on forwarding tree κ for request R during

its lifetime

xR,κ,t the transmission rate on forwarding tree κ for request R at time t
zR binary, whether request R can be completed before its deadline

∀R : zR ∈ {0, 1} (8)

∀R,κ, t < [tarrR , t
dl

R] : xR,κ,t = 0 (9)

∀R,κ, t ∈ [tarrR , t
dl

R] : xR,κ,t ≥ 0 (10)

4 ONLINE TRANSFER ALLOCATION AND
TOPOLOGY RECONFIGURATION

We now present DaRTree, an online approach that completes a max-

imum number of transfers before their deadlines by well-designed

resource allocation and topology reconfiguration. We first give an

overview, then describe the adaptive routing component, and finally

the wavelength and rate allocation.

4.1 Overview of DaRTree
DaRTree relies on the following main ideas:

(1) When a new batch of requests arrives, we compute a set of k
Steiner trees for each transfer. This computation is separated

from the wavelength allocation part, to speed up the com-

pletion time of DaRTree. However, DaRTree is not oblivious
to the network utilization in this step: the routing trees are

created in a load-adaptive manner.

(2) Next, to relax MILP constraints, we set a small amount of

wavelengths aside, to obtain feasible solutions. These spare

resources are optimized according to the chosen Steiner

trees.

(3) We then maximize the number of requests admitted in the

current timeslot. In order to provision for future requests,

we spread the resource usage over a longer time, instead of

greedily filling the network for the next few timeslots.

(4) Lastly, we admit the maximum number of requests possible

for this timeslot and obtain a feasible wavelength allocation

with the spare resources. We would like to emphasize that all

allocation details for the current transfer requests stay fixed:

they may not be modified or preempted in future timeslots.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu

4.2 Load-Adaptive Multicast Routing
Previous work [17] that computed multiple multicast routing trees

was load-oblivious manner, i.e., did not account for the current

resource consumption. We improve this idea by weighing the links

according to their leftover bandwidth and transfer load. In the

following, we describe how we adapt link weights and then give

details for the Steiner tree computation.

Link weight adaption. We initialize the link weight to be the

reciprocal of the leftover bandwidth. For every link l ∈ L, we set the
initial link weightwl to

1

cl
, where cl is the amount of bandwidth

that is not used by the admitted data transfers.

The remaining bandwidth cl of a link l consists of two parts.

The first part is the residual bandwidth of the total bandwidth

capacities of the assigned wavelengths minus the bandwidth re-

served for previously admitted transfers R ′. Let cresl,t and д
′
l,t respec-

tively denote such residual bandwidth and the number of assigned

wavelengths on link l at time t . Then we can calculate cresl,t by

cд′l,t −
∑
R∈R′,κ ∈KR,t xR,κ,t I (l ∈ κ). The second part is the band-

width potential of the yet unassigned wavelengths. If link l is from
node vi to vj on edge e , we can calculate the maximum number

of wavelengths that can be assigned to it by min(C
s
i,t ,C

r
j,t ,Ce,t),

where C
s
i,t , C

r
j,t , Ce,t denote the number of unassigned wave-

lengths node i can send, node j can receive, and edge e can carry at

time t , respectively. So, the total potential capacities cfreel,t of unas-

signed wavelengths is c ×min(C
s
i,t ,C

r
j,t ,Ce,t) for link l at time t .

We thus calculate the amount cl of leftover bandwidth on link l by∑
t (c

res

l,t + c
free

l,t).

Tree computation.We now describe our method to compute mul-

tiple Steiner trees in order to balance the traffic load across the

network. We compute the trees on a request by request basis and

the k minimum-weight Steiner trees for each transfer request on a

tree by tree basis. To this end, we iteratively increase the weight of

a link by one if it appears on newly computed trees. For this link

weight update, we use wl to denote the current weight of link l .
Assume that we have found a new Steiner tree κ ′ using current link
weight, we changewl towl +1 if link l is on this tree, namely l ∈ κ ′.
Then, we feed the updated link weights to the tree computation

algorithm to find the next min-weight Steiner tree. We repeat this

iterative computation process until we obtained k trees for each

transfer. We may find the same trees for transfers in some extreme

cases, e.g., where we have large k in a sparse network. However,

this would not cause any interference to the execution of DaRTree.
Alternatives. One could also consider using link-disjoint Steiner

trees to balance the traffic of data transfers across network links.

However, in experiments, the load-adaptive tree generation out-

performed this approach. The reason is that link-disjointedness is

oblivious to the remaining link capacity. As such, e.g. routing two

trees over a link with large bandwidth is preferable over two links

with small remaining capacity.

4.3 Wavelength assignment and rate allocation
Wenow specify how to compute an efficient wavelength assignment

and rate allocation, in order to guarantee deadline satisfaction for

as many multicast data transfers as possible.

t1

2

2 3

R2 R1

0 4 5

BW

6

(a) The greedy allocation of

R1 blocks the completion of

R2 until t=4. Only a size 2

transfer is possible.

2

R2 R1

BW

1 2 30 4 5 6 t

(b) A better allocation: allocat-

ingR1 byminimizing resource

usage allows R2 to complete.

2
BW

1 2 30 4 5 6 t

(c) Even more efficient than in

Fig. 2(b), by filling up the ca-

pacity of the current timeslot.

Figure 2: A greedy allocation can easily block future trans-
fers, even though both requests could be admitted online
with resource usage minimization.

Adapting the objective function. In the offline case with prior

knowledge of all future transfer requests, one can directly find the

global optimal solution that completes the maximum number of

transfers before their deadlines, by solving the offline formulation.

For the online problem on the other hand, we only know the transfer

requests that have been submitted so far, and not the future ones.

In principle, we could adapt the offline formulation in a greedy

fashion to the online case, by maximizing the number of requests

that just arrived at this timeslot, aiming to finish them as quickly

as possible. However, we observed in preliminary experiments that

this approach is too greedy in realistic workloads. More specifically,

it congests the network in the near future, leaving no space for

upcoming requests. We provide an intuition in a small example.

Don’t be too greedy. We use the example in Fig. 2 to illustrate

that being too greedy is not the best choice. Request R1 appears in
timeslot 0, with a deadline and size of 6, whereas R2 appears after
in timeslot 1, with a size of 3 and a deadline of 4. Fig. 2(a) shows

how to greedily allocate request R1, minimizing its completion time

by assigning it the complete bandwidth of 2 for the next 3 timeslots.

However, when request R2 arrives, R1 already blocks nearly all

resources, allowing only a single timeslot with bandwidth 2, not

enough to satisfy R2. On the other hand, when we spread out the

resource usage of R1 until its hard deadline, R2 can still be admitted,

see Fig. 2(b). Hence, by scaling back the greediness of the allocation

algorithm, we can admit both requests, instead of just one. We thus

choose to minimize the amount of resource usage in DaRTree, in
order to be prepared for future transfers. Note that it is never useful

to waste resources in the current timeslot: we therefore maximize

the transfer rates for the newly admitted requests in their first

timeslot, as shown in Fig. 2(c).

Algorithm 1 summarizes our algorithm: it performs the admis-

sion control together with the wavelength assignment and the

rate allocation solutions for a batch of transfer requests (newly

submitted to the system).

Minimizing resource consumption. Inspired by the above ex-

ample, we propose to allocate each admitted transfer a minimum

rate s.t. it still meets its deadline. We further extend this idea and

also keep the number of needed wavelengths small, in order to

freely allocate them in the next timeslots. We thus formulate the

wavelength assignment and rate allocation problem as an optimiza-

tion objective that minimizes the wavelengths needed to satisfy the

requests. We formulate this transfer problem as a MILP P(η, ε) =
{(5), (8), (11)-(19)}, where (11) is the objective function and (5), (8),

(12)-(19) are constraints (Line 4, Alg. 1).

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

F (η, ε) = {minη,max ε} (11)

∀i, t :
∑
l

I (l ∈ Li,out)дl,t ≤ C
s
i,t (12)

∀i, t :
∑
l

I (l ∈ Li,in)дl,t ≤ C
r
i,t (13)

∀e, t :
∑
l

I (l ∈ e)дl,t ≤ Ce,t (14)∑
l,t

wl,tдl,t ≤ η (15)∑
R∈Rcur

zR ≥ ε (16)

∀R : (tdlR − t
arr

R)
∑

κ ∈KR

xR,κ = zR fR (17)

∀l , t :
∑

R∈Rcur

∑
κ ∈KR

xR,κ I (l ∈ κ)I
′(t ∈ [tarrR , t

dl

R]) ≤ cresl,t + cдl,t

(18)

∀R,κ : xR,κ ≥ 0 (19)

Observe that P(η, ε) has two different optimization objectives,

which are minimizing the weighted assigned number η of wave-

lengths across links and timeslots, and maximizing the number ε
of deadline-satisfied data transfers from a set Rcur that includes all

processing transfers at current time.

Moreover, when not all requests can be admitted, we prefer to

use link resources in earlier timeslots. To this end, we introduce a

weightwl,t for wavelengths of link l in timeslot t and set the value

ofwl,t to t
2
. Lastly, in order to obtain tractable runtimes, we use

an iterative solver to find optimized values of η and ε .
Iterative solver. In this context, an iterative optimization solver

fixes one of the two η, ε values and optimizes the other one. Hence,

we start with ε =m, the total number of data transfers submitted

in current time, and conduct a search to find the smallest η for

which P(η,m) is feasible (Line 2-Line 13, Algorithm 1). Ideally, we

want to complete all requests before their deadline—however, the

optimization problem may be infeasible if the remaining bandwidth

resources are insufficient. We then decrease the value of ε and recall
P(η, ε) (ε is a constant here). We repeat the above procedure until

we find the minimum number of wavelengths to satisfy ε transfers.
Solving P(η, ε) by deterministic rounding. The optimization

model contains integer variables which increase quadratically with

transfer deadline and network scale, whichmakes it difficult to solve

in real time for the transfers with a far deadline in networks with

many links. We thus resort to a LP relaxation and (deterministic)

rounding algorithm to obtain solutions quickly. More specifically,

we first relax the integer variables дl,t to be continuous and then

solve the program P(η, ε), i.e., we set

дl,t ≥ 0 . (20)

Given a fractional solution д∗, we intend to obtain the integer

wavelength solution д̂ by setting д̂l,t = ⌈д∗l,t ⌉,∀l , t .
However, directly rounding up the fractional solution д may

violate the wavelength constraints (12)-(14) of the integer program.

To obtain a feasible solution that satisfies the wavelength capacity

constraints, we thus set aside a small amount of wavelengths ahead

Algorithm 1 Fast and efficient transfer allocation and topology

reconfiguration algorithm

Input: A batch of m new transfer requests Rcur =

{R1,R2, · · · ,Rm }, a set of Steiner trees computed for the rout-

ing of these transfers, residual bandwidth capacities cres =

{cresl,t ,∀l ∈ L, t}, unassigned wavelengths C
r
i,t , C

s
i,t , Ce,t ∀i ∈

V , e ∈ E, t .
Output: Admitted transfers, associated wavelength assign-

ment, rate allocation that satisfies their deadlines.

1: Set aside wavelengths according to the forwarding trees;

2: Initialize ε =m;

3: while ε > 0 do
4: Build and solve optimization programwith constraints from

(8), (12)-(20) and an objective of (11) with given ε ;
5: if feasible, i.e., solution exists then
6: Admit ε new transfers;

7: дl,t =
⌈
дl,t

⌉
,∀l , t ;

8: cres ← UpdateResidualCapacity(cres,д,z,x);
9: return Admission decisions of transfer requests (z) and

rate allocation x of admitted transfers.

10: else
11: Decrease ε and set it to be ε − 1;
12: end if
13: end while
14: return Reject current submitted transfers Rcur.

15: function UpdateResidualCapacity(cres,д,z,x)
16: for (l ∈ L, t ∈ [minR∈Rcur {tarrR },maxR∈Rcur {tdlR }]) do
17: cresl,t = c

res

l,t + дl,t

−
∑
R∈Rcur

∑
κ ∈KR zRxR,κ I (l ∈ κ)I

′(t ∈ [tarrR , t
dl

R);

18: end for
19: Fill up the current timeslot with the traffic of current re-

quests Rcur allocated in future timeslots;

20: end function

of time. Observe that if we were to reserve a wavelength for every

link and reduce the maximum amount of wavelengths per fiber, we

could always round up—but at the cost of efficiency. We improve

this idea by only reserving wavelengths for links that are used by

the forwarding trees of requests that arrived in the current timeslot.

LetK denote the set of routing trees for the current requests, then

we set aside

∑
κ ∈K

∑
l ∈κ I (l ∈ Li,out) and

∑
κ ∈K

∑
l ∈κ I (l ∈ Li,in)

wavelengths for a node i to send and receive, respectively. We also

set

∑
κ ∈K

∑
l ∈κ I (l ∈ e) wavelengths aside to not violate (14).

Updating the residual link capacity. After obtaining the so-

lution of the wavelength assignment {дl,t∀l , t}, the rate alloca-

tion {xR,κ ,∀R ∈ Rcur,κ ∈ KR }, and the transfer acceptance sta-

tus {zR ,∀R ∈ Rcur}, it is easy to update the residual capacities

{cresl,t ,∀l , t}. For every link l , its new residual capacity is calculated

by adding the capacities carried by newly assigned wavelengths,

and deducting the capacities allocated to the admitted transfers

(Line 17, Algorithm 1).

5 EVALUATION
We compare DaRTree to several state-of-the-art approaches in simu-

lations. We study multiple different scenarios, considering different

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu

Table 2: Topologies used in our simulations
Name Description

Internet2 [19] ISP network with 9 datacenters and 18 inter-DC links.

GScale [15] Google’s inter-DCWANwhich has 12 datacenters and

19 inter-datacenter links.

Equnix [3] An inter-DC WAN from Equnix, which connects 20

datacenters using 141 inter-datacenter links.

IDN [14] Microsoft’s inter-datacenterWANwith 40 datacenters,

each connected to 2-16 other datacenters.

real-world topologies. The simulation setup is described in §5.1.

We show in §5.2 that DaRTree outperforms prior work already for

unicast transfers or for staticWAN topologies. We also show that

the integer-relaxation used by DaRTree yields efficient runtimes. A

comprehensive general evaluation is then performed in §5.3.

5.1 Simulation Setup
Network topologies: We run simulations over four real-world

inter-datacenter networks of large cloud service providers. Table 2

shows the details about these network topologies. Following the

assumptions in [34], we assign an initial uniform capacity of 160

Gbps to every link, representing the static topology configuration.

Analogously to the evaluations in [19], in our experiments, each

wavelength can carry 10 Gbps. We place sender and receiver hard-

ware accordingly. In order to facilitate meaningful and realistic

reconfiguration scenarios, we allow a link to carry up to 50% more

wavelengths than initially assigned (at the cost of borrowing adja-

cent wavelengths).

Transfer workloads. We will use synthetic models to generate

multicast transfer requests similar to related work [19, 20, 24, 34].

We assume a slotted timeline, where time is measured in the num-

ber of timeslots, where each slot has a length of 5 minutes. Transfer

requests arrive at the system at the beginning of each timeslot.

To generate transfer requests, we model the request arrival time

as a Poisson process, where the arrival rate factor per timeslot is

λ. For an experiment that simulates a time span of Tspan times-

lots, we generate Tspan × λ transfer requests on average. For each

transfer request, we randomly choose a datacenter as the source

and γ (N − 1) other datacenters as the receivers, where the receiver
factor γ ∈ [10%, 100%] and N is the total number of datacenters

in a network. We choose the deadline for each data transfer from

a uniform distribution between [T , δT], where T is the timeslot

length and δ is a factor used to change the tightness of deadlines.

We will refer to this factor as the deadline factor in the following.

To generate the data size for each transfer, we integrate the average

transfer throughput under an Exponential distribution with a mean

of 20 Gbps. Then, we calculate the data size by multiplying the

throughput by the transfer lifespan, e.g., the data size would be 9TB

on average for a transfer with an one hour deadline.

Simulation environment. We performed all simulations using a

Python script that employs MOSEK [4] as our backend solver to

find the solutions to the optimization models.

Comparison with the state of the art. We compare DaRTree
with the following works. All the compared approaches use admis-

sion control for the data transfers submitted to the system.

• MTree [17] is the state-of-the-art approach that adopts k
trees to optimize multicast transfers in non-reconfigurable

(static) topologies.

(a) Deadline-met ratio comparison (b) Throughput comparison

Figure 3: DaRTree outperforms Owan for unicast transfers.

• Amoeba [34] allocates rates over k-paths for each admitted

data transfer and aims to guarantee the deadline for as many

unicast transfers as possible in static topologies.

• Owan [19] also adopts k-paths to deliver data and jointly

controls the network topology and transmission rates of

paths to reduce the completion time or satisfy the deadline

for inter-datacenter unicast transfers. More specifically, we

utilize the algorithm proposed by Owan that optimizes the

data transfers with deadlines.

To simulateOwan andAmoeba in our setting, we split eachmulticast

into multiple unicast transfers. For further comparisons in §5.3, we

also allow fractional completion of multicast data transfers for

Owan and Amoeba (e.g. to just 2 of 3 receivers), denoted as Owan-
and Amoeba-Unicast, respectively.

Performance metrics. We evaluate the different approaches in a

wide spectrum of performance metrics, such as deadline-met ratio

of multicast (unicast) transfers, the throughput of multicast (unicast)

transfers, but also allocation time. We do not allow preemption or

rescheduling of admitted transfers.

5.2 Unicast, Static WAN, and Runtime
Unicast transfers: DaRTree vs. Owan. We first evaluate how

DaRTree compares against Owan even if there are just unicast re-

quests (i.e., all the arriving requests only have one destination). To

simulate unicast transfers, we randomly select one datacenter as

the receiver for each transfer. We set the deadline factor δ to six

(0.5 hours), which will generate transfers with a size following an

exponential distribution with a mean of 4.5TB. Each run simulates

2.5 hours (30× 5-minute timeslots), with a request arrival rate λ
randomly chosen from {1, 2, 3}. Hence, we will on average generate

30 to 90 transfer requests for each run. We collect the percentage of

successfully admitted requests and the average network through-

put. To evaluate how DaRTree compares to Owan, we compute the

performance gain by dividing the transfer deadline-met ratio and

the network throughput of DaRTree by those of Owan, respectively.
Fig. 3 reports the CDF of the performance gain in the transfer

deadline-met ratio and the average network throughput over 50 ex-

periments. Compared to Owan, DaRTree achieves a higher deadline-
met ratio in about 75% experiments in the Internet2, GScale and

Equnix topologies. In the IDN topology, DaRTree consistently out-

performs Owan for every experiment and improves the deadline-

met ratio by 0.3× to 2×. In addition, the throughput results in

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

(a) Deadline-met ratio comparison (b) Throughput comparison

Figure 4: DaRTree outperformsMTree in static WANs.

Fig. 3(b) show thatDaRTree outperformsOwan on network through-
put in around 80% experiments over Internet2, GScale and Equnix

topologies and improves the average network throughput by at

least 2× and up to 7.8× in the IDN topology. Hence, we can con-

clude that the relaxed optimization-based allocation in DaRTree
outperforms the simulated annealing based algorithm of Owan in

most unicast experiments.

StaticWANs:DaRTree vs.MTree.We next evaluate how DaRTree
compares against MTree if the topology is not reconfigurable, i.e.,

in static WANs. To this end, we turn off all functions relating to the

reconfiguration part in DaRTree.
Fig. 4(a) plots the CDF of the deadline-met ratio gain of DaRTree.

Compared to the CDFs in Fig. 3, the advantage of DaRTree versus
MTree is less prevalent. However, DaRTree can still admit around

10% to 40% more transfers than MTree in 25%-55% of the experi-

ments, with the remaining ones being very close. Moreover, Fig.

4(b) shows that DaRTree achieves a higher network throughput

for more than 99% of the experiments, compared to MTree. The
point (5.8, 1) in particular highlights that DaRTree can obtain up to

5.8× higher throughput thanMTree in the IDN network: the reason

is that DaRTree uses load-adaptive routing trees, which distrib-

ute traffic more evenly across the network, even without topology

reconfiguration.

Runtime improvement due to relaxation. We now evaluate

the time efficiency of DaRTree by comparing it with a version that

omits our rounding method and uses integer variables д to find the

solution. Since the deadline is key to determining the number of

variables д, we generate transfers with varying deadline factors, in

the smallest and largest real-world topology.

Fig. 5 plots the computation time for the Internet2 and the IDN

topologies, with 40-80 allocations per algorithm and deadline factor.

Figs. 5(a) and 5(b) show that the computation time is up to 250 sec-

onds longer for the Internet2 network and up to 400 seconds longer

for the IDN network, respectively. In contrast, DaRTree maintains

a relatively small computation time, no more than 15 seconds for

the Internet2 network and 30 seconds for the IDN network. In addi-

tion, we can also see that the computation time of both approaches

increases as the deadline factor grows and as the network size

scales up. We thus conclude that the integer relaxation technique

in DaRTree leads to significantly improved computation times.

5.3 General Evaluation of DaRTree
We now evaluate the impact of the different parameters used to gen-

erate data transfers on the performance of the different approaches.

We parametrize: 1) the request arrival rate factor λ, 2) the deadline
factor δ , and 3) the receiver fraction factor γ . We conduct five runs

for each setting per parameter, in every topology, and evaluate

12 24 36 48 60 72 84 96

Deadline factor

0.25

1

4

16

64

256

C
o

m
p

u
ta

tio
n

 t
im

e
 (

se
co

n
d

s)

12 24 36 48 60 72 84 96

Deadline factor

0.25

1

4

16

64

256without relaxation relaxation

(a) Internet2

6 12 18 24 30 36 42 48 54 60
Deadline factor

4

8

16

32

64

128

256

512

C
o

m
p

u
ta

tio
n

 t
im

e
 (

se
co

n
d

s)

6 12 18 24 30 36 42 48 54 60

Deadline factor

4

8

16

32

64

128

256

512
without relaxation relaxation

(b) IDN

Figure 5: Computation time comparison of DaRTree with
and without relaxation. The y-axis is logarithmic.

all approaches in each run. We report on the average number of

data transfers that meet their deadlines and the average network

throughput of these experiments. In the figures,Amoeba- andOwan-
Unicast refer to the deadline-met receivers of (including partially

allocated) requests, and Amoeba- and Owan- Multicast only refers

to the requests where all the receivers meet their deadlines.

Impact of the request arrival rate factor. We now evaluate the

impact of the request arrival rate. We simulate a timespan of 60

timeslots for each run, fix the deadline factor to 6, and randomly

choose {20%, 30%, 50%} of the datacenters as receivers. We vary the

request arrival rate λ from 1 to 5.

Fig. 6 plots the average percentage of data transfers that can

meet their deadlines and the average network throughput obtained

under different request arrival rates over the four network topolo-

gies. Figs. 6(a)-6(d) show that the percentage of deadline-met data

transfers decreases as the request arrival rate increases for all four

approaches. These results are as expected since both the number of

data transfers submitted to the system and the network traffic load

increases as the request arrival rate grows. However, we can see

that DaRTree always maintains a deadline-met ratio at a high level

of 80% to 100% and outperforms all other approaches. Moreover,

DaRTree can satisfy the deadlines for up to 30% more multicast

transfers, compared to Owan, Amoeba and MTree. We also see that

although Owan and Amoeba achieve a high deadline-met ratio for

unicast transfers, they obtain relatively low deadline-met ratios for

multicast transfers. The reason is that they only focus on guaran-

teeing the deadline for each individual unicast transfer and may fail

to satisfy the deadline for all the receivers of the multicast transfer.

RegardingMTree, its transfer deadline-met ratio drops dramatically

as the request arrival rate increases. DaRTree outperforms Owan
and Amoeba for deadline satisfaction of multicast transfers on the

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu

DaRTreeMax DaRTreeMin DaRTree Mtree Amoeba-Unicast Amoeba-Multicast Owan-Unicast Owan-Multicast

30
40
50
60
70
80
90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(a) Internet2

10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(b) GScale

50

60

70

80

90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(c) Equnix

40

50

60

70

80

90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(d) IDN

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

 b
y

D
aR

Tr
ee

)

Request Arrival Rate (per timeslot)

(e) Internet2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

 b
y

D
aR

Tr
ee

)

Request Arrival Rate (per timeslot)

(f) GScale

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

 b
y

D
aR

Tr
ee

)

Request Arrival Rate (per timeslot)

(g) Equnix

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

 b
y

D
aR

Tr
ee

)

Request Arrival Rate (per timeslot)

(h) IDN

Figure 6: Impact of the request arrival rate. (a-d) show the ratio of deadline-met transfers, (e-f) show network throughput,
respectively. DaRTreeMin and DaRTreeMax denotes minimum and maximum values of DaRTree over all runs, respectively.
DaRTree,MTree, Amoeba-Unicast, Amoeba-Multicast, Owan-Unicast and Owan-Multicast denote average values over all runs.

Internet2 and the GScale topologies, but falls behind when the

request arrival rate is λ ≥ 2 on both Equnix and IDN topologies
2
.

Figs 6(e)-6(h) plot the network throughput of all compared ap-

proaches, normalized by that of DaRTree. We observe that DaRTree
achieves 20%-70% and 40%-70% higher throughput than MTree,
Amoeba andOwan, respectively. Even against fractional completion,

the throughput is 20% to 40% higher.

Impact of the deadline factor. In this part, we evaluate how the

tightness of the deadline impacts the performance of the approaches.

We generate 7TB of data for each transfer and adjust the deadline

factor δ from 5 to 25 to simulate different deadlines. Fig. 7 plots

the percentage of transfers that meet their deadlines and the aver-

age throughput under different deadline factors. Naturally, more

transfers will meet their deadlines as the deadline factor increases

due to higher flexibility, as shown in Fig. 7(a)-7(d). DaRTree admits

over 95% of the multicast transfers, roughly 10% to 30% more than

the best of the other approaches. The results are similar for the

throughput gain. Maybe interestingly, the performance of MTree
degrades for larger topologies, unlike our DaRTree approach.
Receiver factor. In the last set of experiments, we evaluate the

impact of the number of receivers for multicast transfers. To this

end, we generate a constant data size for each transfer and set it

to be 5TB (Internet2), 7TB (GScale), 10TB (Equinix), 14TB (IDN).

Each transfer has a deadline of 6 timeslots (0.5 hours). To generate

transfers with a varying number of receivers, we set the receiver

factor of every multicast transfer to be different percentages of

datacenters. Figs. 8(a)-8(d) show the factor of improvement on the

percentages of transfers that meet their deadlines. Compared to

2
We note that a similar performance of Owan and Amoeba was already visible in [19,

Fig. 9], with slightly better results for Owan, which is consistent with our results in

this and the following experiments.

MTree, DaRTree accepts around 10%-20% more multicast transfers

in the four topologies. Against Amoeba and Owan, DaRTree satisfies
at least 5% and up to 49% more multicast transfers. We can also

observe that the improvement of deadline-met multicast transfers

increases as the number of transfer receivers increases and as the

network scales up. Figs. 8(e)-8(h) show the factor of improvement

on the average network throughput. Compared to MTree, DaRTree
improves the average network throughput by 1.15× to 1.42×. In

relation to Amoeba, DaRTree improves the average throughput of

unicast transfers by up to 1.79× and that of multicast transfers by up

to 7.37×. Lastly, for Owan, DaRTree improves the average through-

put of unicast transfers by 1.16× to 2.24× and that of multicast

transfers by up to 8.63×. The trend of improvements on network

throughput is similar to that of the deadline-satisfied transfers, re-

maining roughly identical for MTree and rising as the number of

receivers increases for both Amoeba and Owan.
Summary. The results from §5.2 indicate that the performance

of DaRTree goes beyond simply combining multicast routing and

reconfigurable WANs: in both scenarios, we improve upon prior

work, in particular for larger networks. As we have seen in §5.3,

leveraging load-adaptive Steiner trees and a rounding-based opti-

mization significantly outperforms state of the art approaches in all

four simulated real-world topologies. In particular, we improve the

transfer admission rate and the throughput by up to 70% in larger

networks.

6 RELATEDWORK
Traffic engineering for inter-datacenter WANs is receiving increas-

ing attention in networking research as the number of datacen-

ters and inter-datacenter traffic demands are growing at an un-

precedented rate. Earlier work focused on network-wide objectives

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

DaRTreeMax DaRTreeMin DaRTree Mtree Amoeba-Unicast Amoeba-Multicast Owan-Unicast Owan-Multicast

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Deadline Factor

(a) Internet2

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(b) GScale

30
40
50
60
70
80
90

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(c) Equnix

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(d) IDN

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e T

hr
ou

gh
pu

t
(N

or
m

ai
liz

ed
 b

y
D

aR
Tr

ee
)

Deadline Factor

(e) Internet2

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e T

hr
ou

gh
pu

t
(N

or
m

ai
liz

ed
 b

y
D

aR
Tr

ee
)

Deadline Factor

(f) GScale

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e T

hr
ou

gh
pu

t
(N

or
m

ai
liz

ed
 b

y
D

aR
Tr

ee
)

Deadline Factor

(g) Equnix

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e T

hr
ou

gh
pu

t
(N

or
m

ai
liz

ed
 b

y
D

aR
Tr

ee
)

Deadline Factor

(h) IDN

Figure 7: Impact of the deadline factor. (a-d) show the deadline-met ratio, and (e-f) show the network throughput, respectively.
DaRTreeMin and DaRTreeMax denotes the minimum and the maximum value of DaRTree over all runs, respectively. DaRTree,
MTree, Amoeba-Unicast, Amoeba-Multicast, Owan-Unicast and Owan-Multicast denote the average values over all runs.

such as minimizing the maximum network utilization and maxi-

mizing network throughput [14, 15]. Recent work considers more

fine-grained objectives, like meeting deadlines of bulk data trans-

fers [17, 19, 20, 23, 24, 26, 34] and minimizing the completion time

of large transfers [18, 29]. In this context, most work focuses on

unicast transfers, with some more recent work also considering the

optimization of multicast transfers.

Unicast transfers: Unicast transfers in inter-datacenter network

have been the focus of much attention [18–20, 24, 34]. These works

adoptk-shortest paths to deliver traffic and control the transmission

rate along these paths to optimize the unicast transfers. Tempus

[20] aims to allocate transfers fairly by delivering the maximum

same deadline-met data fraction for all transfers. Amoeba [34]

performs online admission control and focuses on guaranteeing

the deadlines for a maximum number of transfers. Luo et al. [24]
propose a competitive online algorithm to maximize the system

utility of delivering transfers with either hard or soft deadlines. All

the above works do not take multicast transfers into consideration.

Multicast transfers:With the exponential growth of geo-replication,

there has also been a spike in interest to design algorithms explicitly

for multicast data transfers in inter-datacenterWANs [17, 23, 26, 29].

DDCCast [26] proposes to satisfy the transfer deadlines by deliver-

ing data over a forwarding tree. QuickCast [29] considers multiple

forwarding trees and focuses on reducing mean completion times

of elastic multicast transfers by taking into account forwarding tree

selection and rate-allocation. Ji et al. [17] focus on providing dead-

line promises to as many transfers as possible by controlling the

transfer transmission rate over non-adaptive routing trees. Recently,

Iris [27] proposes to consider mixed completion time objectives.

Luo et al. [23] consider k-path routing and aim to maximize the

number of deadline-satisfied transfers by allowing the receivers

that have already received the replica to send data to the remaining

receivers. There also exists a group of works [9, 21, 22, 32, 33, 35]

that adopt a store-and-forward mechanism to optimize bulk inter-

datacenter traffic by using additional storage capacities of servers

in intermediate datacenters, which is not investigated by this work

and many related works. All above proposals consider transfers

over non-reconfigurable networks.

Reconfigurable networks:The power of dynamic inter-datacenter

WAN reconfiguration was recently showcased by Owan [18, 19].

In order to satisfy deadlines for unicast transfers and reduce their

completion time, Owan jointly reconfigures the network topology

by a local search heuristic and controls the transmission rate along

k-paths. Our approach on the other hand utilizes multicast routing

along k-Steiner trees and leverages an efficiently relaxed optimiza-

tion program to assign wavelengths. An orthogonal direction is to

change the fiber bandwidth depending on the SNR [31] respectively

to virtualize/provision unused fiber connections [8, 13]. Notwith-

standing, there is also a wide spectrum of reconfigurable network

research inside datacenters, e.g., optimizing path lengths [10–12].

7 CONCLUSION
Our work was motivated by the rapidly increasing scale of geo-

replication and the recently uncovered possibilities of physical

layer adaptation in the WAN. To this end, we presented DaRTree,
an efficient approach to maximize the online admission of deadline-

sensitivemulticast transfer requests in reconfigurableWANs.DaRTree
leverages 1) load-adaptive Steiner tree routing and 2) topology re-

configuration via relaxed optimization solvers for greater efficiency,

without requiring rescheduling or preemption. Our comparative

simulations for real-world topologies showed that DaRTree signifi-
cantly improves the network throughput and the number of admit-

ted requests over prior work. Moreover, DaRTree also enhances the

performance of unicast transfers in reconfigurable WANs and of

multicast transfers in WANs without reconfiguration.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu

w.r.t.Mtree w.r.t.Amoeba-Unicast w.r.t.Amoeba-Multicast w.r.t.Owan-Unicast w.r.t.Owan-Multicast

0

10

20

30

40

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(a) Internet2

0

10

20

30

40

50

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(b) GScale

0

10

20

30

40

50

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(c) Equnix

0

10

20

30

40

50

20 40 60

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(d) IDN

1

2

3

4

5

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(e) Internet2

1

3

5

7

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(f) GScale

1

3

5

7

9

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(g) Equnix

1

3

5

7

20 40 60

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(h) IDN

Figure 8: Impact of the receiver factor. (a-d) are improvements (in %) of transfers that meet their deadlines, (e-f) are improve-
ments on network throughput.

We believe that our work opens several interesting avenues for

future research. In particular, it will be interesting to explore the

potential benefits of allowing rescheduling or preemption.

ACKNOWLEDGMENTS
We would like to thank the authors of [19] for providing us with

their source code. We would also like to thank Mohammad Noormo-

hammadpour and the anonymous reviewers for their helpful com-

ments. This work was partially supported by the National Natural

Science Foundation of China (61571098); the 111 Project (B14039);

and the China Scholarship Council (201806070026).

REFERENCES
[1] 2011. The path to 100G (Fujitsu Network Communications). http://www.fujitsu.

com/downloads/TEL/fnc/whitepapers/Path-to-100G.pdf.

[2] 2015. White Paper: Next-Generation ROADM Architectures and Benefits. https:

//www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf.

[3] 2019. Global Data Centers. https://www.equinix.com/locations/.

[4] 2019. MOSEK. https://www.mosek.com/.

[5] Chen Avin and Stefan Schmid. 2018. Toward demand-aware networking: a theory

for self-adjusting networks. Computer Communication Review 48, 5 (2018), 31–40.

[6] M. A. Bonuccelli and M. C. Clò. 2001. Scheduling of real-time messages in optical

broadcast-and-select networks. IEEE/ACM Trans. Netw. 9, 5 (2001), 541–552.
[7] Cisco. 2018. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021.

[8] Ramakrishnan Durairajan et al. 2018. GreyFiber: A System for Providing Flexible

Access to Wide-Area Connectivity. arXiv:1807.05242 (2018).
[9] Yuan Feng, Baochun Li, and Bo Li. 2012. Postcard: Minimizing costs on inter-

datacenter traffic with store-and-forward. In IEEE 32nd International Conference
on Distributed Computing Systems Workshops. 43–50.

[10] T. Fenz, K.-T. Foerster, S. Schmid, and A. Villedieu. 2019. Efficient Non-Segregated

Routing for Reconfigurable Demand-Aware Networks. In IFIP Networking.
[11] K.-T. Foerster, M. Ghobadi, and S. Schmid. 2018. Characterizing the algorithmic

complexity of reconfigurable data center architectures. In ANCS.
[12] K.-T. Foerster, M. Pacut, and S. Schmid. 2019. On the Complexity of Non-

Segregated Routing in Reconfigurable Data Center Architectures. ACM SIG-
COMM Computer Communication Review 49, 2 (2019).

[13] Matt Hall, Vijay Chidambaram, and Ramakrishnan Durairajan. 2018. vFiber:

Virtualizing Unused Optical Fibers (Extended Abstract). In NSDI.
[14] Chi-Yao Hong, Srikanth Kandula, et al. 2013. Achieving high utilization with

software-driven WAN. In SIGCOMM.

[15] S. Jain et al. 2013. B4: Experience with a globally-deployed software defined

WAN. In SIGCOMM.

[16] Virajith Jalaparti et al. 2016. Dynamic pricing and traffic engineering for timely

inter-datacenter transfers. In SIGCOMM.

[17] S. Ji et al. 2018. Deadline-Aware Scheduling and Routing for Inter-Datacenter

Multicast Transfers. In IEEE International Conference on Cloud Engineering.
[18] Su Jia et al. 2017. Competitive analysis for online scheduling in software-defined

optical WAN. In IEEE INFOCOM.

[19] Xin Jin et al. 2016. Optimizing bulk transfers with software-defined optical WAN.

In SIGCOMM.

[20] Srikanth Kandula, Ishai Menache, Roy Schwartz, et al. 2014. Calendaring for

wide area networks. In SIGCOMM.

[21] Nikolaos Laoutaris et al. 2013. Delay-tolerant bulk data transfers on the Internet.

IEEE/ACM Trans. Netw. 21, 6 (2013), 1852–1865.
[22] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, et al. 2011. Inter-

datacenter bulk transfers with netstitcher. In SIGCOMM, Vol. 41. 74–85.

[23] Long Luo, Hongfang Yu, and Zilong Ye. 2018. Deadline-guaranteed Point-to-

Multipoint Bulk Transfers in Inter-Datacenter Networks. In IEEE ICC.
[24] Long Luo, Hongfang Yu, Zilong Ye, and Xiaojiang Du. 2018. Online Deadline-

aware Bulk Transfer over Inter-Datacenter WANs. In IEEE INFOCOM.

[25] M. Noormohammadpour et al. 2017. DCCast: Efficient Point to Multipoint Trans-

fers Across Datacenters. In HotCloud.
[26] M. Noormohammadpour et al. 2017. DDCCast: Meeting Point toMultipoint Trans-

fer Deadlines Across Datacenters using ALAP Scheduling Policy. arXiv:1707.02027
(2017).

[27] M. Noormohammadpour et al. 2019. Efficient Inter-Datacenter Bulk Transfers

with Mixed Completion Time Objectives. arXiv:1905.01749v1 (2019).
[28] M. Noormohammadpour and C. S. Raghavendra. 2018. Datacenter traffic con-

trol: Understanding techniques and tradeoffs. IEEE Communications Surveys &
Tutorials 20, 2 (2018), 1492–1525.

[29] M. Noormohammadpour, C. S. Raghavendra, S. Kandula, and S. Rao. 2018. Quick-

Cast: Fast and Efficient Inter-Datacenter Transfers Using Forwarding Tree Co-

horts. In IEEE INFOCOM. 225–233.

[30] Yang Sheng et al. 2018. Benefits of Unidirectional Design Based on Decoupled

Transmitters and Receivers in Tackling Traffic Asymmetry for Elastic Optical

Networks. J. Opt. Commun. Netw. 10, 8 (Aug 2018), C1–C14.
[31] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa

Gill. 2018. RADWAN: rate adaptive wide area network. In SIGCOMM.

[32] Yiwen Wang et al. 2014. Multiple bulk data transfers scheduling among datacen-

ters. Computer Networks 68 (2014), 123–137.
[33] Yu Wu et al. 2017. Orchestrating bulk data transfers across geo-distributed

datacenters. Trans. on Cloud Comput. 5, 1 (2017), 112–125.
[34] Hong Zhang et al. 2017. Guaranteeing Deadlines for Inter-Data Center Transfers.

IEEE/ACM Trans. Netw. 25(1) (2017), 579–595.
[35] Yuchao Zhang et al. 2018. BDS: a centralized near-optimal overlay network for

inter-datacenter data replication. In EuroSys.

http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/Path-to-100G.pdf
http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/Path-to-100G.pdf
https://www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf
https://www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf
https://www.equinix.com/locations/
https://www.mosek.com/

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Offline Problem Formulation
	4 Online Transfer allocation and topology reconfiguration
	4.1 Overview of DaRTree
	4.2 Load-Adaptive Multicast Routing
	4.3 Wavelength assignment and rate allocation

	5 Evaluation
	5.1 Simulation Setup
	5.2 Unicast, Static WAN, and Runtime
	5.3 General Evaluation of DaRTree

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

