
Teaching Programming Skills in
Primary School Mathematics Classes:

An Evaluation using Game Programming
Emmy-Charlotte Förster

Hastily Assembled Games, Germany
emmy@hastilyassembled.com

Klaus-Tycho Förster
University of Vienna, Austria

klaus-tycho.foerster@univie.ac.at

Thomas Löwe
Hastily Assembled Games, Germany

thomas@hastilyassembled.com

Abstract—The integration of programming into the school
curriculum has become increasingly important, especially in
places and class levels where computer science is not yet
available as a subject of its own. In this paper we investigate
the performance of a class of sixth grade students who were
trained in programming as part of their regular mathematics
curriculum following the method of Förster [ACM SIGITE’16],
which uses programming as a teaching tool for geometry skills.
As a final project the students were tasked to program a
computer game in Scratch, by which we gauge the students
programming skills using the methodology proposed by Funke
et al. [IEEE EDUCON’17], as well as the automatic quality
assessment tool Dr. Scratch. We compare our results with the
results reported by Funke et al. from over 50 students, and with
the automatic quality assessment scores of a data set of 250K
Scratch programs published by Aivaloglou et al. [MSR’17]. Our
pilot study shows that introductory programming skills taught
as part of mathematics classes, aiming at the improvement of
geometry skills, also satisfy the computer science requirements
of an introductory programming course.

I. INTRODUCTION

Programming is a staple skill not only in computer sci-
ence, but also a fundamental building block of today’s and
tomorrow’s education from which all children can benefit at
an early age [1]. Programming classes are already compulsory
in primary school in Estonia and Cyprus [2]. Many other coun-
tries, however, only introduce computer science in secondary
schools, if at all—see the snapshot by Hubwieser et al. [3].
In Germany, for example, there are no mandatory computer
science requirements for primary schools [4].

Until computer science enters the curricula as a subject
on its own, programming has to be either taught via extra-
curricular classes/summer schools [4], [5] or integrated into
existing school subjects [6]. While both methodologies yield
well-documented positive outcomes, they usually suffer from
the same structural downside: limited time. When computer
science competes with further extra-curricular activities or
the curricula of other school subjects, it becomes difficult to
introduce all children to even basic programming concepts in
primary schools. Even though there seems to be a consensus
that ”All of Europe’s citizens need to be educated in both
digital literacy and informatics” [7], the introduction of early
computer science seems to be a problem at the political
level [8], which is beyond the scope of this article.

The integration of programming into a non-computer sci-
ence subject is a promising approach to solving this presented
dilemma, if programming simultaneously aids the foreign
subject itself in its current curricular goals. Mathematics is a
classical choice for such a “partner”-subject, and often respon-
sible for bringing programming into schools [9]. Early studies
have reported the benefits of using programming languages as
a conceptual framework for teaching mathematics [10].

In this article we use programming as a tool to support
the learning of mathematics in the 6th grade, as proposed by
Förster [11]. Our motivation for this is two-fold: Firstly, it
introduces the students to the programming language Scratch,
which is widely popular for introductory courses in computer
science nowadays [12]. Secondly, it is directly integrated
into the current mathematics curriculum and was positively
evaluated for “traditional” geometry goals [11].

Our goal is to evaluate whether using programming as a
mathematical toolkit also satisfies the requirements of an in-
troductory programming course in a computer science setting.
Towards the end of the mathematics course, the students were
tasked with programming a small computer game of their
own design. We analyze these programs in order to gauge
the programming skill acquired as part of the mathematics
course. To this end, we follow the methodology suggested
by Funke et al. [4], which is in part derived from the game-
based approach of Wilson et al. [13]. We deliberately chose
game programming for this task, because as Utesch points
out, game creation allows the students to “organize their
own understanding of the topic and become intrinsically
motivated” [14]. Moreover, games are a type of software that
all of the students were very familiar with already.

We begin by discussing related work in Section II, focus-
ing on a K-12 education context. In Section III, we then
describe our course design, which combines the teaching of
mathematics with Scratch programming, and a capstone game
programming task. In Section IV, we evaluate the created
games and assess the children’s programming skills: first by
comparison with a computer science oriented course, followed
by an automated evaluation via an independent toolkit. We find
that the approach satisfies the requirements of an introductory
programming course. We conclude in Section V, along with
an outlook on future work.



II. RELATED WORK AND BACKGROUND

Programming is seen as a fundamental 21st-century skill,
and can even be considered a form of literacy [1]. For decades
there have been efforts to introduce children to programming.
These can be traced back as far as the late 1960’s and the
programming language Logo, to which Seymour Papert added
the idea of Turtle graphics [15] to support drawing operations.
The connection to teaching mathematics was also made early
on [10], [16], [17], as was the extension to real-world drawing
by a Logo-controlled robot. Even today, both Logo and Turtle
graphics are still used to teach programming [18]—even to
children in primary schools [5] and in kindergarten [19].
As was pointed out recently: “The good old idea of Turtle
graphics still has an enormous potential” [20].

The modern programming language Scratch [21]1 can be
seen as a continuation of Logo’s ideals [22]. Scratch employs
a block-based approach, leaving behind common problems of
textual programming languages such as brackets being out of
sync [23]. Furthermore, Scratch is appropriate for the entire
K-12 spectrum of educational children’s programming and
beyond—see [11, Section 3] for further details. Using concepts
of Turtle graphics seems to be a common theme in introductory
Scratch courses. After all, every new Scratch program already
starts with a turtle object (in the form of a cat, see Figure 3).

Even though Scratch was widely released as recently as
2007, it has since become one of the staple languages used to
introduce children to programming concepts. It is not only
well suited as a stepping-stone into more advanced “real”
programming languages [24], but also as a means to teach
computer science concepts in general [25].

To this end, Maloney et al. [26] concluded: “The Scratch
programming environment and language work together to
create a system that is exceptionally quick to learn—users can
be programming within fifteen minutes—yet with enough depth
and variety to keep users engaged for years.”

Perhaps inspired by the constructionist goals of the Logo
philosophy [27], a commonly studied theme for introduc-
tory courses is the design and programming of computer
games [28], [29]. A review of various success factors when
teaching with a playful approach was compiled by Heininger
et al. in [30]. Various studies focus on learning programming
(soley) through the making of computer games—we refer to
the survey of Kafai and Burke for an overview [28].

It has been shown that game programming, in an introduc-
tory context for children, raises motivation and is additionally
beneficial for female students [31]. Ouahbi et al. [32] also
remark on the high motivation of students in this context.

However, it is important to note that programming games
is orthogonal to playing games [33]. Game programming is
an educational tool that is used in early education [34] or
specifically the mathematics curriculum [35], though it is
related to the more specific task of programming agents in a
game [36], [37]. The latter also has the benefit that debugging
can be performed “by observing the agents’ actions in a

1 http://scratch.mit.edu

virtual [computer game] world” [38], analogous to coding and
debugging Turtle graphics.

In general, there is a vast corpus of work regarding the
teaching of programming, games programming, and the inter-
play of programming and mathematics. In the following, we
will therefore focus on related work that—like the approach
investigated here—uses the programming language Scratch.

Among the most important topics is the assessment of
Scratch programs created by students. Moreno-León and Rob-
les [39] propose automated evaluation via a tool they call
Dr. Scratch2. Funke et al. [4], on the other hand, advocate
to manually evaluate the student programs via the SOLO
taxonomy [40], [41]. We present both evaluation concepts in
greater detail in Section IV, where we use them for evaluation
and comparison purposes.

Funke et al.’s approach is embedded into a larger project
idea, first proposed in [42], in which the goal is to develop
and run an efficient extra-curricular introductory programming
course for 3rd and 4th grade students. The project concept and
execution is described in [43]: over the course of three days,
the students are first exposed to programming via the concepts
of CS unplugged [44], then to programming at a computer
in the Scratch environment (also introducing loops and if-
conditions) and are finally tasked to program personalized
projects. In [4], Funke et al. evaluate over 50 projects of 4th-
graders. They group these projects into three genres: stories,
animations, and games—where games are found to be the
most advanced projects overall. They also investigate gender
differences between the Scratch programs [45].

We follow their (capstone) method for evaluation in our
own course design, but specifically task students to program
personalized computer games for their projects.

Scratch has also been used in the context of further K-12
subjects [6], and particularly in investigating the connection
between programming and mathematics skilly. Lewis and
Shah [46] showed that for 5th graders, scores on Scratch
programming were predicted by their previous performances
in standardized mathematics tests. For 6th graders, Calao et
al. [47] demonstrated that training in Scratch increased their
mathematical thinking skills in a significant way. Experiments
regarding the learning of probabilities through game creation
in Scratch were performed in [48].

Previously, Förster investigated the integration of Scratch
into geometry lessons for students in grade 6 and 7, showing
that the mathematical knowledge objectives can be reached
in an improved way in comparison to control groups using
traditional (non-programming) methods [11]. Beyond this,
we are not aware of further works that 1) replace part of
mathematics classes with specifically tailored programming
in Scratch, and 2) obtain enhanced results in mathematics
objectives in comparison to traditional teaching methods. In
this paper we evaluate this method—limited to grade 6—with
a particular emphasis on determining the students’ (implicitly)
obtained programming skills.

2 http://www.drscratch.org/

http://scratch.mit.edu
http://www.drscratch.org/


Fig. 1: Classroom setting during the course.

III. COURSE DESIGN AND EXECUTION

In this section, we describe the arrangement of our course.
We begin by outlining our conceptual choices and the class-
room setting, followed by the design and execution of the
course, and finally our evaluation methods.

The aim of our course was to integrate an introductory
programming course into a mathematics curriculum. To this
end, we follow the approach of Förster [11], which was
developed to integrate programming and algorithms into the
mathematics curriculum of grades 6 and 7. In order to evaluate
whether this mathematics course also fulfilled the goals of an
introductory programming course, the students were tasked
to program a computer game of their own design as a
capstone project. These games were then analyzed to gauge
the students’ programming skills, by applying the evaluation
methodology suggested by Funke et al. [4], which is in part
derived from the game-based approach of Wilson et al. [13].

The course was held at a German school by a female teacher
experienced in both mathematics and computer science. The
class consisted of 22 6th graders (14 girls, 8 boys, all aged
11–12 years). The school did not offer computer science as a
subject prior to the 6th grade, such that nearly all students had
no prior programming experience. Programming was mostly
performed in pairs, due to limitations of the facilities, as
can be seen in Figure 1. While both the instructions and the
programming interface were originally in German, the Scratch
interface was changed to English in all screenshots and code
snippets, for the purpose of this article.

A. Programming Integrated into the Mathematics Curriculum

The approach proposed by Förster [11] integrates program-
ming into the mathematics curriculum of the 6th grade, specif-
ically into geometry lessons. Note that this approach is not
in itself an introductory programming course, but rather uses
programming as a mere tool to reach mathematics objectives.

The approach is structured into four lectures of 45 minutes
each, taught over two subsequent days, and encompasses the
mathematics topics of polygons and tessellations. In the first
two lectures, the students were first briefly introduced to the
Scratch programming environment via basic sprite movements
and were tasked with the construction of triangles and regular
polygons in Turtle graphics [15]. Note that variables were not
introduced, as can be seen in the example in Figure 2.

Fig. 2: Example of a program generating a square in Turtle
graphics. Many children chose to personalize their programs.
In this case, the female coder chose to let a bat draw the square
in a wilderness environment.

In the following two lectures, the students generated tessel-
lations consisting of triangles, squares, and hexagons. Analo-
gous to the observations made by Förster [11], the students
were able to follow the course requirements, though the
tessellations were more difficult than the earlier coding tasks
and required more iterations. An example is shown in Figure 3.

Fig. 3: Iteration example of a square tessellation. The code
generating four squares next to each other was pasted identi-
cally four times. As a next step, the code can be simplified.

B. Game-based Evaluation of Programming Skills

We delayed the capstone evaluation by roughly six weeks
to test for longer lasting impact. Moreover, all grades were
already finalized by that point—the students were thus aware
that their performance would have no impact on their grades.
During that delay, there were no additional programming
elements in the students’ school curriculum. For their final
capstone projects, the students had a little over one hour to
design and program their game in Scratch.



Fig. 4: Instruction manual for the game Tasty Donut/or not.
Translation: “The goal of the game is not to lose! This is
accomplished by avoiding the Donut-slime*, because otherwise
you will die. In addition, you control the cat [the avatar of their
game] yourself, so you should not touch the slime!
*and the Donut-sprinkles”

As described in the work of Funke et al. [4], the students
were given simple instructions listing the mandatory require-
ments for their programming projects. These consisted of the
following four items:

• the project must contain multiple sprites
• every sprite must move at least once or be controllable
• the project must contain at least one loop
• the project must contain at least one if-condition

Additionally, the students were tasked with writing a brief
instruction manual for their game. Note that there were no
further requirements restricting the type or genre of the game.
As there was a long pause between the course and the
capstone project, an independent minimum working example
was provided for each of the four requirements (each ranging
from two to four blocks), e. g. when the space key is pressed
(block 1), change pen color by 10 (block 2).

All students were able to finish their games in the allotted
time, and also composed written instructions on how to play
their games, see Figure 4 for an example. In the following sec-
tion, we provide a detailed evaluation of these game projects.

IV. RESULTS

We evaluated 12 game projects, each created by a group
of 1–3 students in 6th grade. While the students were free to
choose their own partners, each group ended up consisting of
either all female or all male students.

We deliberately chose game programming for this exercise,
since computer games are a type of software that all of the
students were very familiar with already, which allowed us to
forgo complex task descriptions. Instead, the complexity and
theme of the game were left up to the students, which allowed
them to “organize their own understanding of the topic” [14]—
within the requirements discussed in Section III-B.

Despite a lack of formal education in game creation, all
student groups assessed their programming skills reasonably
well and created small arcade-like games of varying complex-
ity. All games were functional and playable.

We analyze the structure and quality of these game projects
using a category system presented by Funke et al. [4], which
is based on previous category systems [13], [49]. The sys-
tem is designed to measure computational thinking skills by
coding each project for the presence of 24 program elements,
subdivided into four main categories:

1. Requirements:
several sprites, sprite motion, iteration, conditional
statement

2. Programming Concepts:
sequence, variables, lists, event handling, threads,
condition and synchronization, keyboard input, ran-
dom numbers, Boolean logic, dynamic interaction

3. Code Organization:
extraneous blocks, sprite names, variable names

4. Operability:
functionality, sprite customization, stage customiza-
tion, interactivity, usability, project type

Moreover, a level of understanding is determined for each
project using a modification of the SOLO taxonomy [40], [41]:
prestructural (L1), unistructural (L2), multistructural (L3),
relational (L4), extended abstract (L5).

In addition to this category system, we use the automated
quality assessment tool Dr. Scratch [50], [51] to statistically
inspect the source code of each game project. The tool assigns
point scores from 0 to 3 points on seven dimensions of
computational thinking: 1) abstraction and problem decompo-
sition, 2) logical thinking, 3) synchronization, 4) parallelism,
5) algorithmic notions of flow control, 6) user interactivity,
and 7) data representation. The sum of these seven scores
make up an overall score, which ranges from 0 to 21 points.

A. Project Examples

While the students were not given any particular themes
for their projects, the finished games can be broadly classified
among the following four game genres: breakout, racing, shell
game, and collect/evade. We note that there were gender
disparities present in the genres chosen, see Table I. All of the
games categorized in the collect/evade genre were created by
groups of female students, while all of the games categorized
in the racing genre were created by groups of male students.
This is particularly striking, as these two genres are also
among the most popular overall.

TABLE I: Games classified by genre

Genre Total % Female % Male

Collect/Evade 5 100% 0%

Racing 3 0% 100%

Breakout 3 33.3% 66.6%

Shell Game 1 100% 0%

In the following, we give a detailed view on two of the
games, in order to provide a sense for the type and code
complexity of the created projects.



Logic
Parallelism

Synchronization

User Interactivity
Abstraction

Data Representation
Flow Control

0 1 2 3

Fig. 5: From top to bottom: Stage screenshot, scratch code
and automated Dr. Scratch ratings of “Labyrinth Race”, a
multiplayer racing game for up to three players.

1) Labyrinth Race: A multiplayer racing game for up to
three players—the first player to reach the exit of the labyrinth
wins. If a player collides with a wall of the labyrinth their
position is set back to the start. A screenshot and the code of
the project can be found in Figure 5. The students used a total
of 51 blocks across three sprites (players). The code in each of
the three player sprites is identical, except for the input keys—
as can be expected in a balanced multiplayer game design.

While the accompanying game description that the students
provided mentions a win-state, this has not been implemented
in the actual program. However, given that the students knew
how to implement players being reset back to the start upon
touching a wall (fail-state), it is reasonable to expect that
implementing the win-state would have been in their skill set.

This project fulfils all of the task requirements. It uses
sequences, threads, keyboard inputs, and dynamic interactions.
There are no extraneous blocks and no unnamed sprites. It
is fully functional, has user interactions, and its usability is
intuitive and documented.

The project scored an overall rating of 8 out of 21 in the
automated evaluation using Dr. Scratch (Figure 5). It scored
lowest (0 out of 3 points) in Synchronization, as there were no
synchronization structures used (wait, when I receive, . . . ).

Logic
Parallelism

Synchronization

User Interactivity
Abstraction

Data Representation
Flow Control

0 1 2 3

Fig. 6: From top to bottom: Stage screenshot, scratch code
and automated Dr. Scratch ratings of “Tasty Donut/or not”, a
game about evading donuts and sprinkles.

2) Tasty Donut/or not: A game in which the player controls
a cat and has to evade three floating objects (donuts and
sprinkles). If the player touches any of the objects, the game
stops and a game over message is displayed. A screenshot
and the code of the project can be found in Figure 6. The
students used a total of 42 blocks across three sprites. The
accompanying instructions that the students wrote for the game
can be found in Figure 4.

Pressing the space key starts the game—and also restarts
it after an object hit the player. Unfortunately, the sprites do
not stop when the game does and are not reset upon restart.
Additionally, as the students have not learned the concept of
random numbers yet, the movement patterns for each moving
object are deterministic and hard-coded. The game can thus
be easily beaten by moving the player to the lower right of
the game stage, as none of the objects will ever move there.

This project fulfils all of the task requirements. It uses
sequences, event handling, threads, coordination, keyboard
inputs and dynamic interactions. There are no extraneous
blocks and no unnamed sprites. It is fully functional, has user
interactions and its usability is intuitive and documented.

The project scored an overall rating of 14 out of 21 in the
automated evaluation using Dr. Scratch (Figure 6).



B. Code Structure and Quality

We now examine the code structure and quality of the
students’ game projects as outlined in the beginning of Sec-
tion IV, in order to asses the student’s computational thinking
skills. We first evaluate the four main categories regarding
the presence of program elements, followed by the level of
understanding according to the modified SOLO taxonomy.
1. Requirements
All student projects met the four minimal requirements dis-
cussed in Section III-B.
2. Programming Concepts
All student projects used sequences, event handling with at
least 3 events (average: 10), threads, keyboard input, and
dynamic interaction. One student project used the concept of
random numbers and two projects used Boolean logic and
variables. No project used lists.
3. Code Organization:
In all projects sprites and variables were named in a meaning-
ful way. 40% of the projects included extraneous blocks.
4. Operability:
All projects (games) were fully functional and included user
input. The input schemes were intuitive as they were similar
to standard keyboard control schemes in games.

When evaluating the level of understanding according to the
modified SOLO taxonomy we found that all game projects
qualified for at least the third level L3 (Multistructural).
25% of all projects were categorized in the fourth level L4
(Relational), and 30% of all projects demonstrated qualities
of the highest level L5 (Extended Abstract).

Overall, the student projects of our course received at least
similar scores to the scores reported in Funke et al. [4], indi-
cating that the students in our course had learned programming
on at least the same level. We note that our students were in
the 6th grade as opposed to the 4th grade, but on the other
hand, the 6th grade students were instructed in 4×45 minutes
plus the final game project six weeks later, as opposed to a
more comprehensive 3×4 hours course. It is, however, not our
goal to rank both courses: We are merely interested whether
the success of Funke et al. can be replicated in the context of

Logic 1.1

Parallelism 1.3

Synchronization 1.3

User Interactivity 1.9

Abstraction 1.1

Data Representation 1.1

Flow Control 2

0 1 2 3

Fig. 7: Average ratings of the student projects according to
the automated Dr. Scratch evaluation tool. Each dimension is
individually ranked in a range of 0 to 3 points.

the mathematics curriculum at a later stage for primary school
children. We believe that the course design of Funke et al. is
exemplary in providing an introduction to programming for
primary school children.

As all of the above evaluation methods required manual
analysis, we additionally included a comparable automatic rat-
ing method. We chose Dr. Scratch, since both the methodology
of Funke et al. as well as the automatic evaluation algorithm
of Dr. Scratch are at least partly based off of the work of
Wilson et al. [13]. The Dr. Scratch tool automatically evaluates
a Scratch program and scores it along the seven dimensions
of computational thinking. Figure 7 shows the automatically
computed mean scores over all student projects.

Each student project achieved a score of at least one in
each of the seven categories, except for the Synchronization
category. Three games (2 racing games, 1 breakout game) did
not reach a score of one in Synchronization. A score of one can
for example be achieved by the use of wait blocks, which can
be found in 50% of the games, see Table II. Higher scores
can be achieved with blocks like Broadcast, when I receive
message, stop all, wait until etc.

Table II shows that 83.3% of the student projects used the
key pressed block. The use of this block leads to a score of two
in User Interactivity. The project which scored one point int
his category was the shell game. Here the user interactivity
is given by the touching block, which makes more sense
regarding the game design.

Overall, the automatically generated Dr. Scratch scores are
similar to the manually obtained scores in the category system.
To put the automated results into further context, we addition-
ally compared the results to a large the data set provided by
Aivaloglou et al. [52], which consists of 250K Scratch projects
of 100K different authors scraped from the Scratch repository.

TABLE II: Top ten blocks in the students’ projects, including
the percentage of projects the block occurs in.

Block Total % blocks % projects

104 12.9% 100%

92 11.4% 83.3%

64 7.9% 75%

60 7.4% 50%

59 7.3% 50%

53 6.6% 83.3%

50 6.2% 75%

49 6.1% 66.6%

40 5% 100%

37 4.6% 25%



This data set also holds programming mastery scores generated
by the Dr. Scratch quality assessment tool, as well as average
numbers of blocks used.

The average number of blocks used for projects in this
data set was 144.3 blocks with a median of 29 blocks. In
comparison, the students in our experiment used an average
of 67 blocks (median: 54) in their game projects.

The mean score of mastery per project in the data set was
8.9 points (median: 8). Here the students in our experiment
achieved a higher mean mastery score at an average of 9.7
points (median: 9), with the lowest score being 8 points and
the highest being 14 points. According to the Dr. Scratch
documentation, a mastery score of 8 points is considered
to show a medium level of computational thinking skills
development [52].

Overall, our evaluation of the student projects with the
methodology of Funke et al. [4] and Dr. Scratch show that the
students developed at least a medium level of computational
thinking skills, indicating that the mathematical approach
described by Förster [11] also satisfies the requirements of
an introductory programming course.

C. Gender Differences

In this section, we investigate the differences regarding
gender in the projects. Recall that all games were created by
female-only and male-only groups. During our evaluation we
did notice certain gender specific differences.

Regarding the Dr. Scratch evaluation, we noticed that the
projects of the female groups reached an average computa-
tional thinking score of 10.6, whereas the male groups reached
an average score of 8.6. The average scores for the seven
dimensions of computational thinking separated by gender can
be found in Figure 8. Noticeable are the different average
scores in the categories Synchronization and Parallelism.

As mentioned above, three games developed by male stu-
dents (2 racing games, 1 breakout game) did not reach a score
of one in Synchronization. The wait block, for example, was
used in only 20% of the male projects (Table III), as opposed
to 71.4% in the female projects (Table IV). However, the wait
block was mostly used for visual effects, which occurred more
often in the female-developed collect/evade games.

All projects scored at least one point in Parallelism, which is
directly connected to the multiple usage of the green flag, key
pressed, when this Sprite is clicked, when I receive blocks on
the same sprite. Here, female projects from the collect/evade
genre scored the highest, achieving up to two points. We
observed that the score disparities seem to be largely influ-
enced by the gender disparities in the self-selected genres, see
Table I. For example all racing games received a Dr. Scratch
rating of 8, while the collect/evade games had an average score
of 11.25 (lowest 9). The differences in the used blocks in male
and female projects (see Tables III and IV) seem to stem from
the different requirements of the selected genres. Regarding
the level of understanding (SOLO), we found that the female
projects reached an average level of 4 and the male projects
reached an average level of 4.25. However, this difference is

♀ 1.2
Logic ♂ 1

♀ 1.5
Parallelism ♂ 1

♀ 1.8
Synchronization ♂ 0.6

♀ 1.8
User Interactivity ♂ 2

♀ 1.2
Abstraction ♂ 1

♀ 1.2
Data Representation ♂ 1

♀ 2
Flow Control ♂ 2

0 1 2 3

Fig. 8: Gender separated average ratings of the student projects
according to the automated Dr. Scratch evaluation tool. Each
dimension is individually ranked in a range of 0 to 3 points.

too small to allow for any qualitative distinction between the
different genders.

In order to perform a more comprehensive gender-based
evaluation of programming skills using Dr. Scratch, it may
be necessary to prescribe a game genre for the final project.
Given the gender difference in the genre-choices, however, it
could be important to investigate whether certain genres may
have a negative influence on the motivation of either female
or male students.

V. CONCLUSION AND OUTLOOK

The results of our pilot study indicate that an introduction
of 6th grade students to programming can be performed in a
way that satisfies both:

1) the curricular goals of the mathematics classes in which
the introduction to programming is performed, and

2) the requirements of a computer science introductory
course on programming in Scratch.

We have provided a successful course example, which
demonstrates how 6th grade students can be introduced to
computer science in school without having to sacrifice scarce
extra-curricular class hours. We believe the latter to be es-
pecially important, as it allows all school children to obtain
programming skills, even if computer science is not available
as a school subject. Furthermore, the game-oriented capstone
approach enabled the children to express their programming
skills in an intuitive and meaningful way.

As a next step, we plan to expand this approach to additional
groups of children and other parts of the K-12 curriculum.
We also plan to investigate integrating programming into non-
mathematics subjects, as well as incorporating further game-
development aspects [28], [30].



TABLE III: Top ten blocks in the male students’ projects,
including the percentage of projects the block occurs in. The
sum of all used blocks is 254. with an average of 50.8 blocks
per project.

Block Total % blocks % projects

55 21.6% 100%%

53 20.8% 100%%

32 12.5% 60%

32 9.4% 60%

21 8.3% 40%

19 7.5% 100%

15 5.9% 100%%

15 5.9% 100%

3 1.2% 40%

2 0.8% 20%

TABLE IV: Top ten blocks in the female students’ projects,
including the percentage of projects the block occurs in. The
sum of all used blocks is 550 with an average of 78.5 blocks
per project.

Block Total % blocks % projects

58 10.5% 71.4%

51 9.3% 100%

40 7.3% 85.7%

38 6.9% 74.1%

37 6.7% 71.4%

35 6.4% 57.1

35 6.4% 28.6

28 5.1% 3.6%

27 4.9% 42.9%

21 3.8% 100%

REFERENCES

[1] Y. B. Kafai, Q. Burke, and M. Resnick, Connected Code: Why Children
Need to Learn Programming. MIT Press, 2014. [Online]. Available:
http://www.jstor.org/stable/j.ctt9qf8rk

[2] C. Duncan and T. Bell, “A pilot computer science and programming
course for primary school students,” in Proceedings of the Workshop in
Primary and Secondary Computing Education, WiPSCE 2015, London,
United Kingdom, November 9-11, 2015, J. Gal-Ezer, S. Sentance, and
J. Vahrenhold, Eds. ACM, 2015, pp. 39–48. [Online]. Available:
http://doi.acm.org/10.1145/2818314.2818328

[3] P. Hubwieser, M. N. Giannakos, M. Berges, T. Brinda, I. Diethelm,
J. Magenheim, Y. Pal, J. Jacková, and E. Jasute, “A global
snapshot of computer science education in K-12 schools,” in
Proceedings of the 2015 ITiCSE Working Group Reports, ITICSE-
WGR 2015, Vilnius, Lithuania, July 4-8, 2015, N. Ragonis and
P. Kinnunen, Eds. ACM, 2015, pp. 65–83. [Online]. Available:
http://doi.acm.org/10.1145/2858796.2858799

[4] A. Funke, K. Geldreich, and P. Hubwieser, “Analysis of scratch projects
of an introductory programming course for primary school students,”
in 2017 IEEE Global Engineering Education Conference, EDUCON
2017, Athens, Greece, April 25-28, 2017. IEEE, 2017, pp. 1229–1236.
[Online]. Available: https://doi.org/10.1109/EDUCON.2017.7943005

[5] G. Serafini, “Teaching programming at primary schools: Visions,
experiences, and long-term research prospects,” in Informatics in
Schools. Contributing to 21st Century Education - 5th International
Conference on Informatics in Schools: Situation, Evolution and
Perspectives, ISSEP 2011, Bratislava, Slovakia, October 26-29, 2011.
Proceedings, ser. Lecture Notes in Computer Science, I. Kalas and
R. T. Mittermeir, Eds., vol. 7013. Springer, 2011, pp. 143–154.
[Online]. Available: https://doi.org/10.1007/978-3-642-24722-4 13

[6] J. Moreno-León and G. Robles, “Code to learn with scratch? A
systematic literature review,” in 2016 IEEE Global Engineering
Education Conference, EDUCON 2016, Abu Dhabi, United Arab
Emirates, April 10-13, 2016. IEEE, 2016, pp. 150–156. [Online].
Available: https://doi.org/10.1109/EDUCON.2016.7474546

[7] W. Gander, A. Petit, G. Berry, B. Demo, J. Vahrenhold, A. McGettrick,
R. Boyle, A. Mendelson, C. Stephenson, C. Ghezzi et al.,
“Informatics education: Europe cannot afford to miss the boat,”
ACM Europe: Informatics education report, 2013. [Online]. Available:
http://europe.acm.org/iereport/ie.html

[8] I. Livingstone, “A new year challenge on programming for politicians,
schools and universities,” https://www.theguardian.com/education/2012/
jan/10/a-new-year-challenge-on-programming-for-politicians-schools-
and-universities, 10 January 2012, the Guardian.

[9] J. Ziegenbalg, “Informatik-affine themen in der didaktik der
mathematik,” Mitteilungen der Gesellschaft fuer Didaktik der
Mathematik, vol. 40, no. 96, pp. 7–14, 2014. [Online]. Available: https:
//ojs.didaktik-der-mathematik.de/index.php/mgdm/article/view/363

[10] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and C. Solomon,
“Programming-languages as a conceptual framework for teaching
mathematics,” SIGCUE Outlook, vol. 4, no. 2, pp. 13–17, Apr. 1970.
[Online]. Available: http://doi.acm.org/10.1145/965754.965757

[11] K.-T. Foerster, “Integrating Programming into the Mathematics
Curriculum: Combining Scratch and Geometry in Grades 6 and 7,” in
Proceedings of the 17th Annual Conference on Information Technology
Education, ser. SIGITE ’16, D. Boisvert and S. J. Zilora, Eds.
New York, NY, USA: ACM, 2016, pp. 91–96. [Online]. Available:
http://doi.acm.org/10.1145/2978192.2978222

[12] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of
computational thinking through programming: What is next for k-12?”
Computers in Human Behavior, vol. 41, pp. 51–61, 2014. [Online].
Available: https://doi.org/10.1016/j.chb.2014.09.012

[13] A. Wilson, T. Hainey, and T. M. Connolly, “Using scratch with
primary school children: An evaluation of games constructed to
gauge understanding of programming concepts,” IJGBL, vol. 3,
no. 1, pp. 93–109, 2013. [Online]. Available: https://doi.org/10.4018/
ijgbl.2013010107

[14] M. C. Utesch, “The special track ’games engineering’ at
EDUCON 2017,” in 2017 IEEE Global Engineering Education
Conference, EDUCON 2017, Athens, Greece, April 25-28,
2017. IEEE, 2017, pp. 1883–1884. [Online]. Available:
https://doi.org/10.1109/EDUCON.2017.7943110

[15] H. Abelson and A. A. DiSessa, Turtle geometry : the computer as
a medium for exploring mathematics, ser. The MIT Press series in
artificial intelligence. Cambridge, Mass. MIT Press, 1981. [Online].
Available: https://mitpress.mit.edu/books/turtle-geometry

[16] J. Howe, F. Plane, and T. O’Shea, “Teaching mathematics through
logo programming : an evaluation study,” University of Edinburgh
(Edinburgh, GB), Tech. Rep. DAI-RP-115, 1979.

[17] J. Howe, P. Ross, K. Johnson, F. Plane, and R. Inglis, “Teaching
mathematics through programming in the classroom,” Computers &
Education, vol. 6, no. 1, pp. 85 – 91, 1982. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0360131582900161

http://www.jstor.org/stable/j.ctt9qf8rk
http://doi.acm.org/10.1145/2818314.2818328
http://doi.acm.org/10.1145/2858796.2858799
https://doi.org/10.1109/EDUCON.2017.7943005
https://doi.org/10.1007/978-3-642-24722-4_13
https://doi.org/10.1109/EDUCON.2016.7474546
http://europe.acm.org/iereport/ie.html
https://www.theguardian.com/education/2012/jan/10/a-new-year-challenge-on-programming-for-politicians-schools-and-universities
https://www.theguardian.com/education/2012/jan/10/a-new-year-challenge-on-programming-for-politicians-schools-and-universities
https://www.theguardian.com/education/2012/jan/10/a-new-year-challenge-on-programming-for-politicians-schools-and-universities
https://ojs.didaktik-der-mathematik.de/index.php/mgdm/article/view/363
https://ojs.didaktik-der-mathematik.de/index.php/mgdm/article/view/363
http://doi.acm.org/10.1145/965754.965757
http://doi.acm.org/10.1145/2978192.2978222
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.4018/ijgbl.2013010107
https://doi.org/10.4018/ijgbl.2013010107
https://doi.org/10.1109/EDUCON.2017.7943110
https://mitpress.mit.edu/books/turtle-geometry
http://www.sciencedirect.com/science/article/pii/0360131582900161


[18] J. Hromkovic, Einfuehrung in die Programmierung mit LOGO:
Lehrbuch fuer Unterricht und Selbststudium, 2nd ed. Wiesbaden:
Vieweg+Teubner, 2012. [Online]. Available: https://dx.doi.org/10.1007/
978-3-8348-2266-6

[19] G. Fessakis, E. Gouli, and E. Mavroudi, “Problem solving by 5-6 years
old kindergarten children in a computer programming environment:
A case study,” Computers & Education, vol. 63, pp. 87–97, 2013.
[Online]. Available: https://doi.org/10.1016/j.compedu.2012.11.016

[20] R. Oldenburg, M. Rabel, and J. Schuster, “A Turtle’s Genetic Path
to Object Oriented Programming,” in Proceedings to Constructionism,
2012. [Online]. Available: http://constructionism2012.etl.ppp.uoa.gr/
-pid=31.htm

[21] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[22] R. Romeike, “Constructionist approaches to mathematics education
and mathematics teacher education (Konstruktionistische Ansaetze fuer
Mathematikunterricht und Mathematiklehrerausbildung),” in Beitraege
zum Mathematikunterricht 2011, 45. Jahrestagung der Gesellschaft fuer
Didaktik der Mathematik vom 21. bis 25. Februar 2011 in Freiburg,
2011. [Online]. Available: http://dx.doi.org/10.17877/DE290R-13680

[23] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick,
“Alice, greenfoot, and scratch - A discussion,” TOCE, vol. 10, no. 4,
pp. 17:1–17:11, 2010. [Online]. Available: http://doi.acm.org/10.1145/
1868358.1868364

[24] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From scratch to
”real” programming,” TOCE, vol. 14, no. 4, pp. 25:1–25:15, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2677087

[25] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Learning
computer science concepts with scratch,” Computer Science Education,
vol. 23, no. 3, pp. 239–264, 2013. [Online]. Available: https:
//doi.org/10.1080/08993408.2013.832022

[26] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The scratch programming language and environment,” TOCE,
vol. 10, no. 4, pp. 16:1–16:15, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1868358.1868363

[27] S. Papert et al., “Logo philosophy and implementation,” Logo Computer
Systems Inc, 1999. [Online]. Available: http://www.microworlds.com/
company/philosophy.pdf

[28] Y. B. Kafai and Q. Burke, “Constructionist gaming: Understanding
the benefits of making games for learning,” Educational Psychologist,
vol. 50, no. 4, pp. 313–334, 2015, pMID: 27019536. [Online].
Available: http://dx.doi.org/10.1080/00461520.2015.1124022

[29] Y. B. Kafai, Minds in Play: Computer Game Design As a Context for
Children’s Learning. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.,
1995. [Online]. Available: https://dl.acm.org/citation.cfm?id=527173

[30] R. Heininger, L. Prifti, V. Seifert, M. C. Utesch, and H. Krcmar,
“Teaching how to program with a playful approach: A review
of success factors,” in 2017 IEEE Global Engineering Education
Conference, EDUCON 2017, Athens, Greece, April 25-28, 2017.
IEEE, 2017, pp. 189–198. [Online]. Available: https://doi.org/10.1109/
EDUCON.2017.7942846

[31] W. S. Yue and W. L. Wan, “The effectiveness of digital game
for introductory programming concepts,” in 10th International
Conference for Internet Technology and Secured Transactions,
ICITST 2015, London, United Kingdom, December 14-16, 2015.
IEEE, 2015, pp. 421–425. [Online]. Available: https://doi.org/10.1109/
ICITST.2015.7412134

[32] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar, and S. Lahmine,
“Learning basic programming concepts by creating games with scratch
programming environment,” Procedia - Social and Behavioral Sciences,
vol. 191, no. Supplement C, pp. 1479 – 1482, 2015, the Proceedings
of 6th World Conference on educational Sciences. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877042815024842

[33] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and
J. M. Boyle, “A systematic literature review of empirical evidence
on computer games and serious games,” Computers & Education,
vol. 59, no. 2, pp. 661–686, 2012. [Online]. Available: https:
//doi.org/10.1016/j.compedu.2012.03.004

[34] T. Hainey, T. M. Connolly, E. A. Boyle, A. Wilson, and A. Razak,
“A systematic literature review of games-based learning empirical
evidence in primary education,” Computers & Education, vol.

102, pp. 202–223, 2016. [Online]. Available: https://doi.org/10.1016/
j.compedu.2016.09.001

[35] M. Kebritchi, A. Hirumi, and H. Bai, “The effects of modern
mathematics computer games on mathematics achievement and class
motivation,” Computers & Education, vol. 55, no. 2, pp. 427–443, 2010.
[Online]. Available: https://doi.org/10.1016/j.compedu.2010.02.007

[36] J. E. Laird, “Using a computer game to develop advanced AI,”
IEEE Computer, vol. 34, no. 7, pp. 70–75, 2001. [Online]. Available:
https://doi.org/10.1109/2.933506

[37] K.-T. Foerster, M. Koenig, and R. Wattenhofer, “A Concept for
an Introduction to Parallelization in Java: Multithreading with
Programmable Robots in Minecraft,” in Proceedings of the 17th Annual
Conference on Information Technology Education, ser. SIGITE ’16,
D. Boisvert and S. J. Zilora, Eds. New York, NY, USA: ACM, 2016, p.
169. [Online]. Available: http://doi.acm.org/10.1145/2978192.2978243

[38] K.-T. Foerster, “Teaching spatial geometry in a virtual world: Using
minecraft in mathematics in grade 5/6,” in 2017 IEEE Global
Engineering Education Conference, EDUCON 2017, Athens, Greece,
April 25-28, 2017. IEEE, 2017, pp. 1411–1418. [Online]. Available:
https://doi.org/10.1109/EDUCON.2017.7943032

[39] J. Moreno-León and G. Robles, “Automatic detection of bad
programming habits in scratch: A preliminary study,” in IEEE Frontiers
in Education Conference, FIE 2014, Proceedings, Madrid, Spain,
October 22-25, 2014. IEEE, 2014, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/FIE.2014.7044055

[40] L. M. Seiter, “Using SOLO to classify the programming responses
of primary grade students,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Kansas City,
MO, USA, March 4-7, 2015, A. Decker, K. Eiselt, C. Alphonce,
and J. Tims, Eds. ACM, 2015, pp. 540–545. [Online]. Available:
http://doi.acm.org/10.1145/2676723.2677244

[41] J. B. Biggs and K. F. Collis, Evaluating the quality of
learning: The SOLO taxonomy (Structure of the Observed
Learning Outcome). Academic Press, 1982. [Online]. Available:
http://www.sciencedirect.com/science/book/9780120975525

[42] K. Geldreich, A. Funke, and P. Hubwieser, “A programming circus for
primary schools,” ISSEP 2016, pp. 49–50, 2016. [Online]. Available:
http://issep2016.ens-cachan.fr/ISSEP 2016 Proceedings.pdf

[43] ——, “Willkommen im programmierzirkus-ein programmierkurs fuer
grundschulen,” Informatische Bildung zum Verstehen und Gestalten der
digitalen Welt (INFOS’17), pp. 327–334, 2017. [Online]. Avail-
able: https://www.uni-oldenburg.de/fileadmin/user upload/informatik/
ag/didaktik/download/infos2017/INFOS2017Proceedings-274.pdf

[44] T. Bell, I. H. Witten, and M. R. Fellows, Computer Science Unplugged
- an enrichment and extension programme for primary-aged children.
csunplugged.org, 2002. [Online]. Available: http://csunplugged.org/

[45] A. Funke and K. Geldreich, “Gender differences in scratch programs
of primary school children,” in Proceedings of the 12th Workshop
on Primary and Secondary Computing Education, WiPSCE 2017,
Nijmegen, The Netherlands, November 08 - 10, 2017, E. Barendsen
and P. Hubwieser, Eds. ACM, 2017, pp. 57–64. [Online]. Available:
http://doi.acm.org/10.1145/3137065.3137067

[46] C. M. Lewis and N. Shah, “Building upon and enriching grade
four mathematics standards with programming curriculum,” in
Proceedings of the 43rd ACM technical symposium on Computer
science education, SIGCSE 2012, Raleigh, NC, USA, February 29
- March 3, 2012, L. A. S. King, D. R. Musicant, T. Camp, and
P. T. Tymann, Eds. ACM, 2012, pp. 57–62. [Online]. Available:
http://doi.acm.org/10.1145/2157136.2157156

[47] L. A. Calao, J. Moreno-León, H. E. Correa, and G. Robles, “Developing
mathematical thinking with scratch - an experiment with 6th grade
students,” in Design for Teaching and Learning in a Networked World -
10th European Conference on Technology Enhanced Learning, EC-TEL
2015, Toledo, Spain, September 15-18, 2015, Proceedings, ser. Lecture
Notes in Computer Science, G. Conole, T. Klobucar, C. Rensing,
J. Konert, and É. Lavoué, Eds., vol. 9307. Springer, 2015, pp. 17–27.
[Online]. Available: https://doi.org/10.1007/978-3-319-24258-3 2

[48] Y. Akpinar and mit Aslan, “Supporting childrens learning of probability
through video game programming,” Journal of Educational Computing
Research, vol. 53, no. 2, pp. 228–259, 2015. [Online]. Available:
https://doi.org/10.1177/0735633115598492

[49] J. Denner, L. L. Werner, and E. Ortiz, “Computer games created
by middle school girls: Can they be used to measure understanding
of computer science concepts?” Computers & Education, vol. 58,

https://dx.doi.org/10.1007/978-3-8348-2266-6
https://dx.doi.org/10.1007/978-3-8348-2266-6
https://doi.org/10.1016/j.compedu.2012.11.016
http://constructionism2012.etl.ppp.uoa.gr/-pid=31.htm
http://constructionism2012.etl.ppp.uoa.gr/-pid=31.htm
http://doi.acm.org/10.1145/1592761.1592779
http://dx.doi.org/10.17877/DE290R-13680
http://doi.acm.org/10.1145/1868358.1868364
http://doi.acm.org/10.1145/1868358.1868364
http://doi.acm.org/10.1145/2677087
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1080/08993408.2013.832022
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
http://www.microworlds.com/company/philosophy.pdf
http://www.microworlds.com/company/philosophy.pdf
http://dx.doi.org/10.1080/00461520.2015.1124022
https://dl.acm.org/citation.cfm?id=527173
https://doi.org/10.1109/EDUCON.2017.7942846
https://doi.org/10.1109/EDUCON.2017.7942846
https://doi.org/10.1109/ICITST.2015.7412134
https://doi.org/10.1109/ICITST.2015.7412134
http://www.sciencedirect.com/science/article/pii/S1877042815024842
https://doi.org/10.1016/j.compedu.2012.03.004
https://doi.org/10.1016/j.compedu.2012.03.004
https://doi.org/10.1016/j.compedu.2016.09.001
https://doi.org/10.1016/j.compedu.2016.09.001
https://doi.org/10.1016/j.compedu.2010.02.007
https://doi.org/10.1109/2.933506
http://doi.acm.org/10.1145/2978192.2978243
https://doi.org/10.1109/EDUCON.2017.7943032
https://doi.org/10.1109/FIE.2014.7044055
http://doi.acm.org/10.1145/2676723.2677244
http://www.sciencedirect.com/science/book/9780120975525
http://issep2016.ens-cachan.fr/ISSEP_2016_Proceedings.pdf
https://www.uni-oldenburg.de/fileadmin/user_upload/informatik/ag/didaktik/download/infos2017/INFOS2017Proceedings-274.pdf
https://www.uni-oldenburg.de/fileadmin/user_upload/informatik/ag/didaktik/download/infos2017/INFOS2017Proceedings-274.pdf
http://csunplugged.org/
http://doi.acm.org/10.1145/3137065.3137067
http://doi.acm.org/10.1145/2157136.2157156
https://doi.org/10.1007/978-3-319-24258-3_2
https://doi.org/10.1177/0735633115598492


no. 1, pp. 240–249, 2012. [Online]. Available: https://doi.org/10.1016/
j.compedu.2011.08.006

[50] J. Moreno-León and G. Robles, “Analyze your scratch projects
with dr. scratch and assess your computational thinking skills,”
in Scratch Conference, 2015, pp. 12–15. [Online]. Available:
http://jemole.me/replication/2015scratch/InferCT.pdf

[51] J. Moreno-León, G. Robles, and M. Román-González, “Dr. scratch:
Automatic analysis of scratch projects to assess and foster computational

thinking,” RED. Revista de Educación a Distancia, no. 46, pp. 1–23,
2015. [Online]. Available: http://www.um.es/ead/red/46/

[52] E. Aivaloglou, F. Hermans, J. Moreno-León, and G. Robles, “A dataset
of scratch programs: scraped, shaped and scored,” in Proceedings of
the 14th International Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, J. M. Gonzalez-
Barahona, A. Hindle, and L. Tan, Eds. IEEE Computer Society, 2017,
pp. 511–514. [Online]. Available: https://doi.org/10.1109/MSR.2017.45

https://doi.org/10.1016/j.compedu.2011.08.006
https://doi.org/10.1016/j.compedu.2011.08.006
http://jemole.me/replication/2015scratch/InferCT.pdf
http://www.um.es/ead/red/46/
https://doi.org/10.1109/MSR.2017.45

	Introduction
	Related Work and Background
	Course Design and Execution
	Programming Integrated into the Mathematics Curriculum
	Game-based Evaluation of Programming Skills

	Results
	Project Examples
	Labyrinth Race
	Tasty Donut/or not

	Code Structure and Quality
	Gender Differences

	Conclusion and Outlook
	References

