Bonsai: Efficient Fast Failover Routing
Using Small Arborescences

Klaus-Tycho Foerster*
Yvonne-Anne Pignolett

°LAAS-CNRS, France

Abstract—To provide high availability despite link failures,
many modern communication networks feature fast failover
mechanisms in the data plane, which operates orders of mag-
nitude faster than the control plane. While the configuration of
highly resilient data planes using the shortest possible back-up
routes is known to be a difficult combinatorial problem, over
the last years, much progress has been made in the design of
algorithms which provably guarantee connectivity even under
many concurrent link failures. However, while these algorithms
provide connectivity, the resulting routes after failures can be
very long, which in turn can harm performance.

In this paper, we propose, analyze, and evaluate methods for
fast failover algorithms which account for the quality of the routes
after failures, in addition to connectivity. In particular, we revisit
the existing approach to cover the to-be-protected network with
arc-disjoint spanning arborescences to define alternative routes to
the destination, aiming to keep the stretch imposed by these trees
low (hence the name of our method: Bonsai). We show that the
underlying problem is NP-hard on general topologies and present
lower bound results that are tight for various topologies, for any
class of fast failover algorithms. We also present heuristics for
general networks and demonstrate their performance benefits in
extensive simulations. Finally, we show that failover algorithms
using low-stretch arborescences, as a side effect, can provide
connectivity under more general failure models than usually
considered in the literature.

I. INTRODUCTION

Communication networks have become mission critical and
reliability is one of the main concerns of network operators
today [1]. Ensuring a high network availability however is
often non-trivial, especially under frequent and concurrent link
failures, which are becoming more likely with the increasing
scale of communication networks including datacenters [2],
backbones [3], [4] or enterprise [5] networks, but also due to
virtualization and shared risk link groups [6].

Fast rerouting in the data plane is an important mechanism
to meet availability guarantees: as reaction times to failures
in the data plane are several orders of magnitude shorter than
in the control plane [7], many communication networks today
support statically precomputed conditional failover paths [8]
(e.g., using IP Fast Reroute [9], [10], MPLS Fast Reroute [11],
or OpenFlow fast-failover groups [12]), along which traffic
can be rerouted in case failures are encountered. Interestingly,
allocating such conditional failover paths introduces a chal-
lenging combinatorial problem: as the forwarding rules on
the switches or routers need to be installed beforehand and
without knowledge of the actual failures which may occur, the

Stefan Schmid*

** AGH University of Science and Technology, Poland
*Faculty of Computer Science, University of Vienna, Austria

Andrzej Kamisinski**
Gilles Tredan®
IDFINITY, Switzerland

forwarding decisions must be robust to all possible additional
failures which may occur downstream.

The underlying algorithmic problem is related to distributed
computing problems (due to the switch or router’s local view
on failures) [13]. Over the last years, much progress has been
made (e.g., [4], [14], [15], [16], [17]) toward the design of
polynomial-time algorithms to precompute failover rules which
provide optimal connectivity [18]: failover routes are guaranteed
as long as the underlying network remains physically connected.

However, while connectivity is important, connectivity alone
is not sufficient to meet performance requirements, also the
quality of the resulting failover routes matters [8]. In particular,
long failover routes may introduce additional delays: if the
length of the old and the new path differ, this can temporarily
lead to packet reorderings and an overestimation of the
congestion of the network, harming TCP throughput [19].
More importantly, long routes also increase the likelihood
of congestion, as bandwidth needs to be allocated on a per-hop
basis and longer flows may interfere with more other flows.
Thus we focus in this paper on minimizing the maximal stretch
which can be introduced by rerouting.

Contributions. We investigate deterministic fast failover mech-
anisms which not only provide provable connectivity under
multiple link failures, but also account for the quality in terms of
the resulting route lengths, namely the stretch: the actual length
of the failover route, minus the shortest originally possible
distance. At the same time, previous fast failover works focused
mostly on connectivity alone and they often required dynamic
routing tables or modifications of packet headers. Reducing
the route length and stretch, compared to earlier work, has a
positive impact on latency and jitter.

We consider the state-of-the-art approach to resilient routing,
which protects a network by covering it with arc-disjoint
spanning arborescences [18] (arborescences are used to define
alternative routes to the destination in the case of failed links).
We motivate our approach with the fact that focusing only
on the connectivity can lead to very long failover paths,
where we also give some appropriate lower bounds. We thus
investigate algorithms which compute an arc-disjoint spanning
arborescence packing, where each arborescence provides low
stretch, hence optimizing the maximum stretch: the idea is
that this results in shorter failover routes, without sacrificing
connectivity. Since we keep failover arborescences (“trees”)
small, we call our approach Bonsai.

@ T T

Fig. 1. Example of a five node graph with two different choices of failover
routes 71, 72, depicted in blue (dashed) and red (dotted). In both 77, T2,
routing can switch to a second arc-disjoint arborescence if a failure is
encountered. 77 is inspired by routing along a Hamiltonian cycle, either
clock- or counter-clockwise. The arborescences in T2 optimize for short paths.

As we prove the problem to be NP-hard for general
network topologies, we present a fast and flexible heuristic
that takes stretch optimization criteria into account. We report
on extensive experiments of this heuristic, for different random
and real-world networks. Our results show that we can signif-
icantly improve the stretch for many scenarios, in particular
when the network size increases, in comparison to currently
used methods. Moreover, our techniques also provide good
performance gains in other aspects, such as the computation
time or stretch in relation to network connectivity. Finally, we
demonstrate the benefits of low-stretch failover algorithms to
support more general failure models than usually studied in the
literature: when the failures are appropriately clustered, low-
stretch arborescences greatly increase network survivability.

Example. To illustrate our problem and show the need for
route length-aware arborescences, we consider the network
with five nodes in Fig. 1. In this simple example, we consider
flows that need to be routed to the destination ¢, in the top of
the figure. In the absence of link failures, the flows could be
routed along e.g. the dotted red paths. In the case of incident
link failures, any node y will apply conditional rules which
have been pre-installed. These rules can only be conditioned on
the availability of links incident to the node y and the in-port,
i.e., rerouting decisions are purely local. We refer to Sec. II
(and related work [13], [14], [16], [20]) for a detailed model.

We are interested in strategies to pre-compute such condi-
tional failover rules which ensure that one is still able to route
to t, even in the presence of multiple failures. In the example
in Fig. 1, node z has a conditional failover rule which reroutes
traffic if the dotted red arc (x,t) is not available. In the case of
the 77 tree, traffic might be rerouted to node w via the dashed
blue arc (z,w). If w would not match on the incoming port,
then the packet might be forwarded again to x, resulting in a
forwarding loop.

Prior work provided important insights in how failover rules
should be defined in order to avoid such loops, even under
multiple link failures, for example, relying on Hamiltonian
cycles [15, §B.6]. However, in the worst case, these schemes
can result in very long paths: if x resorts to the alternative
counter-clockwise route indicated by dashed blue arcs in 77,
the stretch is on the order of the number of nodes, which is
especially harmful when larger examples are considered. On the

other hand, the routing as described in 73 on the right side just
induces a stretch of one extra hop. Thus, we aim to ensure that
failover paths “preserve locality”, without sacrificing resiliency.
As such, we are interested in algorithms to compute static
failover rules which result in paths like the one indicated in 7.

A large body of work on routing schemes resilient to
single failures as well as routing schemes resilient to multiple
failures with dynamic failover tables (where link reversal
approaches [21] can be used) exists, as we will discuss in
more details in the related work section. However, much
less is known about the design of resilient static forwarding
tables, especially for scenarios where packet-header rewriting
or packet-duplication is impossible or undesired (the former
consumes header space and the latter introduces additional
loads). The most closely related works to ours are by Chiesa et
al. [14], [15], [18], [22], Stephens et al. [16], [17], and Pignolet
et al. [13], [23], who developed robust failover schemes using
static forwarding tables. These approaches provide very high
resilience. However, they do not guarantee any non-trivial
deterministic bounds on the resulting path lengths. The work
of Foerster et al. [8] provides bounds on the resulting path
lengths, however just for specialized regular topologies such
as the 2d-torus, grids, and data center topologies based on
complete bipartite graphs—these constructions are specialized
and cannot be extended to more general graph classes.

This paper aims to fill this gap, by considering the study
of deterministic local algorithms for short failover paths on
general network topologies. We build upon the concepts of arc-
disjoint spanning arborescences, which were also exploited
in prior work [8], [14], [15], [18], [22], [24], [25] and are
reminiscent of work on homotopic routing problems [26].

Organization. We present our formal model in Section II,
followed by Section III, where we introduce the concepts of arc-
disjoint spanning arborescences and derive lower bounds on the
possible stretch, along with proving optimal stretch computation
to be NP-hard. Section IV investigates the construction of
stretch-aware arborescences, where we first introduce prior
methods and then present our own round-robin approach, which
can efficiently swap links for optimization purposes. In the next
Section V, we also provide positive evaluation results which
showcase that our new approach performs well in practice,
in comparison to prior work. We furthermore show that low-
stretch arborescences also have a positive influence on the
resiliency, by investigating theoretical guarantees for distributed
failure clusters in Section VI. We then discuss related work in
Section VII and lastly conclude in Section VIII.

II. NETWORK AND ROUTING MODEL

We model the network as a graph G = (V, E'), connecting
n nodes in set V (switches, routers, hosts) using bidirected
links F (i.e., a full-duplex symmetric digraph). That is, if there
is a link (u,v), then there is also always a link (v,) in the
opposite direction. When focusing on the directed nature of a
link, we often use the term arc to emphasize this.

We assume that forwarding rules can match the destination
field from the packet header as well as the in-port (the port

from which a packet arrives at v)!, and depending on this
match, define the outgoing port to which a packet is forwarded
at v. In other words, the focus of this paper is on oblivious
routing algorithms which do not rely on any dynamic state
at nodes (e.g., no counters), nor in packets: we do not allow
packet tagging. While marking packets is known to improve
the robustness of routing [14], [27], it may not be possible
in practice to add additional header fields or to reuse existing
fields, as they are needed by other protocols.

The failover mechanisms needs to be statically pre-
configured: at the time the failover rules are installed, the
set of link failures F' is not known yet. The mechanism must
be configured such that for any possible set of local link
failures, a failover action is taken which provides connectivity
and stretch guarantees, independently of the additional failures
that may be encountered down-stream.

More precisely, we say that a failover algorithm A has a
resiliency of |F|, if for any source-destination pair s,¢ € V' it
holds: the route taken by packets from s according to algorithm
A leads to ¢ despite any |F| link failures.

Note that statically preconfigured failover allows a network
to react seamlessly to local failures, whether they are transient
or permanent. In case of permanent link problems, the recon-
struction of routes can be triggered in addition, if necessary.
The focus of this work is on the properties of such local failover
algorithms and not on the reconstruction of permanent failures.

III. ROOTED SPANNING ARBORESCENCES

In order to obtain efficient local fast failover algorithms, we
leverage a known approach for resilient routing [14], [18], [22],
[25], based on rooted arc-disjoing spanning arborescences®:
routing is performed along arborescences, where upon hitting a
failure, the packet switches to another arborescence and follows
it—without modifying the packet header.

A. Arborescence Preliminaries and Prior Work

We now formally define the concept of rooted arc-disjoint
spanning arborescences and how to use them for failover routing
as discussed in prior work, e.g., by switching between them
in a circular order [14], [15], [18], [22].

Arborescence properties. Let (u, v) denote a directed arc from
node u to v. A directed subgraph 7' is an r-rooted spanning
arborescence of G if (i) r € V(G), (ii) V(T) = V(G), (iii) r
is the only node without outgoing arcs and (iv), for each v €
V'\ {r}, there exists a single directed path from v to r. When
it is clear from the context, we use the term “arborescence
to refer to a t-rooted spanning arborescence, where ¢ is the
destination node.

Generating arc-disjoint arborescences. A packing (set) of
arborescences 7 = {T1,...Ty} is arc-disjoint if no pair of

'The in-port is crucial for resiliency. E.g., consider a network with a dead-
end, e.g., a node v which can only be reached via a link from w after the
failures. As packets are forced to return back to w along link (v, u), i.e., the
same link from which they arrived, matching the in-port is needed to facilitate
a different routing decision at v, avoiding a loop.

2 Also denoted as branchings or directed rooted trees in the literature.

arborescences in 7 shares common arcs, i.e., if (u,v) € E(T;)
then (u,v) ¢ E(T;) for all ¢ # j. It is known that k arc-disjoint
arborescences exist in any k-connected graph [28] and that they
can be computed efficiently [29], with a runtime of O(|E| +
nk? log2 n). In a simpler (and slower) version, one creates a
spanning arborescence s.t. the remaining graph remains k£ — 1
connected, and repeating this process k — 2, k — 3, ..., until
k arc-disjoint arborescences are obtained [30]. A conceptually
different approach is proposed by Chiesa et al. [15], using
link-disjoint Hamiltonian cycles: given k/2 such cycles, they
can be turned into k arc-disjoint arborescences, two for each
cycle, in opposite directions. However, k-connectedness does
not imply % /2 disjoint Hamiltonian cycles.

Resilient routing on arc-disjoint arborescences. Elhourani et
al. [24] and Chiesa et al. [15] showed how decompositions of G
into 7 can be used to define failover routes for packets destined
to ¢. These packets are routed according to an arborescence
T; by forwarding them along the unique directed path of T;
towards the root t. If a link (u,v) € E(T;) that should be
used for the next hop is not available, the affected packets
are forwarded along a different arborescence T at u, i.e., the
packet switches from T; to T at u.

When arborescences are arc-disjoint, a failed arc only
disconnects one arborescence, i.e., in a k-connected graph, k—1
failures leave at least one arborescence intact. On the other
hand, £ failures can physically disconnect the destination from
parts of the network. Elhourani et al. [25] obtain a resilience of
k—1 by indexing the arborescences from 1 to k, with all packets
starting in arborescence 1, switching to the arborescence with
the next higher index after a failure.

Chiesa et al. [14], [15], [18], [22] propose to generalize
this concept by defining a circular order on the arborescences.
As such, packets may start in any arborescence, and may
also be forwarded after hitting k failures, though without any
theoretical guarantees in the latter case.’ Chiesa et al. also
provided other failover strategies, some of them probabilistic.
Instead of defining a fixed circular order on the arborescences,
the next arborescence may be chosen uniformly at random,
hopefully breaking out of forwarding loops. As an extension,
motivated by bidirectional link failures, packets can bounce on
the failed link e with some fixed probability, picking the other
arborescence that was also impacted by failing link e.

Arborescence quality. A defining quality of routing on an
arborescence is its stretch, which we now define formally. Let
Lopi(v,t) denote the minimum distance packets have to travel
from v to ¢ without failures (shortest path routing) and let
¢7(v,t) denote the route length along arborescence T'. The
stretch of a node v in T is defined as the difference between
routing optimally and on T, i.e., {7 (v,t) — £op (v, t), whereas
the stretch of an arborescence T is defined as the maximum
stretch over all v € V. Similarly, the stretch of an arborescence
packing T is defined as the maximum stretch over all T' € 7T .

3We show how to extend the theoretical guarantees beyond k failures in
Section VI for failure distributions where the failures are clustered [31].

When it is clear from the context, we will just use the term
stretch, without specifying v, T, or 7.

However, prior work does not provide theoretical guarantees
on the stretch when using arborescences, except on how often
one might switch the arborescences [14], [15], [18], or for some
specialized regular topologies [8]. In extreme cases, the stretch
might even be worst possible. For example, using arc-disjoint
arborescences generated from disjoint Hamiltonian cycles [15],
can induce a stretch of up to €(n), as indicated in Fig. 1. Still,
sometimes very low stretch arborescences are not possible, as
we investigate in the next section.

B. Lower Bounds on Arborescence Stretch

We start with the observation that once we have more than
one arborescence in T, its stretch is at least 1. Consider any
neighbor v of the destination ¢: its distance to ¢ is 1, but the
corresponding arc may only be used in a single arborescence.

Matching bounds on complete graphs. Already this simple
lower bound allows the optimal stretch to be obtained for
complete graphs: we can directly decompose a complete graph
into n — 1 arc-disjoint arborescences of depth 2, where each
arborescence uses a different arc (v,t) to the destination ¢ as
their first link followed by all arcs from nodes in V'\ {v,t} to
node v. Hence, each node has a stretch of at most 1 in every
arborescence.

Arc-disjoint paths and lower bounds. We can broaden our
initial idea to a more general setting. As all the arborescences
need to be arc-disjoint, not all can take the shortest path to the
root, but rather need to take k different paths, which gives first
stretch bounds: some arborescences must take longer detours.

Observation 1: Let T be any packing of k arc-disjoint
arborescences rooted in ¢ € V. Consider the set of all k arc-
disjoint v — t-paths, denote ¢*(v,t) as the minimum length of
the kth-shortest (i.e., longest) path from this set. The stretch
of T is at least max,ey £ (v,t) — lop (v, 1).

Girth bounds. The network girth is the length of the graph’s
shortest undirected cycle. Again, we pick any neighbor u
of the root ¢, and note that the girth can be used to derive
a lower bound on max,ecy ¥ (v,t) — Lo (v, t): if an alternate
arc-disjoint route is to be taken, instead of the direct link (u, v),
this alternate path has at least the length of the graph’s girth
minus 1 for (u, v). For example, in the case of complete graphs,
the girth is 3, hence the alternate path has at least a length of
2. As the stretch is computed by subtracting the shortest path,
we obtain a lower bound of girth minus 2.

Corollary 1: The network’s girth minus 2 is a lower bound
for the stretch of an arborescence packing T, for [T| > 1.

Optimality for regular topologies. For regular graphs, this
bound can suffice for optimality, as seen above on complete
graphs. Further examples are e.g. torus graphs, grids, hyper-
cubes, and topologies that can be decomposed into trees of
connected complete bipartite graphs [8], all examples where the
girth based bound is tight. For general topologies, the situation
is more difficult, as discussed in the next section.

o :\({/, E)

Fig. 2. G’ graph construction for a hypergraph H = (V =
{v1,v2,v3,v4}, B = {e1,e2}), e1 = {v1,v2,v3},e2 = {v2,v3,v4},

using the ideas from [32]. The nodes 71, 2 and b1, b2 are merged, respectively,
to make the figure less cluttered. In this example, we provide two arborescences
of depth 2, in red (dotted) and blue (dashed), corresponding to a 2-coloring
of the hypergraph with v1,v3 in red and va,v4 in blue.

C. Arborescence Decomposition Complexity

Even though computing a maximum amount of arc-disjoint
arborescences can be done efficiently, optimizing them regard-
ing stretch is intractable. Hence, due to the NP-completeness
result stated next, we will focus on heuristics in the following
Section IV and compare them to each other.

Theorem 1: Let G = (V, E) be a k-connected symmetric
digraph with a root » € V. Computing k 7-rooted arc-disjoint
spanning arborescences, s.t. the maximum stretch is minimized,
is NP-complete for all £ > 2,k € N.

From depth to stretch. Alon, Bermond, and Fraigniaud [32]
showed that minimizing the maximum depth for more than
one disjoint arborescence is NP-hard, via reduction from
hypergraph* colorability. However, their result does not suffice
to show hardness for the stretch: in fact, in their construction
the optimal stretch is easy to compute. Notwithstanding, we
adapt their ideas to show NP-hardness for optimal stretch.

Proof of Theorem 1: As the stretch problem is clearly in
NP, it remains to show NP-hardness. To this end, we utilize
and extend [32, Theorem 2] and subsequent comments.

The authors in [32] perform a reduction from the NP-
complete problem of hypergraph colorability [33]: given a
hypergraph H = (V, E), can its node set be 2-colored (e.g.,
red and blue), s.t. every hyperedge e € FE is incident to nodes of
both colors? They construct the following graph G’ = (V' E’),
showing that finding two undirected link-disjoint u-spanning
arborescences of depth at most 2 is NP-hard: V'’ consists of
V', each hyperedge e € F is represented as a node, and the
five nodes u, r1,7ry (red), and by, by (blue). The undirected
link set is constructed in four steps: 1) the nodes v € V are
connected to those representing e € E if v is incident to e in
H, 2) all nodes in V are connected to all nodes u, 71,72, b1, bo
and 3) w is connected to 71,792, by, by. Lastly, 4) vy and 7o are
connected to by, by as well. We provide an example in Fig. 2.

We briefly note at this point that their and our following
proof construction directly translate to bidirected graphs, by
replacing every undirected link with two directed opposite arcs:

4Hypergraphs are a generalization of graphs, where the edges are replaced
by hyperedges, which in turn can join any number of nodes, not just two.

essentially, using the “back”-direction of a link is not useful
at all. For ease of readability, we will use undirected links as

well, just denoting them as links in the remainder of the proof.

We analyze the depth and stretch properties of the nodes in
V', when they are contained in two arborescences of depth 2.
Herein, the depth of a node in an arborescence is denoted
w.r.t. the root u, and the stretch w.r.t. the shortest path to u:

« for nodes in E' to have a depth of 2 in an arborescence,
the stretch must be 0, i.e., only two hops to u;

« subsequently, the nodes in V, connected to the nodes in
E, must have a depth of 1 and a stretch of O;

« as the only option for nodes in V' to have a depth of 1 is
to be connected (via the arborescence links) directly to
the root w, which only provides |V| of the 2|V| necessary
links, at least half the nodes in V' have a depth of 2 and
stretch of 1 in some arborescence — no higher depth or
stretch is needed, as the detour via 71,72, by, by provides
ample connectivity;

« the remaining nodes r1, 73, b1, b2 can be connected to the

root with a depth of at most 2 and a stretch of at most 1.

If no arborescences with depth 2 are possible, then some
node has at least depth 3. Note that a depth of 3 is always
possible. To this end, we first connect all nodes in V' via r;
(red arborescence) and b; (blue arborescence) resulting in a
depth of 2 and stretch of 1 so far. Next, we connect the nodes
in E to those nodes in V, resulting in a depth of 3 and stretch
of 1 for both arborescences. However, this construction, while
increasing the depth, maintains the stretch of 1: the maximum
stretch in V' is still 1, but nodes in E have a stretch of at most
1 as well now. If we could enforce that some node were to
have a stretch of 2 with depth 3, then we would have shown
NP-hardness for the stretch of 2 arborescences. We will next
show how to achieve this feat.

We take the graph G, clone it | E'| times, and in each of those
|E| clones G5, 1 < i < |E|, we merge the node e; with u;,
denoting the (polynomially created) graph by G” = (V" E").
We obtain new node sets V; (distance to u: 3) and E; (distance
to u: 4). If the original graph G’ had two u-rooted link-disjoint
arborescences of depth 2, then the new graph G” has two such
arborescences of depth 4 as well. Firstly, the nodes in V; (and
the four extra nodes 7y ;,...) have a depth of 3,4 and a stretch
of 0,1. Secondly, the nodes in E!’ have a depth of 4 and as
thus a stretch of 0. Observe that in this case of depth 4, all
nodes have a stretch of 0 or 1 in the two arborescences.

We now assume that the original graph G’ does not allow
for two arborescences of depth 2, i.e., following the previous
arguments, at least one node in E has a depth of 3 with stretch
of 1, wl.o.g. e; € E. However, then at least one node in E;
has a depth of 5 in some arborescence, with a stretch of 2.
Hence, minimizing the maximum stretch is NP-hard, as it is
NP-hard to decide if two rooted disjoint arborescences with
stretch 1 exist. The above NP-hardness construction can be
directly extended to any k£ € N number of arborescences for
k-connected graphs, applying the ideas from [32, p.5].]

IV. BONSAI: HOW TO BUILD BETTER ARBORESCENCES
FOR ARBITRARY NETWORKS

A crucial question studied in this paper is how to avoid the
black-box modeling of arborescences, which does not provide
any stretch properties. We therefore analyze the complexity of
general arborescence decompositions for arbitrary networks,
with the goal of obtaining minimum stretch.

Since the problem was shown to be NP-complete in
Section III-C, we now describe polynomial-time heuristics
to decompose arbitrary graphs into “Bonsai” arborescences
efficiently while striving to keep their stretch low. The simplest
way to decompose a k-connected graph into k arc-disjoint
arborescences constructs one arborescence after each other, as
in the two approaches described next.

Random decomposition. When building the i*" arborescence
T;, the following method ensures that the graph with all the
arcs belonging to the trees 77, ..., 7T; are removed is still kK —4
connected. We start at the root and insert a random unused
arc (not belonging to any T}, j <) towards the root into
T;. Now a recursive procedure is used to add new arcs (u,v)
to T; which extend 7; (i.e. v € T;) while maintaining the
arborescence structure (i.e., v ¢ T;). For each edge to be added
we test whether there are still k¥ — ¢ arc-disjoint paths from
u to the root on the unused arc (excluding (u,v)). If yes the
arc is added to T; and we proceed recursively. Otherwise the
next arc is tested. This algorithm always succeeds to construct
k arc-disjoint arborescences and serves as our baseline in
the comparison with construction that take the depth of the
resulting arborescences into account.

Greedy decomposition. The following greedy approach en-
sures that 7; has the lowest depth of all possible arborescences
on the arcs that have not been used yet. As in the random
decomposition, we start at the root and insert one of the unused
arcs (not belonging to any 7}, j < i) towards the root into
T;. All candidate arcs (u,v) are tested until a suitable one is
found, ordered by the depth the arborescences would exhibit
with (u, v). Analogously to the above, we test whether there are
still k — ¢ arc-disjoint paths from w to the root on the unused
arc. This approach is used for the experimental evaluation
in [14]. This algorithm also always succeeds to construct k
arc-disjoint arborescences. The depth of the first arborescence
is the smallest of all arborescences and the depth of the other
arborescences increases monotonically. For networks with very
few failures, this construction combined with circular routing
starting with the first arborescence is a very good practical
choice. However, a bad combination of failures might lead to
long detours on 7j,7 > 1.

Round-robin approach. Instead of building one arborescence
after the other, the round-robin approach constructs all of them
in parallel. After the j'* edge has been added to the first
arborescence, chosen from all the unused edges, the second
arborescence obtains its j** edge and so on. To make the

procedure simpler, we may omit the connectivity test described

Fig. 3. Example: 3-connected graph. The Round-Robin approach performed
two rounds for the first blue (dash-dotted) and second (dashed)
arborescences, and one round for the third red (dotted) arborescence. Even
though the graph remains k — 1 = 2-connected when removing any single
arborescence, the red (dotted) arborescence cannot reach the nodes vy to vy.

for the greedy approach’. By increasing the depth in each
of these decisions only if strictly necessary, this leads to a
much more balanced arborescence packing with respect to
the length of the detours they entail. Unfortunately, however,
this procedure does not always succeed for general graphs. In
some cases, there is no unused arc left that can be added to
arborescence 7T; even though it is ¢’s turn, we reached a dead-
end. An example of such a situation for three arborescences is
provided in Fig. 3.

Refined connectivity test. In some cases, such dead-ends
can be avoided by the following connectivity test. Before
adding an unused arc (u, v) to T;, we count the number of arc-
disjoint paths from u to the root in the graph H = (V', E'),
which represents the unused arcs in case of ¢ failures, i.e.,
V' =V and E' = {(v,w)|(v, w) ¢ U;<,T;}. This represents
the number of potentially usable arc-disjoint paths left for the
arborescences after ¢ failures. If this number is not at least
k — 1, the corresponding edge is not added to T;.

Swapping arcs when growing arborescences. Even with this
refined connectivity test, we might end up in a dead-end. To
get out of it, we can try if exchanging arcs already chosen
by an arborescence might mitigate the problem. For example
in Fig. 3, when we swap the blue arc (vq,t) to the unused
arc (v1,vs2), the red arborescence may now take over (v1,t),
removing the current deadlock situation. In general, when we
cannot add an arc to 7; in the normal round-robin fashion,
we can check for candidate arc pairs e = (u,v), e’ = (u,v’)
leaving node w if we could perform a swapping operation.

To this end, the following conditions must hold.

1) u has a neighbor v' € V(T;)

2) (u,v) does not belong to any arborescence yet, ¢ ¢

Up:l.-kE(Tp)

3) u ¢ V(L)

4) 3y, s.t. (u,v') € E(Tj)

5) NS V(TJ)

6) v’ is not on the path to from v to the root in 7).

These conditions are sufficient and necessary to obtain valid
arborescences by assigning e to E(T}) and ¢’ to E(T;). When
testing if a set of arcs forms an arborescence, there must be
exactly one directed path from every involved node to the
root. (4) ensures that no arc leaving the root can be added to

SFor two arborescences, it is easy to show that this connectivity test suffices
to always finish the construction on > 2-connected graphs: the remaining
subgraph always contains a rooted spanning tree, i.e., the arborescences can
continue to add arcs until all nodes are in them.

an arborescence, while (3,5,6) ensure that valid paths to the
root exist in both involved arborescences afterwards, i.e., v
and v’ have the necessary outgoing links in the appropriate
arborescence and no cycles can be created by the swap. We
can address the case where e and ¢’ do not originate from the
same node analogously by adjusting the conditions above.

When adding the I*" edge, each arborescence T3 <i
contains [nodes and all arborescences T},j > 4 contain
I — 1 nodes. As a consequence, the above procedure can be
implemented with time complexity O(I?5) on average, for a
graph of maximum degree § and an implementation of set
operations of O(1) on average. Thus, testing for swapping
possibilities takes more and more time as the arborescences
grow. Observe, however, that this approach is much more
efficient than the naive approach, which checks for all pairs of
edges if the involved graphs T, T} are still valid arborescences
after the swap (O(In2352)).

For many graphs, the extension of the round-robin approach
with the refined connectivity test and swapping arcs finds an arc-
disjoint arborescence packing with very low depth. However,
there are still cases when the approach reaches a dead-end.

V. DECOMPOSITION COMPARISON

In this section we compare the properties of the approaches
described above in Section IV. We construct arc-disjoint
arborescence packings using (1) a random decomposition, (2)
a greedy decomposition, (3) our round-robin (RR) approach,
and (4) our RR aproach using swapping (RR-swap). We then
compare their (a) success rate, (b) stretch, and (c) running time.
In our evaluation, we use random regular graphs of varying size
and connectivity and the well-connected cores of various ASes.
We refer to [34] for further details concerning reproducibility.

A. Experiments on Random Regular Graphs

Our first set of experiments was on random graphs, which
were used for the experimental evaluation of the greedy method
in [14], [22]. More precisely, we generate random k-regular
graphs, sampled in an asymptotically uniform way [35], which
are almost surely k-connected [36, p. 195ff.]. In all generated
graphs, the degree and connectivity matched. We pick seven
different graph sizes (up to 1000 nodes) and six different
connectivities (from 5 to 30) to simulate a wide spectrum
of parameters, where each combination is generated 100
times, picking a random node as the root. We then generate
arborescence packings 7 of size k£ with the random, greedy,
RR, and RR-swap method.

Construction success on random regular graphs. As dis-
played in Fig. 4, all three of the random, greedy, and swapping
approaches succeed in 100% of the experiments, whereas the
success rate of the round-robin approach greatly drops, failing
completely beyond ~ 200 nodes.

Such behavior is to be expected from the random and greedy
approaches, as both utilize sequential constructions, maintaining
connectivity for the following arborescences. The swapping
numbers are more interesting — while the algorithm can fail
in theory, it did not do so over the course of our experiments.

Algorithm < Greedy + RR-swap = Random + RR

-
o
S

o
N
o

Construction Success Rate
o o
N [
o o

~

0 250

o
o
S

500 750 1000
Graph Size

Fig. 4. Success rate for the arborescence packings 7 of the different algorithms

on random k-regular graphs, aiming for k disjoint arborescences in each trial.
Each data point represents the average success rate over 100 attempts.

Algorithm Greedy 4 RR-swap ® Random | RR

Median Stretch
ol ~
o o

N
ol

- n— G A = A

0 250 750 1000

500
Graph Size

Fig. 5. Median stretch for the arborescence packings 7 (100 each) of the
different algorithms in random regular graphs, plotted over the number of
nodes of the graphs. The shaded areas display the 5th to 95th percentile.

We thus believe that on random regular graphs, our swapping
method nearly always finds alternatives, with deadlocks being
extremely rare.

Stretch on random regular graphs. The stretch performance
on random regular graphs is shown in the Figs. 5 (plotted over
different graph sizes) and 6 (for various connectivities). In
both cases, RR and RR-swap perform quite similarly, in Fig. 6
their results overlap. However, RR without swapping fails early
to finish its constructions. Both algorithms vastly outperform
the random and greedy approaches in the median stretch, as
well as the Sth to 95th percentile, of the arborescences 7, in
particular when considering larger graph sizes where, e.g.,
not even the percentiles for RR-swap and greedy overlap.
While the performance of RR-swap stays similar for larger
random regular graphs, it degrades for greedy and random.
As the connectivity increases, the median performance of all
four algorithms improves slightly, but random and greedy still
always stay far behind the RR versions. The situation is similar
for the 5th to 95th percentile, with the exception of the random
method: here, the performance does not change much with
varying connectivity.

Computation time for random regular graphs. The com-
putation time (in seconds) of the arborescence packings T
is shown in the Figs. 7 (different sizes) and 8 (different
connectivities). We used an Intel i5-4570 @3.2 GHz with

Algorithm [¢] Greedy 4 RR-swap ! Random = RR

n
=]

Median Stretch

-
o

20
Connectivity

Fig. 6. Median stretch for the arborescence packings 7 (100 each) of the
different algorithms in random regular graphs, plotted over the connectivity of
the graphs. The shaded areas display the 5th to 95th percentile.

Algorithm Greedy 4 RR-swap & Random :+ RR

80

Median Time
B (=2}
o o

n
=]

500 750 1000
Graph Size

Fig. 7. Median computation time (seconds) for the arborescence packings 7~
(100 each) of the different algorithms in random regular graphs, plotted over
the graph size. The (small) shaded areas display the 5th to 95th percentile.

8GB ram for the experiments. In general, the median and
5th to 95th percentile values barely differ for each individual
algorithm. For RR and RR-swap, the dominating factor is
picking the next arc, which increases linearly with the number
of arcs. Their computation time overlap, though RR fails to find
solutions beyond 200 nodes. In general, RR-swap only needed
to utilize very few swaps to resolve deadlocks, meaning that
the computation time does not change much due to swapping in
most cases. For greedy and random, the dominating factor was
the ongoing connectivity checks, which result in much slower
runtime than RR-swap, the plotted values grow quadratically.
As such, their time values are essentially identical as well, with
random being slightly faster for larger connectivities.

B. Experiments on Well-Connected Cores of ASes

Our second set of experiments was on the well-connected
cores of various ASes, taken from the commonly used Rocket-
fuel data set [37]. We trim the AS graphs s.t. only the well-
connected cores remain, as follows. We first contract nodes
of bidirected degree 2 into a single bidirected link. Next, we
remove nodes that have a degree less than 4/5/6/7, contracting
the graph again later. This process is repeated until no more
nodes can be contracted or removed. If the trimming resulted
in less than 20 nodes, we omit them. For each such topology
(ranging from 20 to roughly 700 nodes), we pick 20 different

Algorithm Greedy ‘4 RR-swap = Random -+ RR

20

Median Time

-
o

A

10 20 30

Connectivity

Fig. 8. Median computation time (seconds) for the arborescence packings T
(100 each) of the different algorithms in random regular graphs, plotted over

the connectivity. The (small) shaded areas display the Sth to 95th percentile.

AS1239

4 5 6 7

AS2914

AS1221

1.00"
I _— I
4 5

0.75-
7

0.50-
AS1755

0.25-
0.00-

1.00-

Algorithm ' Greedy 4 RR-swap

AS1221 AS1239
30
20
10
50 100 150 200 500 600 700
AS1755 AS2914
30
20
10 :\-\‘
20 40 60 80 100 300 330 360 390
5 AS3257 AS3356
30
%20
§10 e ——
B 0 0 v " . i . i .
2 30 40 50 400 450 500 550 600 650
AS3967 AS4755
30
20
A
10 = |
200 220 240 260 28020 25 30 35 40
AS6461 AS7018
30
20
10/ A[pem=a=—=——"
9 120 150 180 00 400 500
Number of Nodes

0.75-
0.50-
0.25-
0.00-

a 5

5 6 7

Q
51.00
0.75-
80.50-
80.25-
20.00-

AS3257

4

AS3356

: - B m
4 5 6 7

[

AS3967

AS4755

1.00-
0.75-
0.50-
0.25-
0.00-

AS7018

Fig. 10. Median stretch (and 5th to 95 percentiles) for the arborescence
packings T (up to 20 each) of the different algorithms on the well-connected
cores of different ASes, plotted over the size of the graphs.

Algorithm -« Greedy 4 RR-swap

I AS6461
1.00-

0.75-
0.50-
0.25-
0.00-

5

4 5
I u I I
4 5 6 7

Connectivity
Fig. 9. Success rates for the arborescence packings 7 for RR-swap, aiming
for 4 to 7 disjoint arborescences Each item represents the average success rate
over 20 attempts, picking a random root each time. Greedy always succeeds.

nodes uniformly at random, selecting them as a root for the
arborescence packings. We generate arborescence packings 7~
of size k € {4,5,6,7} with the greedy and RR-swap methods.

Construction success on AS graphs. Greedy always finishes,
meaning that our trimming operation generated 4/5/6/7-
connected