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Network Updates

• The Internet: Designed for selfish participants 

– Often inefficient (low utilization of links), but robust

• But what happens if the WAN is controlled by a single entity?

– Examples: Microsoft & Amazon & Google …

– They spend hundreds of millions of dollars per year
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Software-Defined Networking

• Possible solution: Software-Defined Networking (SDNs)

• General Idea: Separate data & control plane in a network

• Centralized controller updates networks rules for optimization

– Controller (control plane) updates the switches/routers (data plane)

• Centralized controller implemented with replication, e.g. Paxos

Virtual Services Controller Physical Network
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When will the Network Updates be implemented?
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Blackholes
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Blackholes

• Sounds scary? It is!*

• A packet arrives at some switch…

– … while the switch deletes an old rule and implements a new one

– So the switch does not know what to do with it?!

– The packet gets dropped 

• What can we do?

– Make sure that the switch always has some rule for every packet!

• How can we solve the problem?

– “add before remove”

– Just send everything back to the controller?

– Send everything somewhere?

– What is the issue with that?

*for network operators 
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Loop-Free Updates

SDN Controller
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Minimum SDN Updates?
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Minimum Updates: Another Example

𝑤

𝑢

𝑤

𝑣

or
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Minimum vs. Minimal

No node can improve 
without hurting another 

node
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Minimal Dependency Forest

Next: An algorithm to compute minimal dependency forest.
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Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

old

newnew

old
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Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

• Originally, destination node in new state, all other nodes in old state

• Invariant: No loop!

𝑑



18

Algorithm for Minimal Dependency Forest

Initialization

• Old node 𝑢: No loop* when adding new pointer, move node to limbo!

• This node 𝑢 will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

𝑑(no loop)
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Loop Detection

• Will a new rule u.new = v induce a loop?

– We know that the graph so far has no loops

– Any new loop must contain the edge (u,v)

• In other words, is node u now reachable from node v?

• Depth first search (DFS) at node v

– If we visit node u: the new rule induces a loop

– Else: no loop

u v

u v

new

new
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Algorithm for Minimal Dependency Forest

• Limbo node 𝑢: Remove old pointer (move node to new)

• Consequence: Some old nodes 𝑣 might move to limbo!

• Node 𝑣 will be child of 𝑢 in dependency forest! 

𝑑(remove old)

(now: no loop)
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Algorithm for Minimal Dependency Forest

Process terminates

• You can always move a node from limbo to new.

• Can you ever have old nodes but no limbo nodes? No, because…

…one can easily derive a contradiction! 

new

𝑑
old

new!
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It’s not just how to compute new rules.

It is also how to gracefully get 
from current to new configuration, 

respecting consistency. 
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Architecture

Rule 
generator

Update plan 
generator

Plan optimizer
and  executor

Routing 
policy

Consistency 
property

Network 
characteristics

New 
rules

Update 
DAG
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Update DAG

Insert rule 𝑟
at node 𝑢

Remove rule 𝑠
at node 𝑣

Insert rule 𝑡
at node 𝑤

Wait 10s
Remove rule 
𝑞 at node 𝑥

Insert rule 𝑝
at node 𝑦

Logical OR
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Multiple Destinations using Prefix-Based Routing

• No new “default” rule can be introduced without causing loops

• Solution: Rule-Dependency Graphs!

• Deciding if simple update schedule exists is hard!
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Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤: 
dest 𝑣: 𝑤𝑣
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Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢
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Packet-Coherent Updates

• Definition: A packet should always either

– Use the old rules

– Use the new rules

– Important for waypointing (e.g., firewalls)

• General idea:

– Stamp every packet with a version number

– Send new rules to all switches

– When all switches confirmed:

– Stamp all packets with the next version number

– Once all old packets are gone

– Delete old rules
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Example

SDN Controller

v1 v2
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Comparison

Version Numbers v1 Loop Free Solution

𝑢 𝑣 𝑥 𝑦

𝑢 𝑣 𝑥 𝑦

𝑦

𝑥

version numbers

• no mix of old and new rules

• loop freedom & packet coherence

• "programmers dream“

• more switch memory

• changes packets

• update all involved switches

• when can we delete old rules?

loop free updates

• mix of old and new rules

• loop freedom, but no packet coherence

• needs algorithms

• early first effects

• packets unaffected
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Real Application: Inter-Data Center WANs

Think: Google, Amazon, Microsoft
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Problem: Typical Network Utilization
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Background
traffic

Non-background traffic
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mean

Problem: Typical Network Utilization
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Background traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

peak after rate adaptation

> 50% 
peak reduction

Problem: Typical Network Utilization
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BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)
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BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)

How to move flows?
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Introductory Example

FB

FA

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3
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Just Switch? Congestion!

FA FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3
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Migrate only parts of the flow

FA ½ FB

V1 V2

V3 V4

½ FB

size of each flow: 2

capacity of links: 3
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Can even do both flows at once

V1 V2

V3 V4

½ FB

½ FA

V1 V2

V3 V4

½ FB

½ FA

size of each flow: 2

capacity of links: 3
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Done in two steps

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3
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Done in two steps

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 3

If all links have a slack of x, then -1+1/(x) steps

E.g., 20% free capacity everywhere? -1+1/(1/5)=4 steps
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But not always possible!

V1 V2

V3 V4

FA

FB

V1 V2

V3 V4

size of each flow: 2

capacity of links: 2
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Two-fold approach of SWAN

a) free capacity on every link b) LP-based search
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Two-fold approach of SWAN

a) free capacity on every link b) LP-based search

Note: The SWAN framework does much more!
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WAN
switches

rate
allocation

network
configuration

[rate limiting] [forwarding plane update]

SWAN controller

traffic 
demand

topology,
traffic

[global optimization for high utilization]

Hosts

The SWAN Project



network updates 

?

Do proper network updates exist?



network updates 

𝜀 capacity



Number of steps can be unbounded 

Calculate for an infinite amount of time?



An old method for a new problem

• Key observation in SWAN:

– only migrate flows to links with free capacity

• However, LPs do not seem to be the way to go

• Other method: Augmenting flows!

– “push back” flows to free link capacity



Short introduction to augmenting flows

s1

t



Consider the residual network too

s1

t



Now we can find a new flow

s1

t



Push back the old flow

s1

t



And insert the new flow

s1

t

some edge can be reduced from full capacity 
⟺

a augmenting path exists that creates slack on some full edge*

thus, we can decide in polynomial time 

*not necessarily the same



Recap of the situation

• the good: deciding and finding a schedule is fast

• by creating slack everywhere, if possible

• let us keep the speed that way 

• the bad: fastest schedule can be arbitrarily long

• limit them to linear time!

• idea: we choose where to put flows

• lets use augmenting paths again



Flow augmentation for many destinations

• Advantage: Flows are only re-routed along free paths!



s1

s2

t2

t1

s1

s2

t2

t1

s1

s2

t2

t1

• Advantage: Flows are only re-routed along free paths!

• Downside: Flows end up at the wrong destination!

• So let’s stick with one destination for now
– E.g., a server in another network with multiple entry-points

Flow augmentation for many destinations



t

No free path to the destination

size of each flow: 1
capacity of each links: 1

𝑐 = 2
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But an augmenting flow exists

size of each flow: 1
capacity of each links: 1

𝑐 = 2
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Old flows get re-routed

size of each flow: 1
capacity of each links: 1

𝑐 = 2
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And new flow inserted

size of each flow: 1
capacity of each links: 1

𝑐 = 2



High-level mechanism idea

1.  Difference between two flows → augmenting flow

s1

t

s1

t+ =

s1

t



High-level mechanism idea

1.  Difference between two flows → augmenting flow

2.   Calculate desired flow sizes with LP

• offline computation

3.   Apply augmenting flow for each commodity

• linear # re-routing in the network



s1

s3 t3

t1

s2 t2

size of each flow: 1

capacity of each links: 1

Extension beyond one logical destination?



s1

s3 t3

t1

s2 t2

Augmenting flows that don’t mix up the destinations?

size of each flow: 1

capacity of each links: 1



s1

s3 t3

t1

s2 t2

Augmenting flows that don’t mix up the destinations?

size of each flow: 1

capacity of each links: 1



s1

s3 t3

t1

s2 t2

But impossible to migrate!

size of each flow: 1

capacity of each links: 1



Capacity-Consistent Updates

• Fast if enough slack everywhere

• Decidable in polynomial time

• Migrate in linear time with one destination

• Open: Extend fast mechanisms beyond one 
destination



Summary

i
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Thank You!
Questions & Comments?

www.disco.ethz.ch


