
1ETH Zurich – Distributed Computing Group

Distributed Systems lecture : Roger Wattenhofer
Today’s lecturer: Klaus-Tycho Foerster

Network Updates
Chapter 10

2

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

3

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

4

Network Updates

• The Internet: Designed for selfish participants

– Often inefficient (low utilization of links), but robust

• But what happens if the WAN is controlled by a single entity?

– Examples: Microsoft & Amazon & Google …

– They spend hundreds of millions of dollars per year

5

Software-Defined Networking

• Possible solution: Software-Defined Networking (SDNs)

• General Idea: Separate data & control plane in a network

• Centralized controller updates networks rules for optimization

– Controller (control plane) updates the switches/routers (data plane)

• Centralized controller implemented with replication, e.g. Paxos

Virtual Services Controller Physical Network

6

When will the Network Updates be implemented?

7

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

8

Blackholes

9

Blackholes

• Sounds scary? It is!*

• A packet arrives at some switch…

– … while the switch deletes an old rule and implements a new one

– So the switch does not know what to do with it?!

– The packet gets dropped 

• What can we do?

– Make sure that the switch always has some rule for every packet!

• How can we solve the problem?

– “add before remove”

– Just send everything back to the controller?

– Send everything somewhere?

– What is the issue with that?

*for network operators 

10

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

11

Loop-Free Updates

SDN Controller

12

Minimum SDN Updates?

13

Minimum Updates: Another Example

𝑤

𝑢

𝑤

𝑣

or

14

Minimum vs. Minimal

No node can improve
without hurting another

node

15

Minimal Dependency Forest

Next: An algorithm to compute minimal dependency forest.

16

Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

old

newnew

old

17

Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

• Originally, destination node in new state, all other nodes in old state

• Invariant: No loop!

𝑑

18

Algorithm for Minimal Dependency Forest

Initialization

• Old node 𝑢: No loop* when adding new pointer, move node to limbo!

• This node 𝑢 will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

𝑑(no loop)

19

Loop Detection

• Will a new rule u.new = v induce a loop?

– We know that the graph so far has no loops

– Any new loop must contain the edge (u,v)

• In other words, is node u now reachable from node v?

• Depth first search (DFS) at node v

– If we visit node u: the new rule induces a loop

– Else: no loop

u v

u v

new

new

20

Algorithm for Minimal Dependency Forest

• Limbo node 𝑢: Remove old pointer (move node to new)

• Consequence: Some old nodes 𝑣 might move to limbo!

• Node 𝑣 will be child of 𝑢 in dependency forest!

𝑑(remove old)

(now: no loop)

21

Algorithm for Minimal Dependency Forest

Process terminates

• You can always move a node from limbo to new.

• Can you ever have old nodes but no limbo nodes? No, because…

…one can easily derive a contradiction!

new

𝑑
old

new!

22

It’s not just how to compute new rules.

It is also how to gracefully get
from current to new configuration,

respecting consistency.

6/23

Architecture

Rule
generator

Update plan
generator

Plan optimizer
and executor

Routing
policy

Consistency
property

Network
characteristics

New
rules

Update
DAG

6/24

Update DAG

Insert rule 𝑟
at node 𝑢

Remove rule 𝑠
at node 𝑣

Insert rule 𝑡
at node 𝑤

Wait 10s
Remove rule
𝑞 at node 𝑥

Insert rule 𝑝
at node 𝑦

Logical OR

6/25

Multiple Destinations using Prefix-Based Routing

• No new “default” rule can be introduced without causing loops

• Solution: Rule-Dependency Graphs!

• Deciding if simple update schedule exists is hard!

6/26

Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤:
dest 𝑣: 𝑤𝑣

6/27

Architecture

Rule
generator

Update plan
generator

Plan optimizer
and executor

Routing
policy

Consistency
property

Network
characteristics

New
rules

Update
DAG

6/28

Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤:
dest 𝑣: 𝑤𝑣

29

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

30

Packet-Coherent Updates

• Definition: A packet should always either

– Use the old rules

– Use the new rules

– Important for waypointing (e.g., firewalls)

• General idea:

– Stamp every packet with a version number

– Send new rules to all switches

– When all switches confirmed:

– Stamp all packets with the next version number

– Once all old packets are gone

– Delete old rules

31

Example

SDN Controller

v1 v2

32

Comparison

Version Numbers v1 Loop Free Solution

𝑢 𝑣 𝑥 𝑦

𝑢 𝑣 𝑥 𝑦

𝑦

𝑥

version numbers

• no mix of old and new rules

• loop freedom & packet coherence

• "programmers dream“

• more switch memory

• changes packets

• update all involved switches

• when can we delete old rules?

loop free updates

• mix of old and new rules

• loop freedom, but no packet coherence

• needs algorithms

• early first effects

• packets unaffected

33

Overview

• Software-Defined Networking

• Blackhole-Free Updates

• Loop-Free Updates

• Packet Coherent Updates

• Capacity-Consistent Updates

34

Real Application: Inter-Data Center WANs

Think: Google, Amazon, Microsoft

35

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

> 50%
peak reduction

mean

Problem: Typical Network Utilization

36

Background
traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

mean

Problem: Typical Network Utilization

37

Background traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

peak after rate adaptation

> 50%
peak reduction

Problem: Typical Network Utilization

38

BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)

39

BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)

How to move flows?

40

Introductory Example

FB

FA

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3

41

Just Switch? Congestion!

FA FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3

42

Migrate only parts of the flow

FA ½ FB

V1 V2

V3 V4

½ FB

size of each flow: 2

capacity of links: 3

43

Can even do both flows at once

V1 V2

V3 V4

½ FB

½ FA

V1 V2

V3 V4

½ FB

½ FA

size of each flow: 2

capacity of links: 3

44

Done in two steps

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3

45

Done in two steps

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3

If all links have a slack of x, then -1+1/(x) steps

E.g., 20% free capacity everywhere? -1+1/(1/5)=4 steps

46

But not always possible!

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 2

47

Two-fold approach of SWAN

a) free capacity on every link b) LP-based search

48

Two-fold approach of SWAN

a) free capacity on every link b) LP-based search

Note: The SWAN framework does much more!

49

WAN
switches

rate
allocation

network
configuration

[rate limiting] [forwarding plane update]

SWAN controller

traffic
demand

topology,
traffic

[global optimization for high utilization]

Hosts

The SWAN Project

network updates

?

Do proper network updates exist?

network updates

𝜀 capacity



Number of steps can be unbounded

Calculate for an infinite amount of time?

An old method for a new problem

• Key observation in SWAN:

– only migrate flows to links with free capacity

• However, LPs do not seem to be the way to go

• Other method: Augmenting flows!

– “push back” flows to free link capacity

Short introduction to augmenting flows

s1

t

Consider the residual network too

s1

t

Now we can find a new flow

s1

t

Push back the old flow

s1

t

And insert the new flow

s1

t

some edge can be reduced from full capacity
⟺

a augmenting path exists that creates slack on some full edge*

thus, we can decide in polynomial time 

*not necessarily the same

Recap of the situation

• the good: deciding and finding a schedule is fast

• by creating slack everywhere, if possible

• let us keep the speed that way 

• the bad: fastest schedule can be arbitrarily long

• limit them to linear time!

• idea: we choose where to put flows

• lets use augmenting paths again

Flow augmentation for many destinations

• Advantage: Flows are only re-routed along free paths!

s1

s2

t2

t1

s1

s2

t2

t1

s1

s2

t2

t1

• Advantage: Flows are only re-routed along free paths!

• Downside: Flows end up at the wrong destination!

• So let’s stick with one destination for now
– E.g., a server in another network with multiple entry-points

Flow augmentation for many destinations

t

No free path to the destination

size of each flow: 1
capacity of each links: 1

𝑐 = 2

t

But an augmenting flow exists

size of each flow: 1
capacity of each links: 1

𝑐 = 2

t

Old flows get re-routed

size of each flow: 1
capacity of each links: 1

𝑐 = 2

t

And new flow inserted

size of each flow: 1
capacity of each links: 1

𝑐 = 2

High-level mechanism idea

1. Difference between two flows → augmenting flow

s1

t

s1

t+ =

s1

t

High-level mechanism idea

1. Difference between two flows → augmenting flow

2. Calculate desired flow sizes with LP

• offline computation

3. Apply augmenting flow for each commodity

• linear # re-routing in the network

s1

s3 t3

t1

s2 t2

size of each flow: 1

capacity of each links: 1

Extension beyond one logical destination?

s1

s3 t3

t1

s2 t2

Augmenting flows that don’t mix up the destinations?

size of each flow: 1

capacity of each links: 1

s1

s3 t3

t1

s2 t2

Augmenting flows that don’t mix up the destinations?

size of each flow: 1

capacity of each links: 1

s1

s3 t3

t1

s2 t2

But impossible to migrate!

size of each flow: 1

capacity of each links: 1

Capacity-Consistent Updates

• Fast if enough slack everywhere

• Decidable in polynomial time

• Migrate in linear time with one destination

• Open: Extend fast mechanisms beyond one
destination

Summary

i

73

References

• Introducing consistent network updates, Reitblatt et al., SIGCOMM 2012

• For minimal dependencies in updates in general, and loop-free updates in
particular, see Ratul Mahajan et al., HotNets 2013

• Deciding if a simple update schedule exists is hard was proven in Laurent
Vanbever et al., IEEE/ACM Trans. Netw. 2012

– See also his recent inaugural lecture @ETH: http://goo.gl/TMZCyg (watch 14:50 - 19:25, or better yet, the whole video)

• Loop-detection by Tarjan, Depth-first search & linear graph alg., 1972

• Google B4 SDN project, Sushant Jain et. al., SIGCOMM 2013

• SWAN SDN project, Chi-Yao Hong et. al., SIGCOMM 2013

• Deciding if flows can be moved, Sebastian Brandt et al., INFOCOM 2016

• Fast method for one destination, Sebastian Brandt et al., ICDCN 2016

http://goo.gl/TMZCyg

74

Thank You!
Questions & Comments?

www.disco.ethz.ch

