
Research Collection

Doctoral Thesis

Don’t disturb my Flows: Algorithms for Consistent Network
Updates in Software Defined Networks

Author(s):
Förster, Klaus-Tycho

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010733901

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-010733901
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DISS. ETH NO. 23703

Don’t disturb my Flows:
Algorithms for Consistent Network Updates

in Software Defined Networks
A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Klaus-Tycho Förster

Diplom-Mathematiker, Braunschweig University of Technology, Germany
Diplom-Informatiker, Braunschweig University of Technology, Germany

Assessor des Lehramts, Studienseminar Goettingen, Germany

born on 19.05.1984

citizen of
Germany

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, ETH Zurich, examiner
Ratul Mahajan, Ph.D., Microsoft Research, co-examiner
Prof. Dr. Stefan Schmid, Aalborg University, co-examiner

2016

Abstract

In this dissertation, we consider the problem of finding efficient methods and
complexity classifications for the consistent network update problem, with
special focus on Software Defined Networks (SDNs). While the original and
updated set of rules might both be consistent, disseminating the rule updates
is an inherently asynchronous process, resulting in potentially inconsistent
states. We study two fundamental consistency properties, first, loop freedom
of forwarding rules, and second, consistent flow migration.

For the consistency property of loop freedom, we focus on hardness re-
sults. We start with longest prefix matching rules, and show that both
maximizing the number of rules updated at once and finding the fastest
update schedule is an NP-complete problem. Our results are then extended
by proving that deciding if a sublinear schedule exists is also NP-complete
already for two destinations. For single-destination routing, the number
of rules updated at once can be approximated well in polynomial time,
but finding an optimal update set is NP-complete too. We also consider
related problems, specifically the hardness of fast blackhole-free updates
under memory restrictions, the use of labeling schemes for local loop-free
updates, and flipping the approach by generating efficient failure scenarios
for reachability testing of a SDN controller.

For the consistent migration of flows, we show that for most scenarios
involving splittable flows, the problem is in P, but NP-complete to decide
for unsplittable flows. Specifically, we start by considering the standard flow
migration model, where the bandwidth of every edge should be respected,
no matter if each individual flow is in its old or its new state. We then
extend this model in three ways: First, we develop non-mixing flow migra-
tion, where each packet respects waypointing and service chains. Second,
we show the standard model to be susceptible to packet loss, and develop a
lossless flow migration model. Third and last, we decouple the flow migra-
tion problem from a fixed new set of paths, and just consider the new set
of demands: For the case of multi-commodity flows with one destination,
this change allows to greatly improve the number of updates needed in the
worst case. For all of these models, we present the first algorithms that
can decide if a consistent flow migration for splittable flows exists, and also

provide an implicit schedule. On the hardness side, we show the decision
problems for unsplittable flows to be NP-complete, whereas previous work
only considered fastest update schedules.

Zusammenfassung

Thema der vorliegenden Dissertation ist die Problematik von konsistenten
Netzwerkaktualisierungen in programmgesteuerten Netzwerken, mit beson-
derem Augenmerk auf effizienten Algorithmen und Komplexitätsklassifi-
zierungen. Selbst wenn die aktuellen und gewünschten Netzwerkzustände
in einem konsistenten Zustand sind, kann der Wechsel zwischen beiden
Zuständen zu Inkonsistenzen führen, da die Dissemination der Änderun-
gen ein inhärent asynchroner Prozess ist. Wir betrachten zwei fundamenta-
le Konsistenzprobleme, zuerst die Kreisfreiheit von Netzwerkpaketweiterlei-
tungen, dann die konsistente Migration von Netzwerkflüssen.

Für die Thematik der Kreisfreiheit legen wir unseren Fokus auf Kom-
plexitätsresultate. Wir beginnen mit Präfixregeln und zeigen, dass sowohl
die Maximierung der gleichzeitig aktualisierten Regeln als auch die Mini-
mierung der Aktualisierungsplandauer ein NP-vollständiges Problem sind.
Unsere Resultate lassen sich auch auf den Spezialfall mit zwei Senken er-
weitern, für den wir zeigen, dass das Problem der Aktualisierungsplandauer
auch NP-vollständig für sublineare Werte ist. Sollte nur eine Senke im Netz-
werk sein, dann kann die Maximierung der gleichzeitig aktualisierten Regeln
gut approximiert werden, jedoch ist die optimale Lösung dieses Problems
auch NP-vollständig. Wir betrachten in diesem Kontext auch verwandte
Probleme, etwa Schwarze Löcher unter Speicherrestriktionen, die Verwen-
dung von Knotenetikettierungen für rein lokale konsistente Aktualisierun-
gen, und zuletzt eine in gewisser Sicht umgedrehte Problemstellung, bei der
die Wiederherstellung der Erreichbarkeit im Netzwerk in effizient gewählten
Fehlerfällen thematisiert wird.

Bezüglich der konsistenten Migration von Netzwerkflüssen können unsere
Ergebnisse grob wie folgt zusammengefasst werden: Das jeweilige Entschei-
dungsproblem ist in P für teilbare Flüsse, aber NP-schwer für unteilbare
Netzwerkflüsse. Wir betrachten zunächst das Standardmodell für konsisten-
te Flussmigration, in dem die Kapazität jeder Kante nicht durch die auflie-
genden Flüsse verletzt werden soll, egal ob die einzelnen Flüsse im alten oder
neuen Zustand (nach der Aktualisierung) sind. Wir entwickeln dieses Modell
dann auf drei Arten weiter: Zuerst betrachten wir nicht-vermischende Migra-
tion, bei der jedes Paket gewählte Wegpunkte und Dienstketten respektiert.

Danach zeigen wir, dass das Standardmodell für Paketverluste anfällig ist,
und entwickeln ein verlustfreies Flussmigrationsmodell. Als drittes Modell
entkoppeln wir das Flussmigrationsmodell von den gegebenen neuen Fluss-
pfaden, und betrachten nur eine Migration zu den neuen Flussgrössen: Für
Netzwerke mit nur einer Senke können wir dadurch die Dauer der konsisten-
ten Flussmigration erheblich verbessern. Für alle diese Modelle ist unsere
Arbeit die erste, die in polynomieller Zeit das Entscheidungsproblem für die
konsistente Migration von teilbaren Netzwerkflüssen lösen kann. Für die ent-
sprechenden Entscheidungsprobleme für unteilbare Flüsse können wir deren
NP-Schwere beweisen, vorherige Arbeiten betrachteten nur die NP-Schwere
der jeweiligen Optimierungsprobleme.

Contents

1 Introduction 1
1.1 The Consistent Network Update Problem 2
1.2 Thesis Overview . 3

I Loop Freedom 9

2 On Loop-Free Network Updates 11
2.1 A Model for Loop-Free Network Updates 12

2.1.1 Loop-Free Network Updates 12
2.1.2 Dynamic and Scheduling Loop-Free Network Updates 13

2.2 Related Work and Background 14
2.3 State of the Art for Loop-Free Updates & Results 16
2.4 Hardness of Multi-Destination Loop-Free Updates 18

2.4.1 Hardness of the Dynamic Case 19
2.4.2 Hardness of the Scheduling Case 25

2.5 Hardness of Scheduling Two-Destinations 28
2.6 Single-Destination Loop-Free Updates 31

2.6.1 Hardness of the Dynamic Case 32
2.6.2 Approximation of the Dynamic Case 35

2.7 Hardness of Blackhole Freedom 37

4 CONTENTS

2.8 Loop-Free Updates and Local Checkability 44
2.8.1 A Local Migration Scheme 46
2.8.2 Beyond a Single Update 48
2.8.3 Further Applications in SDNs 48

2.9 Flipping the Approach: Reachability Testing 48
2.9.1 Problem Properties and Algorithms 49
2.9.2 Evaluation . 52
2.9.3 Further Applications in SDNs 52

II Consistent Migration of Flows 55

3 On Consistency for Flow Updates 57
3.1 Models for Consistent Flow Migrations 58
3.2 Related Work and Background 60
3.3 State of the Art and Results 64

4 Consistent Flow Migration 67
4.1 Model . 68
4.2 Hardness of Unsplittable Flow Migration 71
4.3 Consistent Migration for Splittable Flows 73
4.4 Insertion of Unsplittable Flows 84
4.5 Increasing Splittable Flows 85
4.6 Summary . 90

5 Non-Mixing Flow Migration 91
5.1 Motivation . 92
5.2 Model . 92
5.3 Hardness of Unsplittable Flow Migration 94
5.4 An Algorithm for Two-splittable Flow Migration 96
5.5 Summary . 101

6 Lossless Flow Migration 103
6.1 Motivation . 104
6.2 Practical Evaluation . 106
6.3 Model & Problem Setting . 109
6.4 Checking Unsplittable Flow Network Updates 113

6.5 Checking for a ∀-Consistent Migration 117
6.6 Checking for a `-Consistent Migration 122
6.7 Summary . 124

7 Augmenting Flow Migration 125
7.1 Motivation . 126
7.2 Flow Augmentation Background 128
7.3 Model . 128
7.4 Augmenting Flows for Multiple Commodities 131
7.5 Consistent Flow Migration with Augmentation 138
7.6 Strongly Consistent Flow Migration 141
7.7 Hardness of Flow Migration to new Demands 149
7.8 Augmenting Flows beyond a Single Destination 152
7.9 Summary . 153

III Outlook 155

8 Future Directions 157

1
Introduction

The Internet as a whole is a wild place, full of autonomous participants. As
such, it is naturally difficult to control centrally; instead, routing and conges-
tion control is achieved through a selection of distributed protocols such as
BGP and TCP. However, distributed protocols degrade performance, BGP
cannot find the least congested path, and TCP will only crudely approximate
the available bandwidth on the path selected by BGP. As a result, a loss of
performance is to be expected and accepted. Many desirable properties such
as drop freedom of packets, good utilization of links, or packet coherence
are not as important as robustness. In contrast, individual networks that
make up the Internet are controlled by single administrative entities. These
include enterprise networks, ISP networks, data center networks, and wide
area networks that connect the data centers of large organizations. The
owners of these networks want to get the maximum out of their massive fi-
nancial investment, which often runs into hundreds of millions of dollars per
year (amortized). Towards this end, they have started replacing inefficient

2 CHAPTER 1. INTRODUCTION

distributed protocols.
The technological driver to this paradigm shift are so-called Software

Defined Networks (SDNs): In an SDN, the data plane is separated from
the control plane, allowing the decision of where and how much data is sent
to be made independent of the system that forwards the traffic itself. A
logically centralized controller monitors the current state of the network,
then calculates a new set of forwarding rules, and distributes them to the
routers and switches [10,11,37,41].

Are centrally controlled SDNs the beginning of the end of distributed
protocols? Not so fast! After all, the central SDN controller has to in-
form the switches about updates, and networks are inherently asynchronous,
where nodes might even be temporarily not accessible to the controller [41].

1.1 The Consistent Network Update Problem

Network operators continuously strive for increased performance, especially
to improve end-to-end latency or increase bandwidth utilization [41]. As
such, the paths of network flows (as defined by the forwarding rules) are
always in a state of flux, either by automated or manual network updates.

Network updates may temporarily destabilize a network, as mixing old
and new forwarding rules may, e.g., form a loop. The chaos that can occur
with the update is seen as an inevitable evil, as eventually the network will
be in an improved state, outweighing the temporary losses by far.

Even though networks provide a best-effort service, e.g., congestion is
highly problematic especially in contexts such as WAN and Data-Centers.
As such, there has been (not only) recent interest in mechanisms to provide
some sort of consistency for network updates [11, 58, 60, 63, 68], notably to
prevent bandwidth violations [37,42] and transient forwarding loops [25,52,
58], but also for waypointing violations [51, 53], or ensuring that packets
either take the old or the new path [68].

The central issue is that even if the network is under (logically) cen-
tralized control, the updates are performed in a distributed asynchronous
environment: As the update happens in multiple parts of the network, a
completely synchronized update is not possible, the individual routers could
execute their updates in any ordering, cf. [36, 42, 49]. Even if perfect syn-
chronization of updates were possible, a router could fail to update for some

1.2. THESIS OVERVIEW 3

reason, leaving the network in a disorganized state until either the failed
update has been corrected, or, if this is not possible right away, all other
routers roll back to their previous state. Time synchronization also ignores
packets in flight, as it only deals with time at the routers’ themselves, lead-
ing to transient congestion as we will show in this thesis. As such, we will
study how to perform network updates in a consistent manner:

Problem 1 (The Consistent Network Update Problem, cf. [81]). Let N
be a network with an old and new state, each satisfying some consistency
property. Find an ordered set of intermediate states (each being a network
update), such that any asynchronous change between two consecutive states
does not violate the consistency property, or output that no such set of states
exist.

In other words, we will investigate algorithms and complexity pertain-
ing the consistent migration of networks, where a consistent migration solves
the consistent network update problem by providing a sequence of appro-
priate network updates. The consistent network update problem can be
extended by various constraints, especially regarding optimization problems
(find the best individual update, find a shortest migration sequence) and
model restrictions (memory limits, splitting possibilities).

We will focus on two fundamental network update problems in this the-
sis: First, the avoidance of transient forwarding loops for destination-based
routing, and second, the minimization of congestion for multi-commodity
network flows.

1.2 Thesis Overview

The presented thesis is logically organized in two parts, where the loop-free
part focuses mostly on hardness results, whereas the flow migration part is
more centered on an algorithmic point of view.

Loop Freedom First, in Chapter 2, we study loop-free network updates for
destination based routing. After a short motivation, we formally define the
model for loop-free network updates in Section 2.1: In particular, we give an
introductory example and focus on the two cases of dynamic (greedy) and
scheduled updates. We also provide an overview of the current state of the

4 CHAPTER 1. INTRODUCTION

art in tabular form in Section 2.3, providing the reader with a classification
of our work in the area of loop-free updates.

d d

d

d

d d

d

v w

d

initial configuration after w updated

v w

d

Figure 1.1: In this introductory example the initial network configuration is
depicted on the left side. Both v and w have old forwarding rules for the destination
d, drawn with solid lines. The desired new forwarding rules for d are drawn dotted.
If v and w update in the same update, v could update before w due to asynchrony,
leading to a loop between v and w. On the other hand, if just w updates to its
new forwarding rule, no loop can appear, resulting in the network configuration
depicted on the right side. Then, in another update, v can update loop free to its
new forwarding rule by sending all packets for destination d to w.

We then begin in Section 2.4 with the study of multi-destination loop-free
updates. In particular, we show both the dynamic and scheduling problem
to be NP-hard. For the specific case of two-destination updates in Sec-
tion 2.5, we prove the scheduling problem to be NP-hard for any sublinear
schedule. For the dynamic single-destination case studied in Section 2.6, we
show that it is closely related the feedback arc set problem by proving an
NP-hardness reduction and corresponding approximation algorithm. These
lines of work build upon the model of Mahajan and Wattenhofer [58], and
were developed in parallel to the work by Schmid et al. [3,16,51–53]. After-
wards in Section 2.7, we show that the closely related problem of blackhole
freedom under memory restrictions is NP-hard too, where packets arriving
at a switch must always have a rule present.

We also investigate the use of labeling schemes for local loop-free updates
in Section 2.8 and flip the loop-free approach by generating controlled failure
scenarios for reachability testing of SDN controllers in Section 2.9.

Lastly, we give concluding remarks and discuss open research questions
in the area of loop freedom for consistent network updates in Part III.

1.2. THESIS OVERVIEW 5

Consistent Migration of Flows In the second part of this thesis, we study
the consistent migration of flows. We begin in Chapter 3 with motivating
the problem, before giving a high-level overview and comparison of the four
formal models considered in this thesis in Section 3.1. We then present
related work and background on consistent flow migration in Section 3.2,
and also give a tabular overview of the current state of the art in Section
3.3.

(a) Initial network with
one flow from s1 to t.

(b) If the lower flow is
inserted first, there will
be congestion.

(c) Desired flow place-
ment with two flows of
two commodities.

Figure 1.2: This figure depicts a small network to introduce the concept of
consistency for flows. In the above examples, all flows have a size of one and all
edges have a capacity of one as well. If the SDN controller desires to migrate
the network from Subfigure 1.2a to Subfigure 1.2c in order to add a flow for the
second commodity outgoing from s2, then the commodity outgoing from s1 has to
be moved first. Else, due to asynchrony, s2 could start a flow before the last edge
is free, causing congestion (Subfigure 1.2b).

In the remainder of this part, we give the first complete study of con-
sistent splittable flow migration for various models. Previous work could
not decide the general case, and focused on restricted cases such as allowing
every flow to be moved only once. Similarly, we prove NP-hardness for the
decision problem for unplittable flows, whereas previous work only consid-
ered the fastest schedule. Our results builds upon the work by Mahajan and
Wattenhofer et al. [37,42,58].

We start with the model proposed by [37] in Chapter 4, where the ca-
pacity of any edge should not be violated whether each flow is in the old
or new state. We develop a polynomial augmentation technique that can
decide if consistent migration for splitable flows is possible and also gives an

6 CHAPTER 1. INTRODUCTION

implicit schedule. Should no consistent migration be possible, we provide
an LP-based approach to maximize the new demands in a consistent way.
Beyond proving NP-hardness of the unsplittable variant, we also consider
the case of unit size flows and give approximation thresholds.

Splitting flows can easily lead to waypointing and service chain viola-
tions, leading to the model of non-mixing flow migration in Chapter 5. We
consider unsplittable flows along paths, where each packet should only be
routed via the old or new path. As we prove the corresponding migration
problem to be NP-hard to decide, we turn our attention to two-splittable
flows: Again, we can show that the two-splittable flow migration prob-
lem is decidable in polynomial time, including implicit schedule generation.
Compared to other splittable migration variants, the controller only needs
to change the flow size distribution at the respective source, requiring no
further communication with the remainder of the network beyond remov-
ing/adding the two old/new flow paths.

In the subsequent Chapter 6, we show how the notion of consistency from
[37] can be extended to losslessness. Our practical evaluation proves that
packets in flight can cause a single flow to congest itself, leading to packet
loss and ongoing latency issues. To this end, we develop a new flow migration
model, which can be considered as more restrictive as the one in Chapter
4, but allowing more updates than in Chapter 5. We distinguish the cases
of fixed edge latencies and arbitrary edge latencies, with surprising results
in the respective complexities. For one, fixed edge latencies make the flow
migration problem NP-hard to decide, already for a single splittable flow.
But on the other hand, if we take a worst-case approach with arbitrary edge
latencies, we can once more decide the respective flow migration problem
and implicit schedule generation in polynomial time.

Next, in Chapter 7, we tackle the flow migration problem regarding
the number of required updates. The previously mentioned models can
require an unbounded number of updates for consistency, as the final flow
configuration is fixed. We take an orthogonal approach, and only take the
new demands as an input. Extending the concept of flow migration to
consistent migration, we show how to migrate in a polynomial number of
updates if there is only one destination (or one source) in the network. We
develop algorithms for both the consistency models of Chapter 4 and 6, the
latter trading in additional updates for losslessness.

Lastly, concluding remarks and open research questions in the area of

1.2. THESIS OVERVIEW 7

consistent flow migration are presented in Part III.

Future Directions After treating our work on loop freedom in Part I and
on consistent flow migration in Part II, we conclude our thesis in Part III.
As noted earlier in this Thesis overview, we will summarize our work of both
parts and the current state of the art, and pose open research questions with
conjectures. We also propose to go beyond the consistent network update
problem by integrating the desired network configuration into the problem
setting.

Part I

Loop Freedom

9

2
On Loop-Free Network Updates

In loop-free updates, the SDN controller would like to switch from a set of
old forwarding rules to a new set of forwarding rules, but without induc-
ing (temporary or transient) forwarding loops in the process. Even if the
forwarding loop just persists for miliseconds, a large amount of data will
be lost in networks with a high throughput [25, 26, 52, 82, 83]. In this chap-
ter, we will study loop-free updates from the viewpoint of algorithms and
complexity.

We begin in Section 2.1 by formally defining the loop-free update prob-
lem, before discussing the state of the art and highlighting our results in
the Sections 2.2 and 2.3. We then study the case of multiple destinations in
Section 2.4, before investigating the special cases of two (Section 2.5) and
single destinations (Section 2.6). Afterwards, we consider problems adjacent
to the standard loop-free update problem: We study blackhole-free updates
in Section 2.7 and local update schemes in Section 2.8. Lastly, we flip the
loop-free update approach by generating failure test-cases for the centralized

11

12 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

controller in Section 2.9.

2.1 A Model for Loop-Free Network Updates

We model a network as a set of connected routers and switches (from now
on, nodes). Packets must be forwarded to their destination without loops.
Formally, a network is a directed multi-graph with a set of nodes V , a set
of destinations D ⊆ V , and a set of destination-labeled edges s.t. all edges
labeled with the same set of destinations will not contain a directed loop.
The edges form a directed spanning tree with d being the root and all edges
being oriented towards d.

Definition 1 (Single-Destination Network). Let Td = (V,Ed) be a directed
graph with V being the set of nodes, d ∈ D being the sole destination, and
Ed being the set of edges each labeled with d. The edge from u ∈ V to
v ∈ V for destination d is noted as (u, v)d. The labeled directed graph Td is
a single-destination network, if Td is a spanning tree with all directed edges
being oriented towards d.

Definition 2 (Multi-Destination Network). Let V be a set of nodes and
D ⊆ V be a set of destinations. For all d ∈ D, let Td = (V,Ed) be a
single-destination network and let ED =

⋃
d∈D Ed. Then the labeled directed

multi-graph TD = (V,ED) is a multi-destination network.

2.1.1 Loop-Free Network Updates

When a network needs to be updated, some (potentially all) nodes receive
a new set of forwarding rules, leaving the network in a sort of limbo state.
Due to the inherent asynchrony in networks, it is not possible to control
the order in which the nodes contained in an update U change from old to
new. At some point all nodes will be updated, but until then, the network
might not be consistent, i.e., it might induce loops. Thus, we call an update
loop-free if the union of the old and the updated forwarding rules is loop-
free, cf. Figure 2.1. For subsequent updates, we define the current network
forwarding state as old.

2.1. A MODEL FOR LOOP-FREE NETWORK UPDATES 13

d d

d

d

d d

d

v w

d

initial configuration after w updated

v w

d

Figure 2.1: In this introductory example the initial network configuration is
depicted on the left side. Both v and w have old forwarding rules for the destination
d, drawn with solid lines. The desired new forwarding rules for d are drawn dotted.
If v and w update in the same update, v could update before w due to asynchrony,
leading to a loop between v and w. On the other hand, if just w updates to its
new forwarding rule, no loop can appear, resulting in the network configuration
depicted on the right side. Then, in another update, v can update loop free to its
new forwarding rule by sending all packets for destination d to w.

Definition 3 (Loop-Free Single- and Multi-Destination Network Updates).
Let T oldD = (V,EoldD) and TnewD = (V,EnewD) be multi-destination networks
for the same set of nodes V and destinations D. Then the update UD =
(V,EoldD , EnewD) is called a multi-destination network update. If the labeled
directed multi-graph TD = (V,EoldD ∪ EnewD) does not contain any loops of
edges with the same label, then the update UD is called consistent or loop-
free. A single-destination network update Ud can be defined analogously.

2.1.2 Dynamic and Scheduling Loop-Free Network Updates

Asynchronicity is not a technicality, as nodes in a production network can
often react slowly (some switches might take up to 100× longer than average
to update [42]), or may not be accessible for some time to the controller [41].
Thus, solutions in which the network can quickly start using as many of
the new rules as possible, while maintaining the consistency properties, are
preferable. This motivates the idea of dynamic loop-free network updates,
where we update as many rules as we can at once:

Problem 2 (Dynamic Loop-Free Network Updates). Let UD = (V,EoldD ,
EnewD) be a multi-destination network update. Find a set EmaxD ⊆ EnewD , s.t.

14 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

i) UmaxD = (V,EoldD , EmaxD) is a loop free multi-destination network update ii)
for all loop free multi-destination network updates UotherD = (V,EoldD , EotherD)
with EotherD ⊆ EnewD it holds that they do not contain more edges, i.e.,
|EotherD | ≤ |EmaxD |.

Even though asynchronicity is inherent in current hardware solutions
(e.g., node failures [41] or highly deviating update times [42]), one could
imagine these issues being tackled in future work. For example, the method
of updating routing information could be decoupled from the remaining
computational load of a node, resulting in roughly the same update time for
all nodes in a network. Then one would want to find a shortest sequence of
precomputed updates that migrate the network from the current old to the
desired new routing rules. I.e., the controller will send out a first loop free
multi-default update and wait until all affected edge changes are confirmed.
This sending out of updates is iterated until all nodes switched their edges
to the new desired routing rules.

Problem 3 (Scheduling Loop-Free Network Updates). Let UD = (V,EoldD ,
EnewD) be a multi-destination network update. Find a sequence of r loop-free
multi-destination network updates U1

D = (V,EoldD , Enew1
D), U2

D, . . . , U
r
D with

vertex sets V and corresponding pairwise disjoint new edge sets Enew1
D , Enew2

D ,
. . . , Enewr

D s.t. Enew1
D ∪Enew2

D ∪ · · · ∪Enewr
D = EnewD s.t. r ∈ N is minimal.

We note that we might drop the D from the notation (e.g., U opposed
to UD) if the set of destinations is unambiguous in the context.

2.2 Related Work and Background

Loop-free routing is a classic problem in networking1, but the study of tran-
sient loops during re-configurations is still relatively new [25,58].

Ito et al. [40] investigated avoiding loops in shortest-path routing by
increasing link costs to bypass single links. Shortly after, the study of loop
free network updates was initiated by François et al. in their investigation
of the convergence of link-state routing protocols [25, 26]. They studied
the scheduling of single-destination updates, showing that one can always
update in a number of rounds equivalent to the depth of a routing tree
induced by the new forwarding rules.

1We refer to Section VIII of [25] for a short survey of previous work.

2.2. RELATED WORK AND BACKGROUND 15

Their update model was later enhanced to a dependency forest setting
in [58] by Mahajan and Wattenhofer, showing that any dynamic update
scheduling strategy will lead to all nodes being updated when consider-
ing single-destination routing. They show that a greedy update strategy
outperforms the tree-depth based scheduling of updates in a practical set-
ting, cf. [23]. We extend their line of work in this chapter regarding multi-
destination (Section 2.4) and Blackhole (Section 2.7) update NP-hardness,
and an approximation of the dynamic case (Subsection 2.6.2).

Ludwig et al. [52] further2 studied the scheduling of loop-free updates,
and showed that this problem is NP-hard for 3 rounds, but that a schedule
for 2 rounds can be found in polynomial time. Moreover, they show that
a simple greedy update strategy is only Ω(n)-competitive for scheduling
updates, and also introduce the notion of relaxed loop-freedom: In this
setting, there should be no loop on the source-destination path, always
allowing for a O(logn)-scheduling with their Peacock algorithm. Building
upon their results, we explore the NP-hardness of scheduling sublinear two-
destination updates in Section 2.5.

Amiri et al. [3] explore the problem of greedily updating single-destination
forwarding rules. In parallel to our work in Subsection 2.6.1, they showed
the problem to be NP-hard, but also proved the NP-hardness of the relaxed
variant. Furthermore, they give polynomial optimal and approximation al-
gorithms for special graph classes.

Dudycz et al. studied a setting similar to Section 2.5 of this work, but
allow to break up forwarding rules [16]: They prove that minimizing the
number of interactions (touches) with the switches for loop freedom is NP-
hard in this case, and also study how to efficiently compose schedules for
single destinations.

Vanbever et al. [82] consider a modified model for scheduling loop free
updates for O(n) destinations, in their variant all forwarding rules of a node
have to be updated in the same round, making their decision variant of
finding a per-router ordering NP-hard as well.

The packet stamping solution of Reitblatt et al. [68] can ensure loop
freedom by adding version numbers to packets, but because it ensures the
much stronger property of packet coherence, it is slow and has high memory

2We note that the setting in [3, 16, 52, 53] is slightly different from ours in general,
as they assume the old and the new routes to be simple paths between one source and
one destination.

16 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

overhead. The whole network needs to be updated first, before being able to
use the system—a long delay in updating single node induces a long delay for
the complete network. Further, despite the extensions of Katta et al. [45],
which trade-off switch memory for speed, packet stamping has high memory
overhead because it simultaneously stores both old and new rules. Switch
memory is a scarce commodity, with even future generations of switches
reaching their memory limit easily when optimizing the network [37].

Loop freedom can also be in conflict with waypoint enforcement, as
shown in [53]. In fact, even deciding if a loop-free waypoint-enforcing sched-
ule exists is NP-hard [51], leading Vissicchio and Cittadini [83] to apply the
idea of packet stamping (or 2-phase commit) from the seminal work by
Reitblatt et al. [68] in the loop-free setting.

Furthermore, Mizrahi et al. [60] study the problem with a time-based
approach, aiming to synchronize concurrent network updates to reduce
the inherent asynchrony; their work is also applicable to the migration
of flows. An overview of their TimedSDN project is available at http:
//tx.technion.ac.il/˜dew/TimedSDN.html.

Lastly, recent work in model checking [59, 87] has also considered the
problem of loop-free network updates. In a sense, their work is orthogonal
to ours, as they explore “the space of possible solutions” [59], without a
specific focus on algorithmic worst-case guarantees.

2.3 State of the Art for Loop-Free Updates & Results

For ease of readability, we summarize the previously discussed related work
and our results for loop-free updates in two tables, one for the dynamic case
(Table 2.1), and one for the scheduling case (Table 2.2). Open problems are
depicted by a ?-entry. Beyond the results listed in the Tables 2.1 and 2.2
on the next page, we also show the following in this chapter:

Section 2.7: The fastest scheduling of blackhole-free updates under mem-
ory restrictions, while maintaining routing without loops, is NP-hard.

Section 2.8: How to update in a loop-free way without acknowledging
the individual nodes’ updates to the controller, but instead relying on local
verification.

Section 2.9: We flip the approach of updating in a loop-free manner by

http://tx.technion.ac.il/~dew/TimedSDN.html
http://tx.technion.ac.il/~dew/TimedSDN.html

2.3. STATE OF THE ART FOR LOOP-FREE UPDATES & RESULTS17

Dynamic Per-router order-
ing

Multi-
Destination

Single-Destination Relaxed

Optimal hard-
ness

Polynomial [82] NP-complete
[2.4.1], [3]

NP-complete
[2.6.1], [3]

NP-complete [3]

Optimal
polynomial
algorithms

Check all nodes in-
dividually [82]

If P = NP For trees with 2
leaves & bounded
tree-width [3]

For trees with 2
leaves & bounded
tree-width [3]

Polynomial
approx. algo-
rithms

(see above) ? 2/3-approx with
3 leaves, 7/12-
approx with 4
leaves, MAS [3]
& FAS [2.6.2] in
general

MAS [3]

Table 2.1: Overview of the state of the art in dynamic (greedy) loop-free updates.
For the results proven in this thesis, please refer to the Subsections 2.4.1, 2.6.1,
and 2.6.2. Furthermore, the abbreviations MAS and FAS stand for equivalent
approximation results as for maximum acyclic subgraph and feedback arc set.

Scheduling Per-router or-
dering

Multi-
Destination

Double-
Destination

Single-
Destination

Relaxed S.-D. touches

Decision
hardness

NP-complete
[82]

? (in NP) ? (in NP) Always works
[25,58]

Always
works [52]

Always works
(see s.-d.)

updates
hardness

n-schedule or
not solvable
(model)

3-schedule is
NP-complete
[2.4.2]

sublinear
schedule is
NP-complete
[2.5]

3-schedule
is NP-
complete [52]

? Minimizing
NP-hard [16]

Optimal
polynomial
algorithms

If P = NP ? ? 2-schedule
[52]

? Combining
O(1) optimal
policies [16]

General
polynomial
algorithms, in
of updates

(see above) If permit-
ted, split
into single-
destination
policies [58]

If permit-
ted, split
into single-
destination
policies [58]

Θ(n) [25, 52,
58]

O(logn)
[52]

Different opt.
goal (O(n) up-
dates, see s.-
d.)

Table 2.2: Overview of the state of the art in scheduling loop-free updates. For
the results proven in this thesis, please refer to Subsections 2.4.2 and 2.5.

18 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

focusing on how to test the centralized controller to maintain reachability
without loops in the presence of failures.

2.4 Hardness of Multi-Destination Loop-Free Updates

Interval routing and longest-prefix matching are common routing techniques
for large networks. In interval routing (introduced in [72], cf. [30]), destina-
tions {d1, . . . , d|D|} are ordered cyclically, and forwarding rules for a node
are defined as disjoint intervals over the destinations, cf. [19,24,80].

In contrast, longest-prefix routing defines forwarding rules via prefixes
of the destination IDs, which may overlap: If two rules are in conflict, the
one with the longer matching prefix is chosen, cf. [13,76].

Both techniques have great practical advantages, since multi-destination
routing does not scale well: Even when considering just IPv4 (and not
IPv6), no router on the market could store an individual rule for every IP–
address. Furthermore, this fine–grained information is not available, since
the complete knowledge over a network is usually restrained to one’s own
Autonomous System.

A subset of both techniques is multi-destination routing with the possi-
bility of default routes. Nodes can either have individual forwarding rules
for each destination or a default rule, cf. [27], i.e., all packets go to a specific
other node (except for those that reached their destination at the current
node).

Definition 4 (Default Routes). Let TD = (V,ED) be a multi-destination
network and let u, v ∈ V . If all outgoing edges from u point at v in ED,
then those edges Eu may be merged into a default edge, labeled with all
labels from D (but packets for a destination u do not get forwarded from
u). We denote such an edge with (u, v)∀. I.e., we remove Eu from ED and
add {(u, v)∀}. Let the resulting set of edges of this iterated process be ED,∀.
We call TD,∀ = (V,ED,∀) a multi-destination network with default routes or
multi-default network.

Loop-free network updates can be defined analogously in the presence
of just single-destination and default routes:

Definition 5 (Loop-Free Network Updates with Default Routes). Let T oldD,∀ =
(V,EoldD,∀) and TnewD,∀ = (V,EnewD,∀) be multi-default networks for the same set

2.4. HARDNESS OF MULTI-DESTINATION LOOP-FREE UPDATES19

of nodes V and destinations D. Then UD,∀ = (V,EoldD,∀, EnewD,∀) is called
a multi-default network update. If the labeled directed multigraph TD,∀ =
(V,EoldD,∀ ∪ EnewD,∀) does not contain any loops of edges with the same label,
then the update UD,∀ is called consistent or loop-free.

In this section, we show that both maximizing dynamic and fast schedul-
ing of loop-free network updates are NP-hard problem – and therefore also
NP-hard for both supersets of interval routing and longest-prefix matching,
and especially the multi-destination case in general.

2.4.1 Hardness of the Dynamic Case

∀∀
∀

v1 v2 v3

Figure 2.2: Illustrating circular dependencies with default routes, from [58]. Note
that both in the old and new rules, no packet will loop: E.g., in the old rules, a
packet sent out from v1 will be forwarded to v3, and possibly to v2, but never to
v1 again - as all possible destinations were already reached on the path.

Let us start with an example of just three nodes for the dynamic case
in Figure 2.2, as observed in [58]. We want to update the three old default
edges (drawn solid) to the three new default edges (drawn dotted). However,
due to circular dependencies, not even a single edge can be updated without
causing a loop. This problem can be handled by relaxing the constraints of
default routing: One can prevent loops by breaking a single (default) rule
into one helper rule for each of the two other destinations, introducing these
rules during the update process and then removing them later.

In general, this is not desirable, as memory constraints on routers can
easily prevent introducing these additional helper rules, cf. [37]. Nonethe-
less, one can directly check if a non-empty update exists: Check each new
edge individually, since adding more edges cannot remove existing cycles.
However, even if a multi-default network can be updated with some edges,
it is a hard optimization problem.

20 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

We thus define the problem of dynamically updating multi-default net-
works as finding the maximum number of edges that can be included in an
update at once:

Problem 4 (Dynamic Loop-Free Default Updates). Let UD,∀ = (V,EoldD,∀,
EnewD,∀) be a multi-default network update. Find a set EmaxD,∀ ⊆ EnewD,∀ , s.t. i)
UmaxD,∀ = (V,EoldD,∀, EmaxD,∀) is a loop-free multi-default network update ii) for
all loop-free multi-default network updates UotherD,∀ = (V,EoldD,∀, EotherD,∀) with
EotherD,∀ ⊆ EnewD,∀ it holds that they do not contain more edges, i.e., |EotherD,∀ | ≤
|EmaxD,∀ |.

Theorem 1. Problem 4 is NP-complete.

Our proof is a reduction from the classic NP-complete problem 3-SAT,
in the variant with exactly three pairwise different variables per clause [29].
We show that for every instance I of 3-SAT, we can construct in polynomial
time an instance I ′ of the corresponding decision problem of Problem 4 s.t.
I is satisfiable if and only if I ′ is a yes-instance. The general idea of the
proof can be described via the gadgets listed in Figure 2.3 and 2.5:

1. Consider the routes for destination Y in the triangle-gadget from Fig-
ure 2.3. If node Xi updates, then node Xi cannot update without
inducing a loop for Y , and vice versa. Choosing one of the two up-
date rules corresponds to a variable assignment for a variable xi in the
instance I of 3-SAT: xi is either true or false, but not both.

2. Let C be a clause in the instance I of 3-SAT. If there is a variable
assignment S that satisfies I, then updating the triangle-gadgets for
the variables according to S does not induce a loop for any destination
C in the cycle-gadget for the corresponding clause in Figure 2.5. If
no such variable assignment S exists, then at least one triangle-gadget
cannot be updated at all without causing a loop for a destination
representing a clause.

3. Let k be the number of variables in I. If k rules from the nodes Xi, Xi

in the triangle-gadgets can be updated loop free, then there exists a
variable assignment S that satisfies the instance I of 3-SAT. If less
than k rules can be updated from the nodes Xi, Xi in the triangle-
gadgets, then I cannot be satisfied.

2.4. HARDNESS OF MULTI-DESTINATION LOOP-FREE UPDATES21

Y

∀ ∀

Y

∀Y

Xi Yi

Xi

Y

Figure 2.3:
Triangle-gadget
for a variable xi.
New edges are
drawn dotted, old
solid.

Y

∀ ∀

Y

∀

Y

Z

Z
Z

Z

Z

Z

Z

Z

Xi Yi

Xi

Y

X
′
i

X′iZi

Z

Figure 2.4: Extension of the triangle-gadget for a vari-
able xi from Figure 2.3. New edges are drawn dotted, old
solid. Edges not shown point at their destination. The
four possible cycles for destination Z are i) Xi, X′i, ii)
Xi, X

′
i, iii) X

′
i, X
′
i, Z
′
i, iv) X′i, Xi, Xi, X

′
i, Zi. No other

new cycles are introduced.

C

C
CC

CC

C
C

Y Y Y

∀ ∀ ∀ ∀ ∀ ∀

∀∀
∀

C X1 Y1

X1

X2 Y2

X2

X3 Y3

X3

Y

B

Figure 2.5: Cycle-gadget for the clause C = (x1 ∨ x2 ∨ x3). All edges not
shown point directly at their destination. Only if all three nodes X1, X2, X3
update their forwarding rule for C, then there is a loop for the label C (via
B −X1 −X1 −X2 −X2 −X3 − Y3 − B). E.g., C = (x1 ∨ x2 ∨ x3) could only
induce a cycle via B −X1 − Y1 −X2 − Y2 −X3 −X3 −B.

22 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

in sequence conflicting
clauses variable false variable true

1 Y, Z, Yi Y, Z, Yi, Xi Y, Z, Yi, Xi

2 Xi, Xi X
′
i, Xi X′i, Xi

3 X′i, X
′
i

X′i, Zi X
′
i, Zi

4 Zi ∅ ∅

Figure 2.6: Table depicting the fastest possible migration scenarios for the nodes
in Figure 2.4. i) Xi cannot update before X′i, ii) Xi not before X′i, iii) Z′i not
before X′i or X′i, and iv) Xi or X′i must update before X′i and Xi and Zi can
all three be updated. Note that Y, Z, Yi can always update right away. However,
if there are conflicting clauses (i.e., the corresponding instance is not satisfiable),
then neither Xi nor Xi can update right away, but must wait for the next update to
be sent out – after the conflicts with the clauses have been cleared, thus requiring
a sequence of length four. Else, one could update with a sequence of length three,
as shown in the two rightmost columns.

Proof. We will use similar notation for the elements of the instance I from
3-SAT and for elements from the instance I ′ for ease of readability.

The problem is in NP: Observe that the problem is indeed in NP: Given
an update U of new forwarding rules, checking the union of the old and to
be updated forwarding rules to be loop free can be performed in polynomial
time, e.g., by Tarjan’s algorithm [77] for each destination.

Construction of the new Instance I ′

Let I be an instance of 3-SAT, with variables x1, x2, . . . xk, the literals Xi
and Xi for each variable xi with 1 ≤ i ≤ k, and the clauses C1, C2, . . . , Cj
with the corresponding literals lh1 , lh2 , lh3 for 1 ≤ h ≤ j. We construct an
instance I ′ of Problem 4 as follows: We create the three nodes Xi, Xi, and Yi
for every variable xi, two nodes Ch and Bh for every clause Ch, and one node
Y . I.e., V = {X1, X2, . . . , Xk, X1, X2, . . . , Xk, Y1, Y2, . . . , Yk, C1, C2, . . . , Cj ,
B1, B2, . . . , Bj , Y }.

The set of destinations is chosen as D = {C1, C2, . . . , Cj , Y }. For each
variable xi, we define a gadget with the nodes Xi, Xi, and Yi, s.t. only
either Xi or Xi may update its forwarding rule without creating a loop, see
Figure 2.3. For each clause Ch we create a gadget as well, see Figure 2.5:
If all three nodes (that correspond to the literals ¬lh1 ,¬lh2 ,¬lh3 not in the

2.4. HARDNESS OF MULTI-DESTINATION LOOP-FREE UPDATES23

clause Ch) update, then there is a loop for packets with the destination Ch.
More formally, the old set of edges EoldD,∀ is defined as follows:

• ∀ nodes Ch with 1 ≤ h ≤ j there is an edge (Y,Ch)Y from Y to Ch
labeled with Ch.

• ∀ clauses Ch, 1 ≤ h ≤ j, there are edges labeled with Ch as follows:
(Bh,¬lh1)Ch , (Υh1 ,¬lh2)Ch , (Υh2 ,¬lh3)Ch , (Υh3 , Bh)Ch , with

– Υhr = Xhr , if the corresponding literal lhr in the clause is a
positive literal, for 1 ≤ r ≤ 3

– Υhr = Yhr , if the corresponding literal lhr in the clause is a
negative literal, for 1 ≤ r ≤ 3

• ∀ nodes Yi with 1 ≤ i ≤ k there is an edge (Yi, Xi)Y from Yi to Xi

labeled with Y .

• If a destination d is still undefined for a node v, there is an edge (v, d)d.

The desired set of edges EnewD,∀ is:

• ∀i with 1 ≤ i ≤ k there are edges (Xi, Xi)all, (Xi, Yi)all, (Yi, Y)all.

• As before, if a destination d is still undefined for a node v, there is an
edge (v, d)d.

We now pose the following decision problem for the constructed instance
I ′ = (V,D,EoldD,∀, EnewD,∀): Is the maximum number of edges that can be con-
sistently updated at least

(
|EnewD,∀ | − k

)
?

What loops can be induced by the update?
We first note that individually, both sets of edges EoldD,∀ and EnewD,∀ are loop
free for every destination d ∈ D. What cycles can appear for any destination
d ∈ D when applying the full update, i.e., when looking at EoldD,∀ ∪ EnewD,∀ ?
Except for the edges (Xi, Xi)all, (Xi, Yi)all, (Yi, Y)all for 1 ≤ i ≤ k, all up-
dated edges labeled with a destination d point directly at d, meaning that
they cannot induce a loop for the destination d. The edges (Yi, Y)all cannot
generate loops either: All outgoing edges from Y , which are labeled with
a destination d, point directly at d. This leaves only the edges of the type

24 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

(Xi, Xi)all, (Xi, Yi)all to induce loops when applying an update. Note that
the total number of these edges is 2k.

If for any i with 1 ≤ i ≤ k both (Xi, Xi)all and (Xi, Yi)all are in the
update, then there is a loop for the destination Y (cf. Figure 2.3), but this is
the only way to induce loops for the destination Y : All other edges labeled
with Y in the update point at Y .

Is there a loop for a destination Ch? We do not have to consider edges
pointing directly at the node Ch (they cannot induce a loop), but at the
same time, we only need to consider edges labeled with Ch: The only way
to create a loop for the destination Ch is to include the three edges labeled
with ∀ outgoing from the nodes ¬lh1 , ¬lh2 , and ¬lh3 , cf. Figure 2.5.

Thus, the only way to have a loop-free update of size at least
(
|EnewD,∀ | − k

)
is ∀i with 1 ≤ i ≤ k to include either the outgoing edge labeled with ∀ from
the node Xi or from the node Xi.

Solving any instance of 3-SAT by maximizing updates
We now show that any instance I of 3-SAT can be reduced to such an in-
stance I ′ s.t. I is satisfiable if and only if there exists an update of size
at least

(
|EnewD,∀ | − k

)
for I ′. We note that I ′ can be constructed from I in

polynomial time.
If I is satisfiable, then there is a variable assignment S that satisfies I.

S satisfies I in such a way, that there is no clause Ch s.t. all literals lh1 ,
lh2 , lh3 are false. Therefore we can loop-free update the edges labeled ∀ in
I ′ outgoing from the nodes Xi if xi is true in S and those from Xi if xi is
false in S. This gives us already a set of k edges that can be included in
the update and a set of k edges not to be included in the update. Since all
other edges from the update can be included, this gives a solution for I ′ of
size

(
|EnewD,∀ | − k

)
.

If I is not satisfiable, then there is a no variable assignment S that
satisfies I. For every variable assignment S′ for I, there is at least one
clause Ch s.t. all literals lh1 , lh2 , lh3 are false. This means that we can
only choose at most k − 1 edges from the edges labeled with all, which are
outgoing from the nodes Xi and Xi, for the update without inducing a loop
– at least k+1 of these edges cannot be included in a loop-free update. This
means that the maximum number of edges to be included in the update for
instance I ′ is at most

(
|EnewD,∀ | − k − 1

)
.

2.4. HARDNESS OF MULTI-DESTINATION LOOP-FREE UPDATES25

Corollary 1. The problem of dynamic loop-free network updates for interval
routing, longest-prefix matching, or multi-destination routing in general is
NP-complete.

2.4.2 Hardness of the Scheduling Case
Similar as in the last subsection, we cover the special case of single-destination
and default routes for proving the hardness of the fastest scheduling, which
in turn shows the hardness of the encompassing update problems as well.

Problem 5 (Scheduling Loop-Free Network Updates with Default Routes).
Let UD,∀ = (V,EoldD,∀, EnewD,∀) be a multi-default network update. Find a se-
quence of r loop-free multi-default network updates U1

D,∀ = (V,EoldD,∀, Enew1
D,∀),

U2
D,∀, . . . , U

r
D,∀ with vertex sets V and corresponding pairwise disjoint new

edge sets Enew1
D,∀ , Enew2

D,∀ , . . . , Enewr
D,∀ s.t. Enew1

D,∀ ∪E
new2
D,∀ ∪· · ·∪E

newr
D,∀ = EnewD,∀

s.t. r ∈ N is minimal.

Theorem 2. Problem 5 is NP-complete.

Note that the construction for the proof of Theorem 4 is not enough
to show that Problem 5 is NP-hard: While it is NP-hard to decide if k
rules from the nodes Xi, Xi in the triangle-gadgets can be updated, the
whole network in the proof can always be updated in a sequence of just two
updates. In the first step, one would update all nodes (except for the nodes
Xi, Xi in the triangle-gadgets). Then, in the second step, all the nodes
Xi, Xi in the triangle-gadgets can be updated, since the possibility of loops
in the gadgets created from variables and clauses have vanished after the
first update. However, we can extend our construction s.t. for a solution of
sequence-length three, all k triangle-gadgets need to update either Xi, Xi

in the first element of the sequence of updates. Else, a sequence of length
four would be needed. The construction is described in the Figures 2.4 and
2.6.

Proof. The problem is in NP: Observe that the problem is indeed in NP:
As noted before, given an update U of new forwarding rules, checking the
union of the old and to be updated forwarding rules to be loop free can
be performed in polynomial time, e.g., by Tarjan’s algorithm [77] for each
destination. As the maximal number of non-empty updates is polynomial,
each update schedule can be checked in polynomial time for correctness as

26 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

well.

The problem is NP-hard Note that it follows from the proof of The-
orem 1, that in the construction of new instance I ′ for each 1 ≤ i ≤ k, not
both Xi and Xi can migrate in the update, since this would induce a cycle
with the node Yi. Furthermore, only if the instance I of 3-SAT is satisfi-
able, then exactly one node of Xi or Xi can migrate in the corresponding
triangle-gadget. Else, i.e., I is not satisfiable, neither Xi nor Xi can migrate
in the current situation of instance I ′. Thus, it is NP-hard to decide if it
holds for every triangle-gadget that exactly one of the nodes of Xi, Xi can
migrate in a first update.

We now extend the construction of instance I ′ as shown in Figure 2.4
for every triangle-gadget in the instance I ′:

• For 1 ≤ i ≤ k we add the nodes X ′i, X ′i, Zi, i.e., three nodes for every
one of the triangle-gadgets.

• We add the node Z.

• For the set of old rules and for 1 ≤ i ≤ k, we add the edges (Xi, X
′
i)Z ,

(Xi, X ′i)Z , (X ′i, X ′i)Z , (X ′i, Zi)Z .

• For the set of new rules and for 1 ≤ i ≤ k, we add the edges (X ′i, Xi)Z ,
(X ′i, Xi)Z , (Zi, X

′
i).

• As before, if a destination d is still undefined for a node v for the set
of old or new rules, we add an edge (v, d)d.

Edges pointing directly at their destination can never introduce loops,
thus we only need to look at the remaining newly introduced edges – which
are all inside the extended triangle-gadgets, and do not create new routes
outside single extended triangle-gadgets (again, except for directly pointing
at destinations). Note that all these remaining newly introduced edges are
for the destination Z, hence only loops for this destination can be introduced
by this extension of the construction of the instance I ′. When considering
the edge-set created by joining the set of old rules and new rules, only
four new cycles for the destination Z are created for each extended triangle-
gadget: i) Xi, X ′i, ii) Xi, X

′
i, iii) X

′
i, X

′
i, Z
′
i, iv) X ′i, Xi, Xi, X

′
i, Zi. All these

2.4. HARDNESS OF MULTI-DESTINATION LOOP-FREE UPDATES27

four cycles induce dependencies for updating the rule including destination
Z:

• i): Xi cannot update before X ′i.

• ii): Xi cannot update before X ′i.

• iii): Z′i cannot update before X ′i or X ′i.

• iv): Xi or X ′i must update before X ′i and Xi and Zi can all three be
updated.

Note that these four cycles cause the length of the sequence to update all
rules in the triangle-gadget to be at least three: Due to iii), Z′i must wait
for X ′i or X ′i, but due to i) and ii), these two nodes must wait for Xi or Xi
respectively. Furthermore, all rules except for those in the extended triangle-
gadget can be updated in the first element of the sequence of updates, see
the proof of Theorem 1.

Hence, if the corresponding 3-SAT instance I is not satisfiable, then
there exists at least one extended triangle-gadget where neither Xi nor Xi
can update – causing the sequence length to be four, see the second column
in the table in Figure 2.6 for a valid ordering for the nodes in the extended
triangle-gadget.

Should the corresponding 3-SAT instance I be satisfiable, then either
Xi or Xi can be updated in every extended triangle-gadget, allowing for
a sequence of length three to update all rules in the network, see the two
rightmost columns in the table in Figure 2.6 for a valid ordering for the
nodes in the extended triangle-gadget.

Thus, it is NP-hard to decide if the whole network can migrate in a
sequence of either length three or four.

Corollary 2. It is NP-complete to approximate the length of the sequence
of updates needed for Problem 5 with an approximation ratio strictly better
than 4/3.

Corollary 3. The problem of scheduling loop-free network updates for inter-
val routing, longest-prefix matching, or multi-destination routing in general
is NP-complete.

28 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

2.5 Hardness of Scheduling Two-Destinations

In this section we consider the problem of scheduling loop free updates for
two destinations d, d′: Given a network N and old and new forwarding
rules, find a sequence of r loop free updates U1, U2, . . . , Ur s.t. after Ur (i.e.,
r updates), the current network forwarding state is identical to fnew.

For the case of two destinations d, d′, each node can either have two
separate old forwarding rules for d, d′ or a combined one, analogously for
the new rules. We note that the separate forwarding rules of a node might
still point towards the same node, and that a node can have separate old and
combined new forwarding rules, or vice versa. If a node has a combined new
forwarding rule, then updating to this rule replaces the old rules. For the
case of separate forwarding rules however, they can be updated in different
updates Recall that an update for two destinations loop-free, if the union of
the old and the updated forwarding rules is loop free for each destination.

We first restate a result from Ludwig et al. [52], adjusted to our notation,
which tells us that deciding if a 3–update sequence exists is NP-complete.
In the remainder of this section, we will extend this proof to a sublinear
number of updates for 2 destinations, i.e., less than n1−ε.
Theorem 3 ([52]). The problem of scheduling loop free updates for one
destination d is NP-complete for a 3–update sequence.

The proof of Theorem 3 is quite involved, yet elegant. As we will use it
as a black box in our own construction, we omit its proof details here.

In fact, adding a second destination allows us to make use of the following
idea: An update of a node v in the construction of Theorem 3 can be delayed
by adding an additional destination, cf. Figure 2.7.

This concept can be performed on all forwarding rules, allowing every up-
date to be delayed by one additional update by adding Ω(n) additional des-
tinations. Iterating this idea beyond one update yields the NP-completeness
of the problem for a logarithmic number of updates with a linear number of
destinations.

Nonetheless, the deciding factor in this hardness augmentation comes
from adding a second destination, as we will show in the following:
Theorem 4. Let 0 < ε < 1. For any 3 ≤ r ≤ n1−ε, there is a r∗ ≥ r
s.t. the problem of scheduling loop free updates for two destinations d, d′ is
NP-complete for a r∗–update sequence.

2.5. HARDNESS OF SCHEDULING TWO-DESTINATIONS 29

d′
d, d′d

d′

d, d′d

d′

d′
d′

w

w′

vv

w

w′

transformed network with d′v wants to update from w to w′

Figure 2.7: Old forwarding rules are solid, new ones dashed, the node for destina-
tion d is omitted. To delay the update of v from w to w′, we transform the network
on the left side to the network on the right side. Now, node v cannot update its
combined new rule for the destinations d, d′ to the node w′ until w′ switches its
rule for d′ from v to d′. Note that in general, w′ could have arbitrarily many in-
coming new forwarding rules, but may only have one outgoing old forwarding rule
for d′; Thus, a new destination is needed for every delay of an edge when using
this construction.

Proof. The problem is in NP: Given a sequence of (supposedly loop free)
updates, each single one can be checked sequentially in polynomial time to
be loop free by using, e.g., Tarjan’s algorithm [77].

NP-hardness of r = 4: We start by proving the theorem for r = 4, before
extending it to larger r ≤ n1−ε. The case of r = 3 was already covered
above in Theorem 3. We will again use the idea of delaying the update of
every forwarding rule by one update akin to the construction in Figure 2.7,
but we will just use one additional destination d′, cf. Figure 2.8.

First, we add a new destination d′ to the network. Now let v, w′ be two
nodes in the network s.t. there is a new forwarding rule for d from v to w′.
We add a new node v′, and replace the forwarding rule for d from v to w′
with one for d, d′ from v to v′. Additionally, we add old and new forwarding
rules for d from v′ to w′, a new forwarding rule for d′ from v′ to d′, an old
forwarding rule for d′ from v′ to v, and old and new forwarding rules for d′
from v to d′, see Figure 2.8.

After applying this construction for every new forwarding rule in the
original network, we added O(n) additional nodes and forwarding rules.
We note that every node from the original network has at most one incom-

30 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

d

d

d′

d′

d, d′d

d′

dd

w′

w

v′

v

d′

v

w

w′

transformed network with d′v wants to update from w to w′

Figure 2.8: In this construction, every new forwarding rule for d from a node v to
w′ gets replaced by a forwarding rule for d, d′ to a node v′, the node for destination
d is omitted among some further edges for simplicity of the illustration. For the
node v′, old and new forwarding rules for d to w′ are added. Again, v cannot update
to its new combined forwarding rule to v′ before v′ has updated its forwarding rule
for the destination d′. Observe that in this construction, even when applied to
every new forwarding rule of the original network, every node from the original
network has only one incoming/outgoing forwarding rule for the new destination
d′.

ing/outgoing forwarding rule for the new destination d′. Now, the update of
every forwarding rule is delayed by one update, i.e., it is NP-hard to decide
if the network can be updated loop free in r = 4 updats.

NP-hardness of r ∈ N, r ≥ 3: We can extend the construction used
above for the NP-hardness of r = 4 to any larger natural number, cf. the
construction in Figure 2.9: By adding the node v′′ to the construction, the
problem becomes NP-hard for r = 5, as v cannot update before v′, which
in turn cannot update before v′′.

This can be iterated with v′′′ for the NP-hardness of r = 6, v′′′′ for
r = 7, and so on. Note that if the original network has n nodes, the newly
constructed network still has O(n) nodes for any fixed r ∈ N.

NP-hardness for ≤ n1−ε: In the construction for r ∈ N, we achieved NP-
hardness for r in a network with Θ(n + rn) ∈ Θ(n) nodes. The situation
changes when r is dependent on n, e.g., by setting r = n, we get networks

2.6. SINGLE-DESTINATION LOOP-FREE UPDATES 31

d′d′

d′

d′

d′

d′

d′

d′

d, d′

d′

v′′′′ v′′′ v′′

v′vd′

Figure 2.9: In Figure 2.8, v′ had a new forwarding rule for d′ pointing directly
at d′, inducing a delay of one update for the update of the new forwarding rule of
v. This delay can be extended by adding additional nodes v′′, v′′′, . . . as depicted
in the construction shown in this Figure.

with n′ ∈ Θ(n2) nodes, meaning that the additional delay is just Θ(
√
n′)

opposed to Θ(n′).
However, by setting the delay in the construction to nx, n ∈ N, it is NP-

hard to decide if a schedule of length r∗ exists for some r∗ > nx

nx+3 = n1− 3
x+3 .

Hence, the theorem holds by setting x > 3
ε
− 3 for any ε, 0 < ε < 1.

Thus, adding a second destination increases the complexity of scheduling
loop free updates remarkably.

2.6 Single-Destination Loop-Free Updates

We already showed in Section 2.4.1 that for a number of Θ(n) destinations,
the problem of dynamic loop-free updates is NP-hard via a reduction from
3-satisfiability.

However, is this problem really hard due to adding a linear amount of
destinations – or is the complexity already hidden in the two choices every
node has with one destination? Should a node 1) update, or 2) not update?
As it turns out, already these two choices make the problem hard (Subsection
2.6.1), but one can approximate it well (Subsection 2.6.2).

32 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

2.6.1 Hardness of the Dynamic Case

Theorem 5. The problem of dynamic loop free updates for one destination
is NP-complete.

Proof. The problem is in NP: Observe that the problem is indeed in
NP: Given an update U of new forwarding rules, checking the union of the
old and to be updated forwarding rules to be loop free can be performed in
polynomial time, e.g., by Tarjan’s algorithm [77].

NP-hardness: It is left to show that the problem is NP-hard. Our proof
is a reduction from the classic NP-complete problem Feedback Arc Set
(FAS) [29]: Given a directed graph, are there c edges s.t. their removal
results in a loop free graph?

We show that for every instance I of FAS, we can construct in polynomial
time an instance I ′ of the corresponding decision problem of the dynamic
loop free update problem, s.t. I is satisfiable if and only if I ′ is a yes-
instance.

For an illustration of the technique used in the remainder of the con-
struction we refer to the Figures 2.10, 2.11, where the network in Figure
2.11 represents an instance I ′ created from the instance I of the network in
Figure 2.10.
Construction of the new Instance I ′: Let I be an instance of FAS,
i.e., a directed graph G = (V,E) and c ∈ N: Is there a set of at most
c edges Ec ⊆ E, s.t. the removal of those edges yields a loop free graph
G∗ = (V,E \ Ec)? W.l.o.g., let V = {v1, . . . , vn}, and let ∆(vi) be the out-
degree of the node vi, with the edges {ei,j1 , . . . , ei,j∆(vi)}. Again, w.l.o.g.
let ei,jk be the edge from vi to vk.

We construct an instance I ′ = (V ′, Eoldd , Enewd) by first defining the set
of nodes, then the set of old forwarding rules, and then the set of new
forwarding rules.

V ′ consists of a destination d ∈ V , the nodes V , and ∀vi ∈ V we add
∆(vi) nodes {vi,j1 , . . . , vi,j∆(vi)}. Thus, V ′ has in total 1 + |V |+ |E| nodes.

The set of old forwarding rules is defined as follows: For each node
vi ∈ V , we construct a directed path starting at vi and ending at d as
vi, vi,j1 , . . . , vi,j∆(vi), d. I.e., we basically have an in-tree for d that consists
of |V | paths. The total number of forwarding rules in Eoldd is |V |+ |E|.

2.6. SINGLE-DESTINATION LOOP-FREE UPDATES 33

v1 v2

v3v4

Figure 2.10: In this net-
work instance I, there is ex-
actly one loop between v2
and v3. Removing either of
the two edges would solve the
Feedback Arc Set problem in
an optimal fashion.

v1 v2

v2,1

v2,3

v3

v3,2

v4

v4,1

v4,2

v4,3v4,3

d

Figure 2.11: The corresponding network in-
stance I′ from I in Figure 2.10. The loop be-
tween v2 and v3 in I is represented by the loop
between the nodes v2, v2,1, v2,3, v3, v3,2, v2. No
further loops exist in I′.

34 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

The set of new forwarding rules mimics the edges of the graph G in the
instance I. For each edge ei,jk in E, we construct a forwarding rule from
vi,jk to vjk in E′. Furthermore, for each node vi ∈ V , we add a forwarding
rule ei,d from vi to d in E′. Thus, the total number of forwarding rules in
Enewd is again |V |+ |E|.

This set of new forwarding rules is loop free: i) The destination d has
no outgoing rules, so all |V | forwarding rules pointing at d cannot be part
of a loop. Note that those |V | forwarding rules origin from nodes vi. ii) All
other |E| forwarding rules point at nodes vi, and thus cannot be part of a
loop either. Hence, both the old and the new forwarding rules are loop free.

Note that the instance I ′ can be constructed from the instance I in poly-
nomial time. We now pose the following decision problem for the constructed
instance I ′ = (V ′, Eoldd , Enewd): Is the maximum number of forwarding rules
that can be updated loop free at least (|Enewd | − c)?

If I is a yes-instance, then I ′ is a yes-instance Let Ec be a set of
c edges, s.t. the removal of those edges from E yields a loop free directed
graph G∗ = (V,E\Ec). Let I∗, be the instance I ′, with the forwarding rules
constructed out of Ec removed, i.e. I∗ = (V ′, Eoldd , Enew,∗d). Note that I∗
still has 1+|V |+|E| nodes. By definition, G∗ is loop free. For contradiction,
let us assume that (V,Eoldd ∪ Enew,∗d) contains a loop L. L must contain a
mix of old and new forwarding rules, since each set is loop free individually.
Since the outgoing new forwarding rules from vi point directly at d, the loop
L cannot contain two new forwarding rules consecutively.

We now contract the paths of old forwarding rules originating at vi in
I∗, i.e. vi, vi,j1 , . . . , vi,j∆(vi), d into just one new node vcontri that points at
d with an old edge. The new contracted node vcontri has all ingoing new
forwarding rules/edges from vi and all outgoing new forwarding rules/edges
from the nodes vi,j1 , . . . , vi,j∆(vi), plus one old forwarding rule/edge that
points at d. We do this for all nodes vi ∈ V in I∗, leading to a contracted
graph with |V |+1 nodes, given by vcontr1 , . . . , vcontrn , d. If we were to remove
the node d from the contracted graph (and all ingoing edges to d), we would
have a graph isomorphic to G = (V,E): Each node vcontri corresponds to the
node vi in G∗. The same holds for the adjacency relations, as the contracted
graph without d contains only new forwarding rules/edges, which in turn
were created out of the edges from the edges of G∗.

Thus, if (V,Eoldd ∪Enew,∗d) were to contain a loop L, then the contracted

2.6. SINGLE-DESTINATION LOOP-FREE UPDATES 35

graph would contain a loop as well, and hence the graph G∗ too. However,
by definition, G∗ was loop free, leading to a contradiction.

If I is a no-instance, then I ′ is a no-instance Let us assume that no
set of c edges Ec ⊆ E exist, s.t. the graph G∗ = (V,E \ Ec) is loop free.
Thus, I is a no-instance. Now, let Ec be any set of at most c edges, but let
Ec be fixed, and let G∗ = (V,E \ Ec). Note that G∗ contains at least one
loop L by definition. Again, as in the argumentation above, we look at the
contracted graph without the destination d constructed from the instance
I∗. Due to isomorphism, G∗ contains a loop as well, which concludes the
proof of Theorem 5.

As seen in the above proof, the problem of dynamic loop free updates
is strongly related to the Feedback Arc Set problem. The best known ap-
proximation ratio which can be achieved for FAS in polynomial time is
O(logn log logn), as shown by Even et al. in their seminal paper [17].
Thus, we can show that finding a better guarantee for the dynamic loop
free update problem cannot be achieved unless simultaneously improving
the general case of the FAS problem:

Corollary 4. A polynomial time algorithm for the problem of dynamic
loop free updates for one destination with a better approximation ratio than
O(logn log logn) would imply a better polynomial approximation ratio than
O(logn log logn) for the Feedback Arc Set problem.

Proof. Observe that in the proof of Theorem 5, the construction increases
the number of nodes from n to n+m+ 1. As O(logn log logn) is equivalent
to O(logn + m + 1 log logn + m + 1) due to logarithmic identities, a bet-
ter approximation bound would immediately imply a better approximation
bound for the Feedback Arc Set problem.

In the next subsection, we will make use of this duality between dynamic
loop-free updates and FAS.

2.6.2 Approximation of the Dynamic Case
While a greedy solution might seem like a good approach at first glance, it
can be far from optimal regarding the number of updates sent out in one

36 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

flush, see Figure 2.12: Even for just one destination, an update can be of
size up to |Enewd | − 1, but a greedy one might just be 2 edges.

u v y z

a b d

Figure 2.12: An update of the nodes a and b is a greedy update, but an update
of the nodes u, v, . . . , y, z and b would be an update of maximum size.

Can we do better? Since we want to include as many edges as possible,
we are essentially solving restricted instances of the NP-complete Feedback
Arc Set Problem (FAS) [29]: Given a directed graph, what is the minimum
number of edges that needs to be removed to break all cycles. FAS can also
be considered in a variant with weighted edges: This allows us to exclude old
edges from removal, by giving all old edges an arbitrarily high weight, and all
new edges a weight of just 1. The best known approximation algorithm for
weighted FAS has an approximation ratio of O (logn log logn) [17], allowing
us to improve on a simple greedy algorithm:

Input: Nodes V and Eoldd , Enewd as old/new rules, each loop-free.
Output: A loop-free update (V,Eoldd , E′d)

1. Set the weight of all edges contained in Eoldd to ∞, and the weight of all
other edges to just 1.

2. Calculate a FAS F for the weighted graph (V,Eoldd ∪E
new
d) according to [17].

3. Set E′d = Enewd \ F .

Algorithm 1: Dynamic Loop-Free Updates for One Destination

Theorem 6. The update calculated by Algorithm 1 is loop-free. The num-
ber of removed edges from Enewd can at most be reduced by a factor of
O (logn log logn).

2.7. HARDNESS OF BLACKHOLE FREEDOM 37

Proof. The removal of a FAS implies by definition loop freedom for the
network. However, old edges are not allowed to be removed: But since all
edges contained in the set of old edges Eoldd = Eoldd ∪

(
Eoldd ∩ Enewd

)
have

their weight set to infinity, there is always an infinitely better solution than
removing any old edge. One would just set the edges being in E′d to ∅, which
results in a loop-free network by definition.

Furthermore, by applying Algorithm 1 iteratively, the network will be
migrated loop-free to the new forwarding rules in at most O(n) updates,
cf. [58]. Note that this scheduling of updates does not promise any ap-
proximation ratio regarding the fastest update schedule, even though there
are instances where Ω(n) updates are optimal (e.g., reversing a chain of
forwarding rules).

2.7 Hardness of Blackhole Freedom

Related to the study of loop freedom is the study of blackholes: A blackhole
occurs when a packet arrives at a switch, but there is no matching rule to
handle the packet. A straightforward way to avoid blackholes is to install
some default rule which handles all packets not matched by some other
rule. E.g., send packets to some neighboring node. However, this can easily
introduce loops, or, if all packets are modified and sent back to the controller,
a computational overload for the controller and congestion in the network.

Another issue occurs when forwarding rules are updated: Should one
delete the old rule and then add the new rule, packets arriving in the mean-
time will be blackholed, unless some backup rule exists. Again, with enough
memory, there is an easy fix: Introduce the new rule with a lower priority,
and then delete the old rule. Should memory be limited however, we run
into the problem of updating the switches in an efficient way:

Problem 6 (Blackhole-Free Routing under Memory Restrictions). Let ci ∈
N be the total rule memory of a switch vi, the combined number of rules
in current use and the rules it can receive in one update. Let G = (V,E)
be the directed graph on which packets can be routed, with the destinations
D ⊆ V and the sources S ⊆ V for the packets. In one round, a central
controller can send out a set of any rules as an update to each node in the
network. What is the minimum number of rounds, to migrate the network

38 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

from a set of blackhole free old rules to a new set of blockhole free rules,
if no blackholes should be introduced during migration and routing without
loop should be possible at all times?

Theorem 7. Problem 6 is NP-hard.

The proof for Theorem 7 is based on a reduction from the NP-hard di-
rected Hamiltonian Cycle problem (HC), cf. [29]: Given a directed graph
G = (V,E), is there a cycle that visits each node exactly once? The construc-
tion with further details is shown in Figure 2.13: It is possible to migrate
blackhole free in two rounds if and only if there is a Hamiltonian Cycle in
G, thus allowing to first use the cycle for intermediate routing via default
rules, and then installing the new rules; Else it will take three rounds, one
for each new rule. Thus, it is NP-hard to decide whether one can migrate
in two or three rounds, even if the diameter is just two.

Proof. Construction of the new Instance I ′

Let G = (V,E) be an instance I of HC with the graph G = (V,E). We will
construct an instance I ′ of Problem 6 by first defining the vertex set V ′,
then the set of packet destinations D ⊆ V ′, followed by the set of packet
sources S ⊆ V ′, and the rule memory ci for each switch. Afterward, we
define the directed edge set E′, the set of old rules, and the set of new rules.

The node set V ′ consists of six nodes vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3 and
the node set V . W.l.o.g. let V = {v1, v2, . . . , vn}. The set of destinations
D for packets is V , and the set of sources S for packets is V . The rule
memory is 4 for each node in V , and |V |/3 for the remaining six nodes
vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3 .

The edge set E′ consists of:

• The set of Edges E.

• ∀v ∈ V and ∀i with 1 ≤ i ≤ 3 there are edges (v, doldi) from v to doldi
(3|V | edges in total).

• ∀v ∈ V and ∀i with 1 ≤ i ≤ 3 there are edges (v, dnewi) from v to dnewi

(3|V | edges in total).

2.7. HARDNESS OF BLACKHOLE FREEDOM 39

edges from
all

v ∈
V

edges to
v
(2n/3)+1 , . . . , v

n

edges from all v ∈ V

edges to v(n/3)+1, . . . , v(2n/3)

ed
ge

s fro
m

all
v
∈

V

ed
ges

to
v1, . . . , v (n/3)

ed
ge

s fro
m

all
v
∈

V

ed
ges

to
v (2n/3)+

1
, . . . , vn

edges from all v ∈ V

edges to v(n/3)+1, . . . , v(2n/3)

edges from
all v ∈

V

edges to
v1 , . . . , v

(n/3)

G = (V,E)

vold1

vold2

vold3

vnew1

vnew2

vnew3

Figure 2.13: Overview of the construction of an instance I′ for the proof of
Theorem 7. The center node represents the graph G = (V,E) from an instance
I of the directed Hamiltonian Cycle problem. The sets of edges to and from the
outer six nodes are bundled into single edges in this figure, their outgoing or ingoing
nodes are labeled on top of each edge. Each node in V = S = D has a memory
limit c of four rules. The solid edges represent the edges used for the three old rules
∀v ∈ V , the dotted edges the edges used for the three new rules ∀v ∈ V . All nodes
in V currently use the three nodes vold1 , vold2 , vold3 on the left for 2-hop routing to
the respective destinations in D = V , and want to migrate to use the three other
nodes vnew1 , vnew2 , vnew3 on the right for 2-hop routing. If the network aims to be
migrated blackhole free in two rounds, then each of the nodes in V needs to switch
to a default rule pointed at some node in V in the first round. If and only if the set
of these default edges form a Hamiltonian Cycle, then this first round of updates is
blackhole free: Any packet from S will reach its destination in D by just using the
default routing rules, which will guide the packet along a Hamiltonian cycle in V .
Then, in a second round of updates, all nodes in V can switch to their three new
rules. Should no Hamiltonian Cycle exist in G = (V,E), then the update cannot
be performed in two rounds, which can be proven by case distinction. Thus, it is
NP-hard to decide whether one can migrate in two or three rounds, even if the
diameter of the network is just two. We note that the construction for the memory
limit of c = 4 for all nodes in V can be directly extended to any c ∈ N with c ≥ 4.
Furthermore, note that blackhole freedom is easy to guarantee for each node in the
presence of default rules, if one does not care about routing: Just set a default rule
to any neighboring node. While packets might not arrive at all (and in addition
violate other consistency properties, e.g., congestion freedom), blackhole freedom
is guaranteed.

40 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

• ∀v ∈ {v1, . . . , v(n/3)} there are edges (vold1 , v) and (vnew1 , v) ((2|V |/3)
edges in total).

• ∀v ∈ {v(n/3)+1, . . . , v(2n/3)} there are edges (vold2 , v) and (vnew2 , v)
((2|V |/3) edges in total).

• ∀v ∈ {v(2n/3)+1, . . . , vn} there are edges (vold3 , v) and (vnew3 , v) ((2|V |/3)
edges in total).

The set of old rules for the n destinations V is defined as follows:

• ∀v ∈ {v1, . . . , v(n/3)} and ∀v′ ∈ V there are rules (v′, vold1)v1,...,v(n/3) .

• ∀v ∈ {v(n/3)+1, . . . , v(2n/3)} and ∀v′ ∈ V there are rules
(v′, vold2)v(n/3)+1,...,v(2n/3) .

• ∀v ∈ {v(2n/3)+1, . . . , vn} and ∀v′ ∈ V there are rules
(v′, vold3)v(2n/3)+1,...,vn .

• ∀v ∈ {v1, . . . , v(n/3)} there are rules (vold1 , v)v.

• ∀v ∈ {v(n/3)+1, . . . , v(2n/3)} there are rules (vold2 , v)v.

• ∀v ∈ {v(2n/3)+1, . . . , vn} there are rules (vold3 , v)v.

Basically, the set of destinations from V is split into three partitions, and
each of the nodes from vold1 , vold2 , vold3 is responsible for routing to that par-
tition.

We define the new rules for the n destinations V analogously :

• ∀v ∈ {v1, . . . , v(n/3)} and ∀v′ ∈ V there are rules
(v′, vnew1)v1,...,v(n/3) .

• ∀v ∈ {v(n/3)+1, . . . , v(2n/3)} and ∀v′ ∈ V there are rules
(v′, vnew2)v(n/3)+1,...,v(2n/3) .

• ∀v ∈ {v(2n/3)+1, . . . , vn} and ∀v′ ∈ V there are rules
(v′, vnew3)v(2n/3)+1,...,vn .

• ∀v ∈ {v1, . . . , v(n/3)} there are rules (vnew1 , v)v.

2.7. HARDNESS OF BLACKHOLE FREEDOM 41

• ∀v ∈ {v(n/3)+1, . . . , v(2n/3)} there are rules (vnew2 , v)v.

• ∀v ∈ {v(2n/3)+1, . . . , vn} there are rules (vnew3 , v)v.

The instance I ′ can be constructed from the instance I in polynomial
time. Each of the rules is valid, as they only use edges that were constructed
for E′ before. Note that no rule uses an edge from E. Also, both the old
and the new rules lead to a correct routing table and blackhole freedom:
Packets are only created at sources, and for each source s ∈ V = S there
is a unique 2-hop rule path to each destination d ∈ V = D via the nodes
vold1 , vold2 , vold3 (for the old rules) or vnew1 , vnew2 , vnew3 (for the new rules).

Furthermore, neither the old or the new set violates the memory con-
straints for the nodes. Each node v ∈ V is assigned three rules in both
cases, leaving one slot open. The six nodes vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3
with a memory limit of |V |/3 are assigned |V |/3 rules in both cases.

Note that the six nodes vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3 cannot be issued
updated rules without inducing blackholes: For a new rule to be received,
an old rule would need to be dropped first.

We now pose the following decision problem for the constructed instance
I ′:
Can the network in instance I ′ be migrated without blackholes in two rounds
to the new rules?

Can the network migrate in one round without blackholes?
Each node v ∈ V has only enough memory to receive one more rule in an
update. Dropping any rule beforehand would induce blackholes. Since each
node from V needs three new rules, it is not possible to migrate the whole
set of new rules in one round.

Can the network migrate in two rounds?
Unlike in the case of just one round, we could now send out intermediate
(helper) updates in the first round, and then more updates in the second
round. We will now show that a blackhole free migration in exactly two
rounds is only possible, if the graph G = (V,E) has a Hamiltonian Cycle.
Note that only the nodes in V ⊂ V ′ need to be migrated, all other nodes
from V ′ have the same set of old and new rules.

42 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

First, assume that the graph G = (V,E) in the instance I has a Hamil-
tonian Cycle. Then it is possible to migrate in two rounds as follows:

• In the first round, issue each node in V a default routing rule, s.t.
the set of all these rules form a Hamiltonian Cycle in V . Since each
node has enough memory to receive one additional rule, no memory
limit is violated. Each node in V can now add the new default rule to
their current rule list, and then remove all old three rules. Thus, the
process is blackhole free. Also, each source node v ∈ V now routes the
packets via the Hamiltonian Cycle to each destination node in v′ ∈ V .

• In the second round, all nodes in V have three free slots for new rules.
Thus, each node v ∈ V can be issued an update consisting of all three
new rules.
Each node v can then add the three new rules (v, vnew1)v1,...,v(n/3) ,
(v, vnew2)v(n/3)+1,...,v(2n/3) , and (v, vnew3)v(2n/3)+1,...,vn to the current
list of rules, and then dispose of the default rule.

• No inconsistent limbo state is induced due to asynchronicity: Should
some nodes have implemented/discarded the default rule already, but
others have not, it could be that the packet destination cannot be
reached via the yet incomplete Hamiltonian Cycle, because the cycle
of default rules is broken at a node w. Then the packet will still reach
its destination, because w will route the packet in two hops to its
destination via one of the nodes vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3 .

• Thus, if in the instance I there is a Hamiltonian Cycle in G = (V,E),
then it is possible to migrate the instance I ′ blackhole free in two
rounds.

To complete the proof, let us now assume that the graph G = (V,E) in
the instance I has no Hamiltonian Cycle. Then it is not possible to migrate
blackhole free in two rounds:

• After the second round, all nodes in V need to be issued the three new
rules. Since at most one rule can be transmitted in the first round,
at least two new rules need to be issued in the second round to each
node in V . We now argue by case distinction:

2.7. HARDNESS OF BLACKHOLE FREEDOM 43

• Let us assume that there is one node w in V that received one of
the three new rules in the first round, w.l.o.g. (w, vnew1)v1,...,v(n/3) .
If the old rule (w, vold1)v1,...,v(n/3) is not dropped before the second
round, then no new rules can be received by w (unless the newly
received rule is deleted, making the first update pointless), and it is
not possible to migrate blackhole free in two rounds. Thus, the node
w has to add the rule (w, vnew1)v1,...,v(n/3) to the list of current rules
and then drop the rule (w, vold1)v1,...,v(n/3) before the second round.
Other rules cannot be dropped without inducing blackholes. In the
second round however, the node w can now at most receive one of the
two missing rules, making a blackhole free migration in two rounds
impossible.

• Hence, no node in V can receive any of the three new rules in the
first round of updates, if one wants to finish in two rounds. The only
possible way to still be able to migrate in two rounds would be to
issue an update of another sort. Let us assume that one node w in V
receives a rule R that is neither one of the three new rules, nor one of
the three old rules, nor a default rule to one of the nodes in V :

– If the by w received rule R were a rule to one of the six nodes
vold1 , vold2 , vold3 , vnew1 , vnew2 , vnew3 , then that update would induce
a blackhole or be an update that needs to be discarded: If the
set of destinations covered by the rule R contains a proper super-
set of the destinations covered by one of the old rules, then we
would have a blackhole, because at least one destination would
not be covered after the next hop. If R does not contain a proper
superset, then the rule is of no use, it needs to be discarded to
open a slot in the second round.

– If the by w received rule R were a rule that covers only a proper
subset of V and is pointed at a node in V , then we cannot finish
the update in the second round. Since R only covers a proper
subset of V , w needs to keep at least one more old rule for the
second round to avoid blackholes. However, this only leaves two
slots for new rules in the second round, but the node w is still
missing three new rules, making a blackhole free migration in two
rounds not possible.

44 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

• Hence, the only option left is for all nodes w ∈ V to be issued a default
rule in the first round, each pointing at some node in V . However, the
graph G = (V,E) has no Hamiltonian Cycle, meaning that the set of
default rules does not induce a strongly connected component: The
only way to create a strongly connected component with n nodes and
n edges is a Hamiltonian Cycle!

• Thus, if in the instance I there is no Hamiltonian Cycle in G = (V,E),
then it is not possible to migrate the instance I ′ blackhole free in two
rounds.

This concludes the proof of Theorem 7.

We note that the construction for the memory limit of c = 4 for all nodes
in V can be directly extended to any c ∈ N with c ≥ 4.

Corollary 5. It is NP-hard to approximate the number of rounds needed
for Problem 6 with an approximation ratio strictly better than 3/2.

2.8 Loop-Free Updates and Local Checkability

So far, we relied on the following paradigm when applying updates: First,
gather the state at the centralized SDN controller, then, compute updates
and distribute them in the network, sending out further updates after their
implementation was acknowledged. It would be advantageous to perform
these costly global operations only if needed – and otherwise rely on inex-
pensive local verification [73].

As it turns out, networks managed by a central controller, such as Soft-
ware Defined Networks, show a strong similarity to prover-verifier pairs [20]
(i.e., proof-labeling schemes). The controller can take on the role of the
prover, and the switches in the network itself the role of the verifiers. We
show how the concept of local checkability can be used for graceful net-
work reconfigurations with the example of migrating in a loop-free manner
between forwarding rules.

While the current line of research on local checkability focuses exten-
sively on its theoretical properties, the number of practical applications
beyond verification of a proof is sparse to the best of our knowledge. E.g.,

2.8. LOOP-FREE UPDATES AND LOCAL CHECKABILITY 45

Schmid and Suomela [73] use proof-labeling schemes to verify spanning trees
in networks.

The methods discussed in Subsection 2.6.2 and those from [52, 58] are
inherently non-local however, as the updates can be anywhere in the net-
work. Consider the example in Figure 2.14, where the whole network can
be updated in a few rounds of switch-controller interaction, but the nodes
with new forwarding rules cannot decide with local communication whether
it is safe to update loop-free or not.

d

u′ v′

v u

... ...T1: d

u′ v′

v u

... ...T2:

Figure 2.14: The loop-free migration from T1 to T2 can be handled in two updates
by a centralized controller: First, u updates, and then after u confirmed the update
to the controller, in a second update, the controller tells u′ to update. As the
distance between the nodes u, v and u′, v′ can be Ω(n), non-local communication
via necessary: Else, u′ cannot know when it is safe to update without inducing a
loop.

A different approach is taken in [25,26], which can be seen as analogous
to a local checkability approach: For the new forwarding rules, defined as
a tree T2, label the root with (update) 0, then its children with (update)
1, and so on, labeling each node with an (update) number equivalent to its
distance to the root of T2. As T2 could have a depth of n− 1 ∈ Ω(n), they
need Ω(n) (or depth of T2) subsequent updates in the worst case. Recall
that no faster algorithm (dependent on n or the tree depth) can exist either
for the general case: Consider a degenerated tree T1, where every node has
at most one child. If the parent-child relation is flipped in T2 (with the
only leaf becoming the only child of the root), then Ω(n) (or depth of T2)
updates are required, cf., e.g., [52].

46 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

2.8.1 A Local Migration Scheme
We will extend the scheme used by [25,26] in this subsection in a way that
every node will be able to decide locally if it can change its forwarding
behavior to the new routing tree T2.

We note that the nodes cannot verify if the new tree T ′ is actually T2, as
the very nature of T2 is decided upon by the central controller. An analogous
case can be about identifiers, which is why we will adopt the model of Schmid
and Suomela [73] and assume every node has a unique identifier id(v) (of
size O(logn)). As thus, we will only make sure that the nodes update to the
tree specified by the sent out labels. We will still maintain the loop-free (i.e.,
tree) property at all times, no matter what labels are sent by the controller.

Input: Graph G = (V,E) with the forwarding rules of the nodes forming a directed
tree T1 = (V,E1) with root d ∈ V . Every node v ∈ V, v 6= d gets a label consisting
of id(p2(v)) of its parent p2(v) in T2 and the depth d2(v) of v in T2.

1: while v did not update yet do
2: if p2(v) sends depth d2(p(v)) = d2(v)− 1 or p2(v) = d then
3: Update forwarding rule to p2(v) and then send d2(v) to all neighbors
4: end if
5: end while

Algorithm 2: Update algorithm from the perspective of a node v.

We will now prove that Algorithm 2 works as intended, if the labels are
correct:

Lemma 1. Let the situation described in Algorithm 2 be correct: Then,
executing Algorithm 2, the nodes v ∈ V perform consistent updates, leading
to a consistent migration of loop-free updates from the old forwarding rules
T1 to the new forwarding rules T2.

Proof. We will first prove that every update is loop-free, before showing
that a loop-free migration to T2 occurs.

Observe that initially, there is no loop in the network. Furthermore,
note that during the whole execution of Algorithm 2, every node v has
either a forwarding rule pointing at its parent p1(v) in T1 or a forwarding
rule pointing at its parent p2(v).

2.8. LOOP-FREE UPDATES AND LOCAL CHECKABILITY 47

Assume for the sake of contradiction that the update of the node v′ is
the first occurrence of a loop in Algorithm 2. W.l.o.g., let this loop be
v′ = v0, v1, v2, . . . , vk, v

′ = vk+1. v0 will only have updated to v1 after
v1 has updated to v2, with v1 only updating to v2 after v2 has updated
to v3, and so on. As thus, for 1 ≤ i ≤ k + 1, vi must be the parent of
vi−1 in T2. This leads to the desired contradiction: As T2 is a tree, no
loop v′ = v0, v1, v2, . . . , vk, v

′ = vk+1 can exist in it. Hence, every update
performed by Algorithm 2 is loop-free.

As every update is loop-free, Algorithm 2 performs a loop-free migration,
but it is left to show that the migration will reach T2. Now, assume, again
for the sake of contradiction, that at some point no node can update any
longer, but the forwarding rules do not form T2. If every node (except for
d) has updated, then the forwarding rules form exactly T2. Thus, let v′ 6= d
be a node which has not updated yet. We can use similar reasoning to the
paragraph above: If v′ has not updated yet, then p2(v′) has not updated
yet, which means in turn p2(p2(v′)) has not updated yet, and so on. As the
graph is finite, this leads to the desired contradiction, as else a loop would
need to exist.

However, the network could still end up in a loop if the new forwarding
rules do not form a tree T2, but contain some loop, due to the error of the
controller. As we incorporated the depth of each node into its label, this
will be prevented:

Lemma 2. Let the situation described in Algorithm 2 be correct, except that
the new forwarding rules do not form a tree. Then, the updates performed
by Algorithm 2 will still be loop-free.

Proof. W.l.o.g., assume for the sake of contradiction that the update of a
node v′ is the first update of Algorithm 2 inducing a loop v′ = v0, v1, v2, . . . ,
vk, v

′ = vk+1. As shown in the proof of 1, this loop must be exclusively
induced by the new forwarding rules, which could be the case now as the new
forwarding rules no longer have to form a tree. However, when updating,
every node also checks if the label for the depth of the tree is smaller than its
own by exactly one. Consider the smallest depth given as part of a labeling
to a node vi in the loop v′ = v0, v1, v2, . . . , vk, v

′ = vk+1. When vi updated,
it checked the depth of its parent to be exactly one smaller than its own.

48 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

However, as vi has the smallest depth in the loop, this is a contradiction:
vi would not have updated.

2.8.2 Beyond a Single Update
We note that the local migration scheme can also be extended beyond updat-
ing from T1 to T2, to, e.g., T3, without waiting for the network to converge
to T2 first. When a node v 6= d receives its label for T3, it waits until it
receives d3(v) − 1 or d from p3(v), and then updates its forwarding rule to
p3(v) and sends d3(v) to all neighbors. This can be iterated, meaning that
when the network is updating to Ti, it can be a mix of forwarding rules from
T1 to Ti−1, but will eventually converge loop-free to Ti.

2.8.3 Further Applications in SDNs
The loop freedom of forwarding rules is just one of many consistency prop-
erties to be considered when performing changes in the behavior of switches
of Software Defined Networks via the controller. We envision that local up-
dates for other consistency properties can be developed as well, e.g., for black
hole freedom, per-packet consistency, waypoint enforcement, and bandwidth
capacity constraints for network flows.

2.9 Flipping the Approach: Reachability Testing

So far, we covered the case of avoiding transient errors that occur during
network updates, assuming the controller (and the network itself) behaves
correctly.

Network failures are inevitable however. Interfaces go down, devices
crash and resources become exhausted. It is the responsibility of the con-
troller to provide reliable services on top of unreliable components and
throughout unpredictable events. Guaranteeing the correctness of the con-
troller under all types of failures is therefore essential for network operations.
Yet, this is also an almost impossible task due to the complexity of the con-
trol software, the underlying network, and the lack of precision in simulation
tools.

Instead, we argue that testing network control software should follow in
the footsteps of large scale distributed systems, such as those of Netflix [7],

2.9. FLIPPING THE APPROACH: REACHABILITY TESTING 49

Amazon [79], Microsoft Azure [75], or Google [12], which deliberately induce
live failures in their production environments during working hours, and
analyze how their control software reacts.

2.9.1 Problem Properties and Algorithms

In this section, we look at how to compute failure scenarios that maintain
the network-wide invariant of reachability, e.g., no loops should be induced.
Reachability is indeed the most fundamental property that any controller
must maintain. If a link (edge) fails, the controller should restore reachabil-
ity provided the physical graph is still connected. We will compute failure
scenarios that optimize two other objectives besides reachability: coverage
and speed. In short, we aim at failing each link at least once, in as few
iterations as possible.

Coverage. While distributed protocols are guaranteed to maintain reacha-
bility as long as the network is connected, SDN controllers do not. As such,
we want to check if the controller can handle the failure of every single link.

A näıve algorithm would be to perform the following test for every link
e. First, check if the network N is still connected without e. Second, if yes,
fail the physical link e and see if routing is still possible between all nodes
in the SDN; if not, inform the network operator that a single link of failure
is in the network.

Coverage + Speed. While the runtime of this näıve algorithm is polyno-
mial, its number of iterations is not acceptable in practice with large net-
works containing thousands of edges. In the best case, even huge networks
should only need a small amount of iterations in average for all testable
edges.

As such, we aim at solving the Connectivity Testing problem:

Problem 7 (Connectivity Testing). Find the minimum number of iterations
k, where each ki is a set of failed edges, that are needed to fail every edge at
least once while still maintaining network connectivity.

Finding a solution for k = |E| is easy (cf. the näıve algorithm), but
minimizing k turns out to be an algorithmically challenging problem. The-
orem 8 proves that optimally solving Connectivity Testing requires at

50 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

least 2 iterations, in the best case; and as many iterations as nodes in the
network, in the worst-case.

Theorem 8. Let N = (V,E) be a connected network where at least one
edge can be failed while maintaining connectivity. Connectivity Testing
needs at least 2 and at most |V | = n iterations. These bounds are sharp.

Proof. We start with the lower bound: If e = (u, v) can be removed, then e
is part of at least one 2-connected component in N . Then, N ′ = (V,E \E′)
is still connected, i.e., there is a path P from v to u in N ′ that joined with
e yields a cycle, i.e., one iteration never suffices. For networks where 2
iterations suffice, consider a clique with at least 4 nodes: First, remove a
spanning tree T , and second, remove all edges except for T .

We now prove the upper bound. Connectivity Testing for a ring of n
nodes needs exactly n iterations. To show that no graph needs more than n
iterations, observe that after failing a spanning tree, at most n−1 edges can
be left to fail. As any of these n− 1 edges will be part of a cycle (else they
could not be failed), at least one edge can be failed per iteration, resulting
in a sharp upper bound.

Algorithms. Observe that networks for which all edges can be failed in 2
iterations are characterized by every iteration containing a spanning tree.
With this in mind, we propose an algorithm, Greedy Killer (see Algo-
rithm 3), for solving Connectivity Testing which first checks for two
edge-disjoint spanning trees and, in the negative case, proceeds to fail all
edges that can be failed in multiple iterations.

Lemma 3. Greedy Killer will fail all edges that can be failed and mark
all the others with weight 1.

Proof. Greedy Killer will never fail an edge that cannot be failed, as it
always leaves a spanning tree.

Assume that there is an edge e = (u, v) that can be failed (and thus
part of a cycle C), but Greedy Killer will not fail e. Now, consider the
network N after Greedy Killer has finished. If there are edges (e.g., e) in
C with weight 1, then there is a spanning tree with weight W that will fail
at least one of these edges e′ that includes all edges from C except e′. Any
spanning tree with weight W or less will fail at least one edge, as the weight

2.9. FLIPPING THE APPROACH: REACHABILITY TESTING 51

1: compute link failures scenarios(N = (V,E))
2: if N has spanning trees T1 = (V,E1), T2 = (V,E2), E1 ∩ E2 = ∅ then
3: fail E \ E1 and fail E \ E2
4: else
5: ∀e ∈ E set link weights of c(e) = 1
6: repeat
7: compute minimum weight spanning tree (MST) T = (V,E′)
8: fail all links E′′ = E \ E′ not in the MST T

9: set sum of new edge failures λ =
∑
∀e∈E′′ c(e)

10: ∀e ∈ E′′ set c(e) = 0
11: until λ = 0 or ∀e ∈ E : c(e) = 0
12: end if

Algorithm 3: Greedy Killer algorithm. It fails all edges in 2 iterations if N
contains at least 2 disjoint spanning trees. Else, at most |V | iterations are needed.

W is less than the sum of all edge weights in the network. Thus, Greedy
Killer would not have been finished, leading to a contradiction.

Identifying all bridges (i.e., edges whose removal disconnect the network)
can also be performed by other algorithms, e.g., [78], but Greedy Killer
will mark them as well, allowing us to inform the network operator about
all single points of failure in the topology.

Lemma 4. In each iteration, Greedy Killer fails the maximum amount
of edges that have not failed yet.

Proof. Consider any fixed iteration. Let E′ be the set of edges e′ which
either cannot be failed or have been failed in a previous iteration. Let
N ′ = (V,E′) and let C1, . . . , Ck be the connected components of N ′ that
are maximal. Any spanning tree (which maintains connectivity) for N will
thus need to contain k − 1 edges from of individual weight 1 to connect
C1, . . . , Ck (which are individually connected by edges in E′), i.e., no MST
can have a weight of less than k − 1. As the weight of any MST will be
exactly k − 1, Lemma 4 holds.

We can now prove that Greedy Killer performs according to specifi-
cation:

Theorem 9. Greedy Killer is correct.

52 CHAPTER 2. ON LOOP-FREE NETWORK UPDATES

Proof. Combining the observation on edge-disjoint spanning trees and from
Lemma 3 leaves only one open question: if Greedy Killer always fin-
ishes after at most n iterations. Note that after one iteration, there are at
most (n− 1) edges still left to fail, as the first iteration failed all edges not
contained in a spanning tree. As the algorithm will fail all failable edges
eventually (cf. Lemma 3), it cannot take more than n iterations: Then,
there would be an iteration where no edge is failed, yielding a contradiction
to Lemma 4.

Running time. Checking if a network has two edge-disjunct spanning trees
can be done in O(n2) time [70]. Kruskal’s MST algorithm takes O(m logn)
time [14]. As such, Greedy Killer runtime is O (nm logn).

2.9.2 Evaluation
The performance of Greedy Killer was evaluated in [74], using 261 topolo-
gies extracted from the Internet Topology Zoo [48] and RocketFuel [57]
topologies. The topologies were pre-processed, removing links whose re-
moval would break network connectivity, i.e., all remaining networks were
2-connected. Most topologies could be failed in 5 or less iterations, 78% in
6 or less iterations, and 91% in 8 or less iterations.

Greedy Killer is optimal most of the time. We now compare the num-
ber of iterations computed by Greedy Killer with the optimal solution,
i.e. the smallest number of iterations to fail all possible links. In a network
N ′ = (V ′, E′) with |V ′| = n′ and |E′| = m′, at least n′−1 edges always need
to stay in N ′ to maintain reachability. Therefore, at most m′−(n′−1) edges
can be failed in each iteration, yielding a lower bound of dm′/(m′ − n′ + 1)e
iterations.

It was shown in [74] that Greedy Killer produces the optimal number
of iterations for at least 138 of the 265 networks (52%).

An open question we are working on is to find an optimal algorithm to
succeed in the minimum amount of iterations possible.

2.9.3 Further Applications in SDNs
Although connectivity is preserved, the failures may not preserve more ad-
vanced properties. For instance, failing entire spanning trees can decrease

2.9. FLIPPING THE APPROACH: REACHABILITY TESTING 53

network capacity so much that congestion starts to appear. Similarly, secu-
rity policies can also legitimately prevent reachability in connected graph.

Fortunately, it is easy to combine Greedy Killer with other network-
wide invariants. For example, to test the congestion-free properties of a
SWAN-like SDN controller [37], we can first monitor the current traffic to
estimate the demands. Then, using Multi-Commodity Flow formulations [1],
we can maximize the set of not yet failed edges in each iteration while
maintaining sufficient network capacity.

Part II

Consistent Migration of Flows

55

3
On Consistency for Flow Updates

Network operators continuously strive for increased performance, especially
to increase bandwidth utilization [41], an aspect we did not consider in the
prior Part I: In Chapter 2, we targeted the topological consistency property
of loop freedom, but not congestion directly. Even though networks provide
a best-effort service, congestion is highly problematic especially in contexts
such as WAN and Data-Centers. As such, there has been (not only) re-
cent interest in mechanisms to provide some sort of consistency for network
updates in the context of bandwidth violations [37,42].

Motivated by applications in data centers and “elephant”-size data flows
in general, congestion during network updates is mostly not considered for
the topological case of updating individual forwarding rules, but rather from
the viewpoint of multi-commodity flow theory: Following this approach, we
will study consistent flow migration in this part of the presented thesis,
where consistency refers to respecting bandwidth constraints on edges.

We start in Section 3.1, where we give a general overview over the models

57

58 CHAPTER 3. ON CONSISTENCY FOR FLOW UPDATES

for consistent flow migration in this part. We then give an overview of the
background and related work in this area in Section 3.2, before summarizing
the current state of the art and our results in tabular form in Section 3.3.

The following four chapters in this part deal with consistent flow mi-
gration under different aspects, but mostly with the following take-away
message: Migrating flows in a consistent way is NP-hard when considering
unsplittable flows, but allowing the flows the be split leads the problem into
the tractable polynomial realm: More specifically, in Chapter 4 we study
the seminal model of SWAN [37], before including waypoint constraints in
Chapter 5, the impact of packets in flight in Chapter 6, and lastly, extending
the idea of augmenting flows to flow migration to new demands in Chapter
7.

3.1 Models for Consistent Flow Migrations

Similar to the previous part, we will model a network as a directed connected
graph with edge capacities, where the nodes represent the switches/routers.
Each flow in the network has a source and a destination, with the packets
being tagged for the respective flow. As such, unlike in the previous part,
packets heading for the same destination arriving at some node can then
take different paths.

Furthermore, all update mechanisms in the following chapters will im-
plicitly use the 2-phase commit by Reitblatt et al. [69] as follows: Before the
update, all nodes will have forwarding rules for the flows in their old state.
Then, all affected nodes will install rules for the flows in their new state. As
soon as all these nodes acknowledged the installation of the new rules, the
sources can be informed to tag their flow packets with the new rules.

However, even if the old and new rules are without congestion, there can
still be bandwidth violations during the update as shown in Figure 3.1: Due
to asynchrony, source s2 starts sending packets even though the flow from
s1 has not updated to its new path yet. In this case, an easy fix is to update
s1 first, and then s2. We will later see examples where consistency can only
be maintained by splitting flows, or even not at all.

In the following chapters, we will essentially consider three different mod-
els of consistency for flow migration. For ease of accessibility, and due to
small subtleties in the problem formulation, we give a formal model in each

3.1. MODELS FOR CONSISTENT FLOW MIGRATIONS 59

(a) Initial network with
one flow from s1 to t.

(b) If the lower flow is
inserted first, there will
be congestion.

(c) Desired flow place-
ment with two flows of
two commodities.

Figure 3.1: This figure depicts a small network to introduce the concept of
consistency. In the above examples, all flows have a size of one and all edges have
a capacity of one as well. If the SDN controller desires to migrate the network from
Subfigure 3.1a to Subfigure 3.1c in order to add a flow for the second commodity
outgoing from s2, then the commodity outgoing from s1 has to be moved first.
Else, due to asynchrony, s2 could start a flow before the last edge is free, causing
congestion (Subfigure 3.1b).

of the following four chapters. Nonetheless, we give a comparing overview
here:

In Chapter 4, we use the seminal model introduced by SWAN [37], who
implemented and evaluated the consistent migration of flows in SDNs with
multiple production data center networks across three continents with tens
of thousands of servers. In their model, the sum of the flows on each edge
should not violate the edge’s capacity, whether or not each flow is in its old
or new state. As thus, they capture the effects of flows congesting other
flows.

In Chapter 5, we let flows only use their old or new paths, but no mix of
the two and no intermediate paths. As such, waypoints and service chains
can easily be respected, but the solution space is strongly restricted opposed
to the model in Chapter 4. Still, it may be the most pleasant model from
an operator’s point of view, as no additional paths need to be created and
most updates only revolve around changing the split-ratio of flows at their
sources.

The model of Chapter 6 is situated in the solution space between the
models of Chapter 4 and 5. We lay our new focus on packets in flight by
considering edge latencies, extending consistency to losslessness. Specifi-
cally, we also cover the impact of flows congesting themselves, opposed to

60 CHAPTER 3. ON CONSISTENCY FOR FLOW UPDATES

only inter-flow congestion.
To give a rough overview, updates consistent in the model of Chapter

5 are consistent in both other models, and consistency in Chapter 6 im-
plies consistency in Chapter 4, but the reverse does not have to be true,
respectively.

In the last Chapter 7 we relax the update problem, as we will not migrate
to a specific new multi-commodity flow, but just to new demands. For the
case of a single destination (or, source), this flexibility allows us to greatly
reduce the number of updates needed in the worst case, from an unbounded
to a polynomial amount. Interestingly, update problems in this model are
always possible in a consistent way, but an extension to multiple destinations
is not viable.

3.2 Related Work and Background

The two fields most related to our work are network flow optimization prob-
lems in general and consistent flow migration in software defined networks,
which we cover in the following two subsections.

Network Flow Optimization Problems

Since the seminal work by Ford and Fulkerson [21], there has been a vast
array of different methods to deal with (maximum) flow problems: Aug-
menting paths, linear/integer programming, approximation algorithms [32],
the preflow-push method, Dinic’s algorithm [15], or the recent algorithm
of Orlin [65], to name just the more popular ones. These methods mainly
deal with maximizing the flows according to some objective function, and
as thus, are aimed at calculating the desired flows, but not describing how
to migrate to them in a consistent fashion. We refer to the books of Ahuja
et al. [1] and Cormen et al. [14] for a comprehensive overview.

Splitting flows Splitting flows is usually done in the context of generating
a set of unsplittable flows whose union is the original splittable flow, to de-
ploy them in MPLS or OpenFlow networks: Approximating the minimum
number of unsplittable flows needed is an NP-hard problem however [33].
In a similar fashion, maximizing a k-splittable flow is NP-hard to approxi-
mate as well [6]. Splitting flows can lead to packet reordering problems in

3.2. RELATED WORK AND BACKGROUND 61

computer networks, which needs to be addressed in practice, cf., e.g., [43].
Beyond hash based flow splitting, major techniques are flow(let) caches and
round-robin splitting, cf. [35].

Software Defined Networks & Flow Migration Consistency

Dynamically changing the flow of traffic has also been considered in tradi-
tional networks [4, 28], but it was not before SDNs that consistency during
the network update was studied extensively in the context of flow migration.

Consistent Network Updates for Flows The work by Reitblatt et
al. [68] introduced a seminal form of consistency via 2-phase commit, called
per-packet / per-flow consistency: By stamping each packet or flow with a
version number, denoting old or new forwarding rules, one can ensure that
a packet/flow is always routed according to just one set of rules. While
their work prevents many effects that induce congestion, it is not lossless,
cf. Subfigures 3.2a and 3.2b.

Dionysus [42] tries to find a consistent migration ordering by greedily
searching through a dependency graph of possible migration steps. In their
model, flows are not allowed to take intermediate paths and may only mi-
grate as a whole to the desired path, see the Subfigures 3.2b,3.2c. They
show the corresponding decision problem to be NP-hard under switch mem-
ory constraints. If no solution is found, some flows are rate-limited for
congestion-free migration of the remaining flows. The corresponding MIP-
formulation was considered in [55], and further local dependency resolving
in [84].

The approach of SWAN [37] is twofold: First, if one guarantees that a
fraction s of capacity (slack) is free on each link for the old and new flow,
then one can migrate congestion-free in d1/se − 1 steps. E.g., if each edge
never exceeds 95% capacity in both the current and the desired network
state, it takes 19 steps to migrate at most. Should background traffic exist
in the network, it can be rate-limited during migration, and restored to
its normal state after. Second, they use binary search over the number of
steps to find the optimal solution, i.e., they check with linear programming
if a solution with x steps exists. However, they note that this is costly in
practice for a long sequence of LPs. This search also works if there is no
slack on some edges, but then the computation is not guaranteed to halt

62 CHAPTER 3. ON CONSISTENCY FOR FLOW UPDATES

when no consistent migration exists. We refer to the Subfigures 3.2c,3.2d for
examples. The ideas of SWAN [37] were also used in a data center setting
in [50].

Zheng et al. [86] take an orthogonal approach, and fix the number of x
intermediate update states. For given x, they give an MIP minimizing the
maximum transient congestion, and also consider an LP-based approxima-
tion: However, if intermediate paths are allowed for the flows, the LP is of
exponential size.

Also in the line of consistent flow updates, [66] handles dynamic flow
arrivals, and [56] allows for user-specified deadlines of flow movements via
MIP or an LP-based heuristic.

The main difference of the above works to ours is the following: They
cannot decide if a consistent flow migration exist in general, as only MIP/LP-
based approaches are considered, which only check if a solution of some x
steps exists. As thus, deciding if a solution exists can only be done in the
restricted case where the number of flow movements is arbitrarily limited.
An overview of the above work and ours is also shown in Table 3.2 in the
next Section, where we will also discuss the flow migration complexity in
general.

As discussed shortly before in the loop-free part, Mizrahi et al. [60–63]
tackle the problem of asynchrony of network updates: As network updates
are installed in a distributed fashion in the network’s routers, the atomicity
of a network update cannot be guaranteed. The problem goes beyond stan-
dard clock synchronization, as timing the exact injection of rules is nearly
impossible in the hardware deployed nowadays. Thus, they propose mech-
anisms called TIMEFLIPs / timed-based consistent updates to ensure that
rules are installed when they should be installed: In the first, time is used
as an alternative to version numbering, while in the second, various meth-
ods are employed to ensure accurate time synchronization. They also show
with game-theoretic arguments, that for optimal traffic utilization, it can
be needed on some edges to swap two flows.

In specialized environments or topologies, such as Data-Centers, one can
also take an orthogonal approach to network updates, by scheduling all the
traffic, eliminating the need for the migration of flows [31, 44, 67]. Model
checking is also used for consistent updates, but cannot handle bandwidth
guarantees yet [59,64].

3.2. RELATED WORK AND BACKGROUND 63

(a) When migrating from FA to F ′A, the 2-phase commit method [68] will migrate
the network in this example consistently in the model of [37]. This also holds for
multiple commodities, as long as only one commodity is considered for migration.
In both the non-mixing and lossless model introduced in Chapters 5 and 6, this
update would be inconsistent, as packets can be lost due to congestion on the lower
middle edge.

(b) Example where Dionysus [42] will migrate congestion-free by first migrating
flow FB to F ′B and then FA to F ′A. However, the method from [68] might not
migrate congestion-free, if FA migrates to F ′A before FB migrates to F ′B due to
asynchrony.

(c) Example where SWAN [37] can migrate congestion-free by temporarily storing
a flow on the topmost link. Dionysus [42] will not find a solution without rate-
limiting one flow to zero, as intermediate paths are not considered.

(d) Example where the LP-method from SWAN [37] will keep computing forever
until halted somehow manually or by a threshold of steps, since it is not possible
to migrate congestion-free without rate-limiting.

Figure 3.2: Example networks where the methods of [37, 42, 68] do not succeed,
due to violating congestion-freedom, rate-limiting flows, or by not halting their
computation. All edges in the four examples have a capacity of one and all flows
have a size of one. Initial flows are drawn solid, the new ones dashed.

64 CHAPTER 3. ON CONSISTENCY FOR FLOW UPDATES

3.3 State of the Art and Results

We already discussed related flow migration algorithms in the previous sec-
tion, an overview of their and our work can be found in Table 3.2. The
complexity of the consistent flow migration problem was not yet considered
though in our coverage. Besides Dionysus [42] showing that it is NP-hard
to decide if a consistent migration exists for splittable flows under memory
restrictions, related work has not considered the decision problem in gen-
eral: Using the Partition problem, Jin et al. [42], and later [56, 86] showed
that finding the fastest schedule without memory restrictions is NP-hard.

We prove even stronger results, namely that already the general decision
problem is NP-hard, though our Partition proofs are similar in principle.
For the case of intermediate paths, our proof reduction via (MAX) 3-SAT
also extends to flows of unit size, and is also the only result in this area
giving inapproximability thresholds, cf. Section 4.4. A further overview is
provided in Table 3.1.

Flow
migration
problem

Interm.
Paths

Consistency Model Decision problem hardness

Unsplittable
Yes SWAN [37] NP-hard [4.2]

Lossless (fixed &
arbitrary latencies)

Proof construction from [4.2]
can be used

No
Non-Mixing NP-hard [5.3]SWAN [37]

Lossless (fixed &
arbitrary latencies)

Proof construction from [5.3]
can be used

Splittable Yes
SWAN [37] P [4.3]

Lossless (fixed l.) NP-hard [6.6]
Lossless (arbitr. l.) P [6.5]

No Non-Mixing P [5.4]

Table 3.1: Table summarizing our decision problem results for flow migration.
We note that the non-mixing model does not allow intermediate paths.

3.3. STATE OF THE ART AND RESULTS 65

Ref. Approach (Un-)splittable
model

Int.
Paths

Computation # Updates Complete

Consistency model of SWAN [37], but restrict each flow to move only once

[68]
Install old and new rules,
then switch from old to
new

Both No Polynomial 1 No bandwidth
guarantees

[42]
Greedy traversal of de-
pendency graph

Both No Polynomial Linear No (rate-limit
flows to guaran-
tee completion)

[55]
MIP of [42] Both No Exponential Linear Yes

Further practical extensions

[84]
Extends approach of Dionysus [42] with local dependency resolving

Consistency model of SWAN [37], general setting

[37]
Partial moves according
to free slack capacity s

Splittable No Polynomial d1/se − 1 Requires slack
on flow edges

[86] Mininmize transient
congestion for fixed x
updates via LP

Both No Polynomial Any x ∈ N Approx. min.
trans. cong.
> 0 by log n
factorYes Exponential

[86]
... via MIP Both Both Exponential Any x ∈ N For any given x

yes, but cannot
decide in gen-
eral

[37]
Binary search of interme-
diate states via LP

Splittable Yes Polynomial
in # of
updates

Unbounded Cannot decide
if migration not
possible

C.4 Create slack with inter-
mediate states, then use
partial moves of [37]

Splittable Yes Polynomial Unbounded Yes

C.7 Use augmenting flows to
find updates

Splittable, 1
dest., paths

not fixed

Yes Polynomial Linear Yes

Further practical extensions

[50]
Extends approach of SWAN [37] in a data center setting

[66]
Considers reconfiguration for dynamic flow arrivals

[56]
User-specified deadlines and requirements via MIP (or LP heuristic)

Non-mixing consistency model, each flow-packet only on old or new path
C.5 Split unsplittable flows

along old and new paths
2-Splittable No Polynomial Unbounded Yes

Lossless migration
C.6 Find intermediate paths,

use partial moves of [37]
Temporarily

splittable
Yes Polynomial Unbounded Yes (arbitrary

latencies)
C.7 Use augmenting flows to

find updates
Splittable, 1
dest., paths

not fixed

Yes Polynomial Polynomial Yes

Table 3.2: Overview of our algorithms and the related work from Section 3.2

4
Consistent Flow Migration

In this chapter, we begin our study of the consistent migration of flows:
Given a current and a desired network flow configuration, we give the first
polynomial-time algorithm to decide if a consistent migration in the seminal
model of SWAN [37] is possible (Section 4.3). All known approaches will
resort to breaking consistency by, e.g., dropping flows even if this is not
necessary. The splittable flow consistency model of SWAN [37] is presented
in Section 4.1, along with some notation and preliminaries for this chapter.
Furthermore, we show that if flows have to be unsplittable, or integer or
unit size, the corresponding decision problem is NP-hard (Section 4.2).

In a similar line of thought, we investigate the problem of consistently
increasing the flow of traffic between a source and a terminal node, while
keeping all other traffic flows intact. Current methods such as RSVP-TE
consider unsplittable flows and assign weights according to the importance
of the flow. Then, less important flows are removed until there is enough
capacity, and finally the desired flow is added. We can show that deciding

67

68 CHAPTER 4. CONSISTENT FLOW MIGRATION

what flows to remove is an NP-hard optimization problem with no PTAS
possible unless P = NP (Section 4.4). If flows are splittable, we show how
the maximum traffic increase can be approximated arbitrarily well: We
can calculate in polynomial time (independent of the chosen approximation
ratio) a viable new flow placement, s.t. i) the demand increase for the desired
commodity is within (1 − ε) of the maximum, ii) the demand of all other
commodities is unchanged, and iii) consistent migration is possible (Section
4.5).

4.1 Model

We start by modeling a network as a directed graph, with a flow of a com-
modity respecting flow conservation, demand satisfaction, and capacity con-
straints:
Definition 6. Let G = (V,E), with |V | = n and |E| = m, be a simple
directed graph. For every node v ∈ V denote the set of outgoing edges by
out(v) and the set of incoming edges by in(v). A network N is a pair (G, c),
where c : E → R+ is a function that assigns a capacity c(e) to each edge
e ∈ E. Also, a commodity K in N consists of a pair (s, t) where s and t
are nodes in G. We call a map F : E → R≥0 a (single-commodity) flow for
K if the following conditions are satisfied:

• ∀v ∈ V \ {s, t} :
∑

e∈out(v) F (e) =
∑

e∈in(v) F (e),

•
∑

e∈out(s) F (e) = dF =
∑

e∈in(t) F (e),
• ∀e ∈ E : F (e) ≤ c(e),

where dF is called the demand of K (w.r.t. F). We also call dF the size of
F .

Note that this standard formulation allows cycles to exist where the flow
of a commodity is greater than zero on each edge, which can however be
easily removed by flow decomposition.
Definition 7. We call a single-commodity flow F for commodity K = (s, t)
with demand dF cycle-free if there is no cycle C in G, s.t. ∀e ∈ C : F (e) > 0.

For ease of notation, all flows are considered to be cycle-free from now
on unless noted otherwise. Since we study the migration of flows between
different nodes, we extend the flow definition to multiple commodities.

4.1. MODEL 69

Definition 8. We call a tuple K := (K1, . . . ,Kk) of commodities a multi-
commodity. Let F1, . . . , Fk be single-commodity flows for K1, . . . ,Kk, re-
spectively. Then we call the tuple F := (F1, . . . , Fk) a multi-commodity
flow (for K) if the following condition holds: ∀e ∈ E :

∑k

i=1 Fi (e) ≤ c(e).

In later sections, we will also study flows that cannot be split up among
different paths or are of integer value, i.e.:

Definition 9. We call a single-commodity flow F for commodity K unsplit-
table if there is a simple path from s to t such that F assigns a value greater
than zero only to edges along the path. Similarly, we call a multi-commodity
flow unsplittable if all its single-commodity flows are unsplittable.

Definition 10. We call a single-commodity flow F for commodity K integer
if F assigns only integer values. Similarly, we call a multi-commodity flow
integer if all its single-commodity flows are integer.

Lastly, we define the term consistent migration formally. We follow the
definition as used in SWAN [37]. Due to asynchrony, when (parts of) mul-
tiple flows are being simultaneously migrated to other parts of the network,
one cannot control in which order the flows migrate: Even if the flows in the
network before and after the migration are congestion-free, congestion can
occur during migration. Moreover, rate-limiting/dropping is only allowed if
it is required by the flow. We refer to Figure 4.1 for further illustration of
Definition 11:

Definition 11. Let N be a network and let Kall = (K1, . . . ,Kk) be a multi-
commodity in N . Let F ,F ′ be multi-commodity flows for K,K′ ⊆ Kall,
respectively. We call the tuple U = (N,F ,F ′) a consistent migration update
if the following condition holds:

∀e ∈ E :
∑

1≤i≤k
max

(
Fi (e) , F ′i (e)

)
≤ c (e) (4.1)

where we assume Fi(e) = 0 (respectively, F ′i (e) = 0) if Ki /∈ K (respectively,
Ki /∈ K′). We call a sequence ((N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F ′)) of
consistent migration updates a consistent migration if for each commodity
the demand is monotonically increasing or decreasing over all elements of
the sequence F ,F1,F2, . . . ,Fj ,F ′.

70 CHAPTER 4. CONSISTENT FLOW MIGRATION

(a) Old/start flow placement (b) New/desired flow placement

(c) When migrating in one step, the
capacity constraints for each edge
might be violated, e.g., for (V3, V4).

(d) However, with this intermediate
placement, one can migrate conges-
tion free in two steps.

(e) If half of FB migrates first due to
asynchrony, then the edge capacity of
3 of (V3, V4) is not violated.

(f) The same holds if half of FA mi-
grates first due to asynchrony, the
edge capacity of 3 is not violated.

Figure 4.1: In this example, we want to migrate consistently from Subfigure 4.1a
to Subfigure 4.1b. Each edge has a capacity of 3 and the flows FA, FB have a size
of 2 each. If one migrates in one step, then congestion could occur. E.g., as shown
in Subfigure 4.1c, FB might migrate before FA, inducing congestion on (V3, V4).
However, if we add an intermediate step as shown in Subfigure 4.1d, congestion
cannot occur, see Subfigure 4.1e and 4.1f.

4.2. HARDNESS OF UNSPLITTABLE FLOW MIGRATION 71

4.2 Hardness of Unsplittable Flow Migration

We begin studying consistent migration of flows by considering unsplittable
flows. How hard is it to decide if it is possible to migrate consistently at all
with unsplittable flows?

Problem 8. Let N be a network and F ,F ′ be unsplittable multi-commodity
flows in N for multi-commodities K,K′ ⊆ Kall. Is there a consistent migra-
tion (N,F ,F1), . . . , (N,Fj ,F ′) s.t. all flows from F1 to Fj are unsplittable?

Theorem 10. Problem 8 is NP-hard.

We first describe the intuition of our proof via reduction from 3-SAT [29].
Consider the following setting: Parts of two unsplittable flows FA, FB need
to be swapped, but the only way to do so is by temporarily storing one on a
helper path P . However, that helper path P is blocked by other unsplittable
flows, which need to be temporarily stored in other parts of the network as
well. Storing these unsplittable flows however requires solving the 3-SAT
problem, as each of them can be stored in up to three variable gadgets (one
can think of them as clauses). These variable gadgets can be set to true or
false – and if and only if one finds a variable assignment that satisfies each
clause, then the path P can be freed up temporarily to allow swapping parts
of FA, FB . An illustration with a small unsatisfiable instance can be found
in Figure 4.2.

Proof. Our proof is a reduction from instances I of the NP-hard problem
3-SAT. For ease of notation, we assume exactly three pairwise distinct vari-
ables per clause [29]. Let I consist of the variables x1, . . . , xk, the corre-
sponding literals X1, X1, . . . , Xk, Xk, k ≥ 3, and clauses C1, . . . , Ch, h ≥ 2.

Construction of the new instance I ′

We construct an instance I ′ of Problem 8 as follows: We add the nodes
SA, SB , S,A,B, T, TA, TB and edges (SA, S), (SB , S), (S,A), (S,B), (A, T),
(B, T), (T, TA), and (T, TB). For each clause Cj with the contained variables
xj1 , xj2 , xj3 we add the nodes Cj,S , Cj,T , Cj,P,0, Cj,P,1, Cj,xj1 ,0, Cj,xj1 ,1,
Cj,xj2 ,0, Cj,xj2 ,1, Cj,xj3 ,0, Cj,xj3 ,1.

Also, the three edges (Cj,S , Cj,P,0), (Cj,P,0, Cj,P,1), (Cj,P,1, Cj,T), and the
nine edges (Cj,S , Cj,xj1 ,0), (Cj,xj1 ,0, Cj,xj1 ,1), (Cj,xj1 ,1, Cj,T), (Cj,S , Cj,xj2 ,0),
. . . . For each variable xr, appearing in the u clauses Crt1 , . . . , Crtu

as

72 CHAPTER 4. CONSISTENT FLOW MIGRATION

a positive literal Xr and in the w clauses Crf1
, . . . , Crfw

as a negative
literal Xr, we add the nodes xr,S , xr,T and furthermore also the edges
(xr,S , Crt1 , xr, Crt1 ,xr,1, Crt2 ,xr,0), . . . , (Crtu ,xr,1, xr,T) as part of the false
path for xr and, as part of the true path for xr, the edges (xr,S , Crf1 ,xr,0),
(Crf1 ,xr,1, Crf2 ,xr,0), . . . , (Crfw ,xr,1, xr,T). We also add a path P from S to
T by adding the edges (S,C1,P,0), (C1,P,1, C2,P,0), . . . , (Ch,P,1, T). All edges
in instance I ′ have a capacity of exactly one.

We now construct the desired multi-commodity flows F ,F ′, both with
the commodities (all of them having a demand of one) (SA, TA), (SB , TB),
(C1,S , C1,T), . . . , (Ch,S , Ch,T), (x1,S , x1,T), . . . , (xk,S , xk,T).
All flows in F ,F ′ are unsplittable and have a size of exactly one. We begin
with two flows in F : We start by adding flows FA from SA to TA via A
and FB from SB to TB via B. We add nearly the same two flows to F ′:
Flows F ′A from SA to TA via B and F ′B from SB to TB via A. We note that
the only other option for these flows would be to route them via the nodes
C1,P,0, . . . , Ch,P,1. The following flows are added both to F and F ′: For
each variable xr, we add a flow Fxr from xr,S to xr,T via their true path.
By construction, Fxr can only be routed along the true or false path of xr.
For each clause Cz, we add a flow FCz from Cz,S to Cz,T via Cz,P,0 and
Cz,P,1. By construction, the only other routing options for FCz would be
along a part of a true/false path for one of its contained variables. Consider
a clause Cz that contains the variable xr as a positive literal. Then, the flow
FCz can (partly) use the false path of variable xr if and only if Fxr is routed
along the respective true path. An analogous statement is true for variables
that are contained as a negative literal. Thus, the flow of a clause can be
(temporarily) routed along a path different from its initial path if and only
if there is at least one variable flow which is contained in the clause as a
positive literal and routed along the true path, or contained as a negative
literal and routed along the false path. In other words, if and only if the
variable assignment given by the variable flow routing satisfies the above
clause.

Solving any instance of 3-SAT by unsplittable flow migration
What is left to show is that I is satisfiable if and only if we can migrate
consistently from F to F ′ in I ′ with unsplittable flows. Note that the
construction of I ′ can be done in polynomial time. We start by assuming
that I is not satisfiable. Then, there is no variable assignment s.t. all clauses

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 73

can be satisfied. I.e., for every variable assignment, at least one clause is not
satisfied, meaning that no matter if each variable flow Fxr chooses a true or
false path, at least one clause flow FCz has to choose its initial routing path
at each moment of a supposed consistent migration. Thus, at each moment
the path P is blocked for flows originating from SA and SB , meaning that
the in/outgoing edges from A and B are always at full capacity. Hence, the
flows FA and FB cannot migrate consistently to their new placements F ′A
and F ′B . Let us now assume that I is satisfiable. Then, there is a variable
assignment s.t. every clause is satisfiable. If we migrate the variable flows
according to this assignment along their true/false paths, every clause flow
can migrate away from the path P . Thus, we can migrate, e.g., FA to the
path P , then migrate FB to its desired placement F ′B , and then migrate FA
to its desired placement F ′A. Afterwards, the clause flows can migrate to
their initial placement, followed by the variable flows.

We note that the construction only uses capacities and flows of size one.
Thus, we can extend Theorem 10 to integer flows:

Problem 9. Let N be a network and let F ,F ′ be integer multi-commodity
flows in N . Is there a consistent migration (N,F ,F1), (N,F1,F2), . . . , (N,
Fj ,F ′) s.t. all flows from F1 to Fj are integer (of unit size)?

Corollary 6. Problem 9 is NP-hard.

4.3 Consistent Migration for Splittable Flows

As we saw in the last section, it is NP-hard to decide if consistent migration
is possible if flows have to be integer or unsplittable. Thus, we turn our
attention to splittable flows in this section. As we show, this relaxed problem
is actually solvable in polynomial time:

Problem 10. Let N be a network and let F ,F ′ be multi-commodity flows
for multi-commodities K,K′ ⊆ Kall. Is there a consistent migration from F
to F ′?

Theorem 11. Problem 10 is in P .

For better readability, we first present some preliminaries before actually
proving Theorem 11. First, consider a special case of the problem where

74 CHAPTER 4. CONSISTENT FLOW MIGRATION

Figure 4.2: An example for (x1) ∧ (¬x1). All edges have a capacity of one and
all flows have a size of one. Note that the formula is not satisfiable. For the green
flow FA and the blue flow FB to swap (parts of) their paths, one of them needs to
migrate to the path S,C1,P,0, C1,P,1, C2,P,0, C2,P,1, T above them. This requires
temporary migration of the two red flows FC1 , FC2 along the variable gadget, since
else the path will not be free. However, the violet flow FX1 will always block one
of the temporary migration options of one of the red clause flows, no matter where
the violet flow migrates to. Thus, it is not possible to swap the green and the blue
flow in this instance.

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 75

K = K′ and the demand of each commodity does not differ between F
and F ′. We note that if a commodity only exists in either K or K′ or
has a higher demand in one of the two multi-commodity flows, then one
could drop the corresponding excess before migration or insert it afterwards
without violating monotonicity.

Problem 11. Let N be a network and let F ,F ′ be multi-commodity flows
for the same multi-commodity K s.t., for each K ∈ K, the demand of K is
the same w.r.t. F as w.r.t. F ′. Is there a consistent migration from F to
F ′?

We now introduce the concept of slack, i.e., an edge is not used at full
capacity by a (multi-commodity) flow:

Definition 12. Let F = (F1, . . . , Fk) be a multi-commo-dity flow in N . We
say that an edge e in N has slack w.r.t. F if the following condition holds:∑

1≤i≤k Fi (e) < c (e). If for a consistent migration update U = (N,F ,F ′)
an edge e has slack w.r.t. F ′, but not w.r.t. F , then U induces slack on e.

Also, note that if every edge is used at full capacity (i.e., without slack),
then consistent migration is not possible for the above problem if F 6= F ′, as
any consistent migration update to a multi-commodity flow F∗ 6= F would
violate the capacity constraint of some full edge:

Observation 1. Let N be a network and let F 6= F ′ be multi-commodity
flows in N for the same multi-commodity K s.t. for each commodity K ∈ K
the corresponding flows in F ,F ′ have the same size. If every edge is used
at full capacity in F and F ′, then consistent migration is not possible.

On the other hand, if every edge that needs to change its flows has slack,
then one can migrate consistently, cf. [37]:

Observation 2. Let N be a network and let F ,F ′ be multi-commodity flows
for K s.t. for each commodity K ∈ K the corresponding flows in F ,F ′ have
the same size. If every edge where F and F ′ differ has slack w.r.t. both F
and F ′, then consistent migration is possible.

This gives rise to the following question: What happens when an edge
does not have slack w.r.t. F or F ′, but not all edges are used at full capacity
– is consistent migration possible?

76 CHAPTER 4. CONSISTENT FLOW MIGRATION

The first step to answering this question is to identify the edges which
will never admit slack (after any consistent migration) by Algorithm 4. Note
that edges which never admit slack do not change their flow assignment in
any consistent migration update, this would violate Condition (4.1).

Input: A network N and a multi-commodity flow F for a multi-commodity K.
Output: A multi-commodity flow F∗ for K s.t. a) for each commodity K ∈ K
the corresponding flows in F ,F∗ have the same size and b) only the edges, which
never admit slack (after any consistent migration from F), have slack w.r.t. F∗.

1. Pick an edge (u, v) = e1 ∈ E without slack.
2. Pick a commodity K ∈ K used on edge e1. We denote the corresponding

flow as F . Let s∗ be some positive real number s.t. 1) for all edges which
have slack, s∗ is smaller than the minimal slack of these edges and 2) for all
edges e with F (e) > 0, s∗ < F (e).

3. Outgoing from the endpoint v of e1, perform a BFS, where a node v′′ is a
child-node of a node v′, if a) there is an edge e = (v′, v′′) with F (e) > 0 or
b) there is an edge (v′′, v′) with slack.

4. If the BFS from step 3 visits the node u, then divide the set of edges traversed
in the corresponding node sequence (v, . . . , u) into 1) the set EK which
contains the edges selected by condition a) in step 3 and 2) the set Es which
contains the edges selected by condition b) from step 3. For all edges in
EK and for e1, reduce the flow of commodity K by s∗, and for all edges in
Es, increase the flow of commodity K by s∗. Remove any cycling subflows,
should they exist.

5. If the BFS from step 3 does not visit the node u, then repeat steps 2 to 4
for the remaining commodities used on the edge e1, until a BFS from step
3 visits node u or all commodities have been chosen.

6. Repeat steps 1 to 5 for all other edges without slack.
7. Repeat steps 1 to 6 until either all edges have slack or until steps 1 to 6 were

performed without inducing any new slack on an edge that had no slack
before.

Algorithm 4: Creation of slack

Lemma 5. Algorithm 4 produces a correct output, i.e., all edges with po-
tential slack after a consistent migration are identified. The runtime is in
O(|K||E|3), i.e., polynomial.

To prove Lemma 5, we need a lemma which establishes a relation between

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 77

the existence of a consistent migration update which induces slack and step
4 of Algorithm 4.
Lemma 6. Let N be a network and let F be a multi-commodity flow for
K. Let e = (u, v) be an edge without slack w.r.t. F . Then the following are
equivalent:

(i) There exists a consistent migration update (N,F ,F ′), where F ′ is a
multi-commodity flow for the multi-commodity K s.t. for each com-
modity K ∈ K the corresponding flows in F ,F ′ have the same size
and e has slack w.r.t. F ′.

(ii) There is a commodity K ∈ K with a positive flow of K on e w.r.t. F
and a sequence of nodes (v = v1, v2, . . . , vj = u) s.t. for each 1 ≤ i ≤
j − 1 there is a) an edge (vi, vi+1) with a positive flow of commodity
K w.r.t. F or b) an edge (vi+1, vi) with slack w.r.t. F .

Before proving Lemma 6, we first illustrate it (and the steps 3 and 4 of
Algorithm 4) in Figure 4.3.

Proof. We begin by showing that (i) implies (ii). LetK ∈ K be a commodity
where for the corresponding flows F ∈ F and F ′ ∈ F ′ holds: F (e) >
F ′(e). Such a K = (s, t) exists as the consistent migration update (N,F ,F ′)
induces slack on e. We denote the set of all edges eK with F (eK) > 0 by
EK (with e ∈ EK) and the set of all edges es with slack w.r.t. F by Es.
Furthermore, we denote the set of all edges e− with F (e−) > F ′(e−) by E−
and the set of all edges e+ with F (e+) < F ′(e+) by E+. Note that all edges
in E− are contained in EK and all edges in E+ are contained in Es.

Let V e be the set of all nodes v′ for which there exists a sequence of
nodes (v, . . . , v′) with the properties specified in (ii). If u ∈ V e, then (ii)
follows. Thus, assume u /∈ V e.

Let Ein be the set of all edges (x, y) with x /∈ V e and y ∈ V e. Let Eout be
the set of all edges (x′, y′) with x′ ∈ V e and y′ /∈ V e. For any (x, y) ∈ Ein,
it holds that ein /∈ Es, as otherwise x ∈ V e by the definition of V e. This
implies (x, y) /∈ E+. Analogously, for all edges (x′, y′) ∈ Eout, it holds that
(x′, y′) /∈ Ek. This implies (x′, y′) /∈ E−. Set ΦF :=

∑
ein∈Ein

F (ein) −∑
eout∈Eout

F (eout).

Note that ΦF =
∑

ve∈V e

(∑
e′∈in(ve) F (e′)−

∑
e′∈out(ve) F (e′)

)
, which

implies the following by the defining conditions of a flow: If s ∈ V e, t /∈ V e,

78 CHAPTER 4. CONSISTENT FLOW MIGRATION

Figure 4.3: In this example, all edges have a capacity of one and the solid red
flow of the single commodity has a size of one along each of the two paths. For
an unobstructed view, other commodities are left out. To create slack on e, parts
of the red flow migrate to the edges denoted with e+, as shown in the dashed red
arrows (see (i) of Lemma 6 and increasing flow in step 4 of Algorithm 4). The
dotted blue path from v to u is found via step 3 of Algorithm 4 and corresponds to
(ii) of Lemma 6. We note that the edges in e− and e+ do not have to alternate in
the path from v to u. E.g., there could be also multiple e+ or e− edges in a row.

then ΦF = −dF . If s /∈ V e, t ∈ V e, then ΦF = dF . Otherwise, ΦF = 0. We
have analogous statements for F ′ and since dF = dF ′ , we obtain ΦF = ΦF ′ .
On the other hand, ΦF ′ − ΦF =

∑
ein∈Ein

(F ′(ein)− F (ein))
+
∑

eout∈Eout
(F (eout)− F ′(eout)). As shown above, all edges in Ein are not

in E+.
Thus, every summand in the first sum is ≤ 0. Analogously, since all

edges in Eout are not in E−, every summand in the second sum is ≤ 0.
Furthermore, since e ∈ Ein and F (e) > F ′(e), there is a negative summand
in the first sum. Hence, ΦF ′ < ΦF , contradicting ΦF ′ = ΦF . Therefore,
u ∈ V e which shows that (i) implies (ii).

It is left to show that (ii) implies (i). Let s∗ be some positive real number
s.t. 1) for all edges which have slack w.r.t. F , s∗ is smaller than the minimal
slack of these edges and 2) for all edges e′ with F (e′) > 0, s∗ < F (e′). Let
E1 be the union of the set {e} and the set of edges described by a) in (ii)
and E2 the set of edges described by b) in (ii).

Now define F ′ as follows: For all commodities in K except K, take the

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 79

corresponding flow from F . For K, set

F ′ (ē) :=

{
F (ē)− s∗ if ē ∈ E1,
F (ē) + s∗ if ē ∈ E2,
F (ē) otherwise.

(4.2)

By the definition of s∗, no capacity constraints will be violated by F ′. For
all nodes which are not in the sequence given in (ii), the flow conservation
condition holds w.r.t. F ′, as no ingoing or outgoing flows have been changed.
For each node which is in the sequence given in (ii), the (two) incident edges
with changed flow F ′ (compared to F) cancel each other out regarding flow
conservation. If the nodes s and t are not in the sequence given in (ii),
then dF ′ = dF holds. W.l.o.g., let s be in the sequence given in (ii): Then
there could be a cycle of commodity K but increasing the outgoing flow of
commodity K for s. In that case, we transform F into a cycle-free flow by
subtracting the cycling “subflows” from the affected edges. This does not
violate flow conservation or capacity constraints and ensures dF ′ = dF .

Since we only change the flow of one commodity from F to F ′, Condition
4.1 is satisfied because no capacity constraints are violated by F ′ as shown
before. Thus, (N,F ,F ′) is a consistent migration update. As e ∈ E1,
(N,F ,F ′) induces slack on e, which shows that (ii) implies (i).

Now we are able to prove Lemma 5:

Proof. We begin with the observation that once we have slack on an edge,
we never need to remove the slack on this edge completely in order to induce
slack on other edges. Assume that there is a consistent migration update
that induces slack on edge e1 and removes slack on edge e2. If we change
the migration update to just migrate half the size of the migrated flows, we
will still have slack on both edge e1 and edge e2. This is essential to the
proof, as it cannot be done with unsplittable or integer flows. Furthermore,
it shows that the size of the slack is not relevant for any further steps
of an (appropriately designed) algorithm that tries to induce slack on as
many edges as possible. As we consider splittable flows, for any consistent
migration update, one can just reduce the size of the moved flow s.t. it still
leaves slack on the newly used edges, but still induces slack on the previously
more heavily used edges. Thus, we only need to differentiate for each edge
whether i) it has slack, or ii) it has no slack.

80 CHAPTER 4. CONSISTENT FLOW MIGRATION

Recall from Definition 11 that a consistent migration update is only
possible if there is some slack on the edges where the flow is being moved
to. Else Condition (4.1) will be violated. Consider any step 4 of Algorithm 4,
where the BFS from step 3 visits the node u. The flow transformations being
performed subsequently correspond to the construction of F ′ in the proof
of Lemma 6 (given by (4.2)). Thus, by Lemma 6, all flow transformations
performed by Algorithm 4 are consistent migration updates.

What is left to show (apart from the polynomial runtime) is that Algo-
rithm 4 induces slack on each edge on which slack can be induced by any
consistent migration. Thus, assume, for the sake of contradiction, that there
is a consistent migration M after which there is slack on some edge ex which
had no slack initially, but Algorithm 4 does not induce slack on ex.

Let Ei be the set of all edges which had no slack initially, on which M
induces slack in update i. Let j be the smallest index s.t. Ej contains an
edge ej on which Algorithm 4 does not induce slack. Then, Algorithm 4
induces slack on all edges from E1 ∪ E2 ∪ · · · ∪ Ej−1. Let K ∈ K be a
commodity for which the corresponding flow size on edge ej gets reduced in
the j-th update of M .

Let F be the initially given flow and F ′ the flow after the j-th update of
M . Let F∗ be the flow obtained by running Algorithm 4 on F . Let F ∈ F ,
F ′ ∈ F ′ and F ∗ ∈ F∗ be the flows corresponding to commodity K = (s, t).
Let E− denote the set of edges e with F ′(e) < F (e) and E+ the set of
edges e′ with F ′(e′) > F (e′). Every edge e ∈ E+ must have had slack at
some point before the j-th update of M as some flow for commodity K has
been added during the migration from F to F ′. By the definition of j, this
implies that e has slack also w.r.t. F∗. Furthermore, for each edge e′ ∈ E−,
we have F (e′) > 0, and since the design of Algorithm 4 ensures that any
edge containing some flow for some commodity always keeps some positive
flow for this commodity, we obtain F ∗(e′) > 0. Now define a flow F for K
by setting

F (e) :=

{
F ∗(e)− r(F (e)− F ′(e)) if e ∈ E−,
F ∗(e) + r(F ′(e)− F (e)) if e ∈ E+,
F ∗(e) otherwise,

(4.3)

for the flow F for commodity K and taking the flows from F∗ for all
other commodities in K. The parameter r ∈ R+ in the definition of F will

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 81

be determined in the following. Note that the first two terms in the above
definition are equal.

We have to show that F is indeed a flow (and F indeed a multi-commodity
flow). As F is a linear combination of the flows F ∗, F (e) and F ′(e) (which
all satisfy the flow conservation condition on the nodes different from s and
t), it also satisfies the flow conversation condition. Furthermore, as F and
F ′ cancel each other out regarding the flow (size) outgoing from s and in-
coming in t, F satisfies also the second flow condition and the demand of
K w.r.t. F is also the same as w.r.t. F ∗, F and F ′. By choosing r small
enough, we can also ensure that the third flow condition is satisfied (in the
general form required for multi-commodity flows, also given in the model
section), i.e., that F does not violate the capacity constraints. (This last
claim follows from the fact that the only edges e with F (e) > F ∗(e) are those
in E+ and we already showed that all of these edges have slack w.r.t. F ∗.)

In order to avoid having “negative” flows on some edges, we must take
care that for the edges in E− (for which F ′(e) < F (e) holds), F ∗(e) −
r(F (e) − F ′(e)) is positive. As we showed above, we have F ∗(e) > 0 for
all edges e ∈ E−. Thus, we can ensure the required positivity by again
choosing r small enough. Now fix r s.t. it is small enough for the arguments
in the above discussion. Then F is a flow for commodity K and F is a multi-
commodity flow for K. Furthermore, for all commodities in K different from
K, the corresponding flows are identical in F and F∗. Thus, (N,F∗,F) is a
consistent migration update as Condition 4.1 must be satisfied (since both
F and F∗ do not violate the capacity constraints of the edges). Moreover,
for each commodity in K, the corresponding flows in F and F∗ have the
same size.

Consider the edge ej . By its definition, we have F ′(ej) < F (ej) which
implies ej ∈ E−. Thus, F (ej) < F ∗(ej) and ej has slack w.r.t. F . So we
have shown that (N,F∗,F) is a consistent migration update as described in
statement (i) of Lemma 6 whereas ej is an edge without slack w.r.t. F∗. By
applying Lemma 6, we obtain the corresponding statement (ii) from Lemma
6 (where “e” = ej and “F” = F∗). It follows that after reaching flow F∗,
Algorithm 4 will pick the edge ej in some step 1 and the commodity K in
step 2. In the subsequent step 4, Algorithm 4 will find a node sequence
which ends in the starting node of ej (the existence of such a sequence is
ensured by the above statement (ii) from Lemma 6). Thus, Algorithm 4
will perform a consistent migration update which induces slack on the edge

82 CHAPTER 4. CONSISTENT FLOW MIGRATION

ej . This is a contradiction to the assumption and Algorithm 4 produces a
correct output.

It is left to show that Algorithm 4 runs in polynomial time: For the
analysis, we first ignore the runtime contributed by step 4. Steps 1 to 5,
excluding 4, can be performed in O(|K||E|) time – with step 6 iterating this
process O(|E|) times. Step 7 will repeat steps 1 to 6, excluding 4, again
O(|E|) times, resulting in a total runtime of O(|K||E|3). Observe that step
4 will be executed at most O(|E|) times, as it is only run when slack is
generated for the first time on an edge. Increasing and decreasing the flows
in step 4 can be performed in O(|E|) time, leaving the cycle removal: By
selecting an edge e with smallest flow size FK(e) of commodity K, we can
determine if there is a cycle for the commodity K containing e, and if this
is the case, remove such a cycle, setting FK(e) = 0 in the process. Such
a cycle removal with a runtime of O(|E|) needs to be performed at most
|E| times, yielding a total runtime of O(|E|3) for all executions of step 4.
Hence, the total runtime of Algorithm 4 is O(|K||E|3).

Furthermore, Problem 10 can be reduced to Problem 11 by essentially i)
first dropping (parts of) commodities that do not need to migrate, and ii)
adding new (parts of) commodities at the end. Then, Algorithm 4 can be
applied to both F and F ′. Should there be edges in N , on which i) no slack
can be induced starting from F or F ′ by means of consistent migration,
and that ii) differ in their flow assignment in F and F ′, then consistent
migration is not possible. Else, one can use the approach of a) applying
Algorithm 4 to the old and new placement to ensure slack s on each edge
and then migrate in at most d1/se − 1 consistent migration updates, or
b) use the method of binary search via LPs from [37] to find a consistent
migration. The formal proof of Theorem 11 is given in the following.

Proof of Theorem 11. We start to address this problem by first recalling
Observation 1: I.e., if all edges are at full capacity, the commodities and
demands stay the same, and some flows have to change their placement in
the network, any consistent migration step would violate the capacity con-
straint of some edge. Furthermore, assume that a commodity only exists in
the initial starting state, i.e., in K, but not in K′. Then, one can just remove
the corresponding flow/commodity and consider this reduced problem. The
same holds if the commodity just exists in the desired state, i.e., in K′, but

4.3. CONSISTENT MIGRATION FOR SPLITTABLE FLOWS 83

not in K. One can ignore this commodity when migrating – and just add
its flow at the end, as there will be enough space on all of its used edges.
Similarly, if there is some slack on each edge for both F and F ′, then it is
possible to migrate consistently, see Observation 2.

Thus, we want to identify the edges whose usage by flows cannot be
changed by consistent migration. We refer to Subfigure 3.2d for an example:
As all of the edges are used to full capacity in both the old starting state
with F and the new desired state with F ′, the flow assignment of any edge
cannot be changed, unless one violates congestion-freedom or rate-limits
some flow. Note that a necessary requirement for such an edge is that it is
used at full capacity in both the old starting state F and the new desired
state F ′.

Hence, when a commodity with the same source and sink has different
demands dFold , dFnew in the old and new state with flows Fold, Fnew, we
only need to look at the minimum of dFold , dFnew : Assume dFold < dFnew

with dFold = y ∗ dFnew , y > 1. Then, we can reduce the flow of Fnew by
a factor of y on all of its used edges, and after a consistent migration, add
the missing demand over all edges. The same holds if dFold > dFnew with
y ∗ dFold = dFnew , y > 1: We reduce the flow of Fold by a factor of y on
all of its used edges, and then consider consistent migration. In both cases,
we will only lower the used capacity of edges by consistent migration steps.
Therefore, we can simplify our original problem to one where the demands
and commodities are equal for F and F ′, i.e., K = K′ = Kall. Note that
the problem is symmetric in the sense that consistent migration from F to
F ′ is possible if and only if consistent migration from F ′ to F is possible.

This means that if there is an edge whose usage by flow F or F ′ cannot
be changed by any sequence of consistent migration steps, and it is not used
in the same fashion by F and F ′, then consistent migration from F to F ′ is
not possible! Conversely, if no such edge exists, we can migrate consistently:
If each edge that needs to be changed in its usage of flows has some slack,
we can migrate consistently by always changing a small part of the network
in accordance with the slack. I.e., if the minimum slack is 10%, we can
migrate in 9 steps.

Therefore, we consider all edges that are i) at full capacity without slack
for F or F ′, and ii) not used the same by F or F ′, and try to figure out if
we can find some sequence of consistent migration steps that induces slack
on them. Thus, we only need to look at an even more restricted problem:

84 CHAPTER 4. CONSISTENT FLOW MIGRATION

Let N be a network and F∗ be a flow in N with commodities K∗. On
what edges can we induce slack by a sequence of consistent migration steps?

However, this is exactly the problem solved by Algorithm 4 in polynomial
time. As all steps mentioned before can be performed in polynomial time
as well, Problem 10 is in the complexity class P .

4.4 Insertion of Unsplittable Flows

A natural method to insert/increase a flow in a network is to check first if
there is enough space. In that case, the solution is straightforward – one
just increases/adds the flow in question. However, things get more difficult
if there is currently not enough capacity. Is it necessary to remove some
flows, or is it enough to consistently migrate the existing flows?

A common method (cf. RSVP-TE [5]) is to assign levels of importance
to all flows in the network, and then remove those of lesser importance if
they block the new flow. We show that from a theoretical standpoint, this
approach is problematic for unsplittable flows, as we prove the following
corresponding decision problem to be NP-hard:

Problem 12. Let N be a network and let F be an unsplittable multi-
commodity flow in N for a multi-commodity K. Let Knew be a commodity
not contained in K and let M be a map of each commodity in K to a level of
importance, i.e., M : K → N. Let r be some integer. Is there a set Kr ⊆ K
of commodities with summed up importance at most r, an unsplittable multi-
commodity flow F ′ in N for the multi-commodity {K \ Kr} ∪Knew, and a
consistent migration (N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F ′) s.t. all flows Fi
are unsplittable?

Theorem 12. Problem 12 is NP-hard.

Proof. The proof follows directly from the proof of Theorem 10 if one con-
siders the following case: Importance r = 0, F and K as given in the proof
of Theorem 10, and Knew with source S and sink T , cf. Figure 4.2.

This implies that the corresponding optimization version of Problem 12
can also not be approximated well: Any (constant) approximation ratio for
r would mean that one could decide if the problem is satisfiable or not.

4.5. INCREASING SPLITTABLE FLOWS 85

Corollary 7. The optimization version of Problem 12, i.e, minimizing r,
does not admit a PTAS unless P = NP .

We can take this problem even one step further and ask about the hard-
ness of approximation regarding the additive error. Maybe one could always
migrate in the construction from our proof if one just removes just a con-
stant amount of the flows of the lowest importance? If we assign the clause
flows the importance 1 and the remaining flows the importance # of clauses,
then this problem reduces to finding a variable assignment that satisfies as
many clauses as possible – i.e., solving MAX 3-SAT. However, as shown by
H̊astad [34], this is NP-hard to approximate better than 7/8 + ε.

4.5 Increasing Splittable Flows

As shown in Section 4.4, the consistent increase/insertion of flows is an NP-
hard problem if flows are unsplittable. This leads to the natural question of
how much the demand of a commodity can be increased under the condition
of consistency and splittable flows. Then, one can make an informed decision
if it is worth it to violate consistency or not: Maybe the new demand is for
a critical application that absolutely needs the bandwidth – or maybe it is
just some background data that is not time critical.

In Section 4.3 we showed that it is decidable in polynomial time if con-
sistent migration is possible. However, this does not answer the question
of to what unknown new desired flow placement one should migrate. One
could just solve an LP maximizing the demand of one commodity while
keeping the demand of the other commodities fixed (cf. the LP in Figure
4.4 without restriction 4)). But it can be the case that consistent migration
is not possible for the resulting multi-commodity flow of the LP, cf. Figure
4.5. We thus formulate the following problem:

Problem 13. Let N be a network and let F be a multi-commodity flow in
N for the multi-commodity K. Let K ∈ K. Find a multi-commodity flow F ′
for the multi-commodity K that i) maximizes the demand of commodity K,
ii) leaves the demand of all other commodities unchanged, and iii) can be
migrated to consistently from F .

For ease of notation, we assume that if one wants to maximize a new
commodity, it is denoted as K ∈ K with a current demand of 0. As it turns

86 CHAPTER 4. CONSISTENT FLOW MIGRATION

Maximize
∑

i:ei∈out(s1) xi1
subject to

1. ∀1 ≤ j ≤ k∀v ∈ V \ {sj , tj} :∑
i:ei∈out(v) xij =

∑
i:ei∈in(v) xij ,

2. ∀2 ≤ j ≤ k :
∑

i:ei∈out(sj) xij = dj =
∑

i:ei∈in(tj) xij ,

3. ∀1 ≤ j ≤ k :
∑k

i=1 xij ≤ c(ej),
4. ∀1 ≤ i ≤ m s.t. ei ∈ Efix∀1 ≤ j ≤ k : xij = Fj(ei),
5.
∑

i:ei∈in(s1) xi1 = 0.

Figure 4.4: The LP doesn’t alter the flow on the edges from Efix due to 4).

out, we can approximate the maximum consistent increase of the demand
of commodity K in Problem 13 arbitrarily well:

Theorem 13. Let ε > 0. Finding a multi-commodity flow for Problem
13 that satisfies the conditions ii) and iii) and approximates the maximum
demand of commodity K in condition i) with an approximation ratio of
(1− ε) can be done in polynomial time (independent of the chosen ε).

Proof. Let F = (F1, ..., Fk) be the given (initial) multi-commodity flow for
the multi-commodity (K1, ...,Kk) where commodity Kj = (sj , tj) with de-
mand dj w.r.t. F . Let K = K1. Using Algorithm 4, we can determine all
the edges which do not admit slack after any consistent migration starting
from F . Let Efix denote the set of these edges. Due to Condition (4.1),
consistent migration updates cannot change the flow assignments on Efix,
so we would like to fix them for the (approximate) maximum flow we are
looking for.

By solving the LP given in Figure 4.4, we can find a multi-commodity
flow F∗ that maximizes the demand of commodity K. Any found optimal
solution of the LP represents a multi-commodity flow F∗ with the above-
mentioned properties by setting Fj(ei) := xij , 1 ≤ i ≤ m, 1 ≤ j ≤ k. The
first three constraints represent the usual flow prerequisites. The fourth
constraint guarantees that nothing changes (from F to F∗) on the edges in
Efix. As the LP does not check if the solution(s) represent cycle-free flows,

4.5. INCREASING SPLITTABLE FLOWS 87

(a) Old/start flow placement (b) The flow FC,1 can be directly in-
serted. All other paths are currently
blocked by FA or FB .

(c) We can migrate FA and FB consistently to their shown positions, allowing the
insertion of flow FC,2.

(d) If one does not care about consistent migration, then one could re-arrange the
flows as shown in this subfigure and also insert the flow FC,3.
Figure 4.5: In this example, we want to maximize the flow from SC to TC , with
the flows FA and FB currently in the network as shown in Subfigure 4.5a. All
edges have a capacity of one and the flows FA and FB have a size of one as well.
Under the restriction of consistent migration, it is possible to increase the size of
the flows from SC to TC to two, but not more – as the flows FA and FB block
each other’s consistent migration in the right part of the network.

88 CHAPTER 4. CONSISTENT FLOW MIGRATION

Figure 4.6: In this network, all edges have a capacity of two – except for the ones
denoted with a capacity of 1. The commodities K2 and K3 have a demand of one.
In the initial flow F , consisting of F2 and F3, one can achieve slack on all edges by
rerouting some parts of F2 and F3 along alternate paths. In the optimal solution
F∗ = (F ∗1 , F ∗2 , F ∗3) of the LP from Figure 4.4 that maximizes the demand for K1
(which is then two), the flows F2 and F3 of size one have to be rerouted along the
paths denoted by F ∗2 and F ∗3 . However, by means of consistent migration it is not
possible to induce slack on the 1-edges starting from (F ∗2 , F ∗3), even if F ∗1 is not
inserted yet: F ∗2 would need to use at least one of the 1-edges fully occupied by F ∗3
and vice versa. Thus, it is not possible to consistently migrate between F∗ and F .

we need the last constraint: It ensures that no part of the flow leaving sj
returns to sj (such a part would not contribute to the flow Fj from sj to tj ,
but to the sum we are trying to maximize). If we obtain a solution to the LP
with a cycle, then we can transform it into a cycle-free flow by subtracting
the cycling “subflows” from the affected edges. Thus, we may still assume
cycle-freedom.

While it is not ensured that it is possible to migrate consistently from
F to F∗, the obtained maximized demand d′ :=

∑
i:ei∈out(s1) xi1 gives us

an upper bound for the demand of commodity K w.r.t. flow F∗, subject
to the condition that all other demands remain as they are. If we demand
consistent migration, then the demand d′ cannot necessarily be achieved,
but we come arbitrarily close. We refer to Figure 4.6 for an example where
d′ cannot be achieved.

However, the initial flow F and an arbitrary optimal solution F∗ of the
LP can be combined to a multi-commodity flow F ′ which can be migrated

4.5. INCREASING SPLITTABLE FLOWS 89

to consistently from F . The combination is parametrized by some 0 < r < 1
which determines the demand of the commodity whose demand we are trying
to maximize, and thus also determines the approximation ratio. We define
F ′ by F ′j(e) := rF ∗j (e) + (1− r)Fj(e) for all 1 ≤ j ≤ k and e ∈ E. It follows
directly from the definition that F ′ is a multi-commodity flow for which the
demands K2, ...,Kk did not change from F . What is left to show is that we
can migrate consistently from F to F ′. Recall that starting from F , slack
can be achieved on exactly the edges which are not in Efix. We show that
the same is true for F ′:

We can “divide” the given network N into two networksN1 andN2 which
have the same underlying graph as N but have less capacity – for N1 each
edge capacity in N is multiplied by r, for N2 by (1 − r). We can imagine
the flow rF∗ as living only on the N1 part of N and (1 − r)F as living
only on the N2 part. Now any consistent migration of F in N represents a
consistent migration of (1−r)F in N2 and thus a consistent migration of F ′
in N . It follows that slack (starting from F ′) can be achieved on all edges
except possibly on those in Efix. We will show now that slack cannot be
induced on any e ∈ Efix starting from F ′. By the above discussion, there is
a consistent migration from F ′ to a flow F (for the same multi-commodity)
for which exactly the edges not in Efix have slack (just apply only updates
which do not affect N1).

As discussed in the proof of Lemma 5, the result of Algorithm 4 in
terms of which edges have slack, does not depend on any slack size, but just
on whether an edge has slack or not. The set of edges which have slack
is the same w.r.t. F as w.r.t. the flow Algorithm 4 returns after running
on F (namely, E\Efix). Thus, running Algorithm 4 (again) for those two
flows will yield the same set of edges with slack. As the latter has already
achieved slack on all edges where this is possible, slack cannot be induced
on any e ∈ Efix, starting from F . Thus, the same is true for F ′.

So slack can be achieved on the edges not in Efix, both starting from
F and F ′. Furthermore, as F∗ is a solution to the above LP, we have
F ∗j (e) = Fj(e) for all 1 ≤ j ≤ k, e ∈ Efix. Thus, the flow assignment on the
edges in Efix is the same for F and F ′. Ignoring these edges (whose flow
assignments do not need to be changed), we can use the technique provided
by [37] to obtain a consistent migration between F and F ′ as all edges
that need to change their flow assignments have slack w.r.t both F and F ′
(after applying Algorithm 4). Hence, we obtain that there is a consistent

90 CHAPTER 4. CONSISTENT FLOW MIGRATION

migration between the multi-commodity flows F and F ′.
It is left to show that the runtime is polynomial (independent of the

chosen ε): Solving a linear program as the LP in Figure 4.4 can be done
in polynomial runtime (e.g., with the interior point method). Furthermore,
Algorithm 4 has a polynomial runtime as well, see Lemma 5. ε comes only
into play when “dividing” the network into two networks – but there it is
only used for multiplication to achieve the desired approximation ratio for
the demand of commodity K = K1.

4.6 Summary

We studied the problem of migrating flows consistently, i.e., without violat-
ing the consistency model of SWAN [37] or rate-limiting. We were able to
show that for splittable flows, it is possible to decide in polynomial time if
consistent migration is possible. All previous approaches could not decide
if consistent migration is possible or applied only to specific subsets of the
consistent migration problem. We proved that splittable flows are essential
for this result, as the decision problem is NP-hard for unsplittable or in-
teger (even unit size) flows. Furthermore, we also studied the problem of
consistently increasing or inserting new flows into the network. A current
practice is to drop obstructing flows: We showed that optimizing this tech-
nique is NP-hard to as well. However, we proved that one can approximate
the maximal consistent increase for the size of a (new) flow arbitrarily well
in polynomial time.

5
Non-Mixing Flow Migration

In this chapter, we extend our study on consistent flow migration to deal
with waypointing and service chain requirements for unsplittable flows, a
property we call non-mixing consistency. We first show that this prob-
lem is NP-hard as well for unsplittable flows in Section 5.3: Due to our
proof construction, the NP-hardness also follows for consistent flow migra-
tion without intermediate paths. Subsequently, we relax the unsplittable
requirement, and consider two-splittable flows in Section 5.4: Akin to the
previous chapter, we can give a completely polynomial classification and
schedule generation as well. Our technique is designed with easy deploy-
ment in mind: Beyond establishing flows rules for the old and new paths,
all network updates just have to change the flow splitting ratios at the
sources.

91

92 CHAPTER 5. NON-MIXING FLOW MIGRATION

5.1 Motivation

Network flow routes often have to adhere to waypointing, or even service
chaining (e.g., firewalls, caches, etc.) [54]. As thus, it is sometimes a require-
ment that an unsplittable flow should only be routed along its old path or
its new path, but not a mix of these two, and especially not along totally
different paths. This is easy to guarantee if the old and the new flow path
are node-disjoint, but not so much when the old and the new path mix:
When old and new packets arrive at a switch, marked as being from the
same flow, forwarding them according to either or the old rule will lead to
the violation of waypointing or the traversal of network functions in the
wrong order.

Therefore, we extend the packet stamping method from [68] in the con-
text of congestion-avoidance1: We introduce flow rules F oldi for the old path
and Fnewi for the new path, allowing each packet to respect the service
chains.

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏

Figure 5.1: In this network, the old flow path is drawn solid, the new dotted.
Assume that the flow would be split along the old and the new path, and that
there would be firewalls on the nodes marked with fw. If there is just one flow rule
at w, namely to split the flow along the two outgoing edges, then there are flow
packets not traversing any firewall. As thus, we introduce separate old and new
flow rules for the non-mixing property.

5.2 Model

We model a network N as a directed graph G = (V,E) with non-negative
edge-capacities c. An (unsplittable) flow Fj of size dj starts at a source

1Reitblatt et al. [68] use them to guarantee the non-mixing property (which they call
per-flow/per-packet consistency), but do not consider congestion.

5.2. MODEL 93

Sj ∈ V and is routed along a cycle-free path Pj of enough capacity to its
destination Tj ∈ V , i.e., ∀e ∈ Pj : dj ≤ c(e). We call a set of k flows
F1, . . . , Fk a multi-commodity flow F if ∀e ∈ E :

∑k

i=1 Fi(e) ≤ c(e), i.e.,
their combined sizes do not violate any capacity constraints. For the sake
of simplicity, we assume that the old flow size dj on Pj is identical to its
new size d′j on P ′j 6= Pj , else one could, e.g., reduce the flow size to d′j on Pj
before updating, or migrate and then increase on P ′j .

Inspired from a combination of [37] and [68], cf. Figure 5.1, we now
define the concept of a non-mixing consistent migration update:

Definition 13 (Non-Mixing Consistent Network Update). A network up-
date of unsplittable flows is called non-mixing consistent, if the following
condition holds:

∀e ∈ E :
k∑
i=1

max
(
F oldi (e) + F ′oldi (e)

)
+ max

(
Fnewi (e) + F ′newi (e)

)
≤ c(e) .

(5.1)

Observe that the SWAN [37] consistency model, cf. Definition 11, and
non-mixing consistency are identical if the old and new flow paths are dis-
joint, the only difference is in the case when the old and the new path are
joint at some point.

Consistent Non-Mixing Flow Migration So far we described flow up-
dates of one round in Condition 5.1, but due to dependencies it can easily be
the case that one needs to apply various updates before the desired outcome
is reached, cf. [42]. E.g., as already described in earlier chapters, F1 wants
to move to the path of F2, but before that can happen, F2 first needs to be
moved to its new path.

Definition 14 (Non-Mixing Migration). Let F be the old flow assignment
and F ′ be the new flow assignment, with identical demands. We call a series
of non-mixing consistent flow updates a non-mixing migration from F to F ′,
if the following two conditions are met: 1) each flow packet may only use
the old or the new flow path, 2) the final flow assignment is F ′.

94 CHAPTER 5. NON-MIXING FLOW MIGRATION

5.3 Hardness of Unsplittable Flow Migration

While it is well studied if a set of demands can be met by unsplittable flows,
what about the case of migrating between two known flow assignments?
We know that if the unsplittable flows are allowed to take any path, this
problem is NP-hard, see Section 4.2. We now consider the case where the
unsplittable flows are just allowed to take either the old or the new path:

Theorem 14. Let F , F ′ be unsplittable multi-commodity flows. Deciding
if there is a non-mixing consistent flow migration from F to F ′ is NP-hard.

Our proof will be a reduction from the NP-hard problem Partition [29]:

Definition 15 (Partition [29]). Let A be a multiset of k positive real-valued
elements a1, . . . , ak, and set A :=

∑k

i=1 ai. Is it possible to partition A into
two sets A1,A2 s.t. the sums A1 :=

∑
ai∈A1

ai, A2 :=
∑

ai∈A2
ai of their

respective elements are identical, i.e., A1 = A2 = A
2 ?

Theorem 15 ([29]). The Partition problem from Definition 15 is NP-hard.

Proof. For each instance I of Partition, we will create an instance I ′ of the
migration problem s.t. I is a yes-instance if and only if I ′ is a yes-instance.

Construction of the new Instance I ′

The network N in the instance I ′ consists of the nodes S1, . . . , Sk, Sb,
T1, . . . , Tk, Tb, v11, v12, v21, and v22. There is a directed edge with ca-
pacity A from each S1, . . . , Sk to v11 and v21, and from each v12, v22 to
T1, . . . , Tk. Furthermore, there is a directed edge from v11 to v12 and from
v21 to v22, each with capacity A. Lastly, we have edges with capacity A
from Sb to v11 and v21, and from v12 and v22 to Tb. We refer to Figure 5.2
for an illustration.

The old flow configuration F is given as follows. For 1 ≤ i ≤ k, there is
a flow Fi of size ai from Si to Ti along the path Si, v11, v12, Ti. Also, there
is a flow Fb of size A/2 from Sb to Tb via Sb, v21, v22, Tb In the new flow
configuration F ′, the flows Fi instead take the other path Si, v21, v22, Ti,
while the flow Fb takes the path Sb, v11, v12, Tb. Observe that both F ,F ′
are valid multi-commodity flows.

If I is a no-instance, then I ′ is a no-instance
Assume that it is not possible to partition A into two sets of summed up

5.3. HARDNESS OF UNSPLITTABLE FLOW MIGRATION 95

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21 𝒘22

… …

𝑺𝒃 𝑻𝒃

Figure 5.2: In this network, there are k flows from S1, . . . , Sk to T1, . . . , Tk via
the upper path v11, v12 of combined size A, and one flow from Sb to Tb via v21, v22
of size A/2. All edges have a capacity of A. The task is to swap the assignments,
i.e., move the k flows to the lower path, and the one bottom flow to the top path.
Observe that the only consistent way to do so is to move flows of combined size
A/2 to the bottom path, then the bottom flow up, then the remaining flows down.
As the k unsplittable flows correspond to a Partition instance, it is NP-hard to
decide if this is possible.

size A/2 each. Note that for Fb to migrate to its new path Sb, v11, v12, Tb,
there has to be a free capacity of A/2 on the edge from v11 to v12. The
only possibility for that to happen is to select a subset of the paths from
F1, . . . , Fk of summed up size A/2 to be routed along the edge from v21 to
v22. But, as the partition instance I is not solvable, no such subset exists.

If I is a yes-instance, then I ′ is a yes-instance
Assume that it is possible to partition A into two sets A1,A2 of summed
up size S/2 each. We can then migrate as follows:

We select the flows corresponding to A1 and move them to their new
path, their combined size is A/2 and the edge from v21 to v22 has a free
capacity of A/2. Then, we move the flow Fb to its new path, which now
also has a free capacity of A/2. Lastly, we move the flows corresponding to
A2 to their new path, rejoining the flows corresponding to A1 on the edge
from v21 to v22.

Note that the old and new path for each flow was disjoint in this proof
construction. As thus, the hardness result also holds for the standard con-

96 CHAPTER 5. NON-MIXING FLOW MIGRATION

sistency model for the special case where no intermediate paths are allowed:

Corollary 8. Let F , F ′ be unsplittable multi-commodity flows. Deciding if
there is a consistent flow migration from F to F ′, s.t. each unsplittable flow
may only be on its old or new path, is NP-hard.

5.4 An Algorithm for Two-splittable Flow Migration

We saw in the last Section 5.3 that unsplittable flow migration is NP-hard,
even if the old and new flow paths are known. However, we will now use the
power of two to turn the problem of non-mixing consistent flow migration
tractable.

As it turns out, by allowing the flows to be two-splittable, we can decide
in polynomial time if a non-mixing consistent flow migration is possible.
E.g., in Figure 5.2, one could move half of each flow from the top path,
move the bottom flow up, and lastly, move the remaining half of the origi-
nal top flows down. We will now first give an overview of the problem before
describing our algorithm, then prove its correctness and completeness, be-
fore lastly stating some additional methods for the case that no consistent
migration exists.

Creation of slack. We are given two unsplittable multi-commodity flows,
with the task to migrate from the old to the new one in a non-mixing
consistent way. As we allow the flows to be two-splittable, each unsplittable
flow can be separated into two distinct parts, each assigned to the old and
new path, respectively.

The fundamental inherent problem is posed here by edges e where all
capacity is used. In the non-mixing consistent model, no (part of a) flow can
be moved to such an edge e until some free slack capacity has been created
on e, else the capacity constraints in the consistency property would be
violated.

Observation 3. For a non-mixing consistent network update to increase
the combined sizes of any subset of flows on an edge e by x, the combined
total sizes of the flows on e must be at most c(e)− x.

The slack s on an edge e is defined as the ratio of the non-used capacity
and the capacity on e. E.g., an edge with capacity 10 and flows of combined
size 9 on it has a slack of 1/10. As thus, the question is: Can slack be

5.4. AN ALGORITHM FOR TWO-SPLITTABLE FLOW MIGRATION97

created on all such edges e, with each flow being only split along its old and
new path, i.e., with two-splittable flows?

The following algorithm will try to create slack on all relevant edges, by
iteratively attempting to move parts of flows in a non-mixing consistent way
until either slack has been created on all edges of F ,F ′, or a situation is
reached when such movement is not possible. The idea is that we will only
create slack, but never remove it completely from any edge.

Input: (Old) multi-commodity flow F and a desired mcf F ′.
Output: A sequence of non-mixing consistent network updates, starting from F ,
to create slack on all edges used by F ,F ′, or output that this is not possible.

1. Let x be the smallest free capacity on any edge in N used by F∗,F ′∗.
2. Is there a flow F ∗i ∈ F

∗
i that has no slack on some edge of their path, but

there is slack on all edges of the corresponding path of F ′∗?

(a) If yes, perform a network update where the flow size of F ′∗ is increased
by x/2 and the flow size of F ∗ is decreased by x/2. Then, go to step
1.

(b) Else
i. If all edges of F∗ have slack, output yes & all performed network

updates so far.
ii. If there is still an edge of F∗ without any slack/free capacity,

output no.

Algorithm 5: Creation of slack

Lemma 7. The updates performed by Algorithm 5 are non-mixing consis-
tent and just use the old and new flow paths.

Proof. The lemma holds as parts of a flow are just moved to their new path
if the new path has enough free capacity, no other paths are used.

Lemma 8. The runtime of Algorithm 5 is O(k2n), with k being the number
of flows/commodities. The number of network updates performed is at most
k.

98 CHAPTER 5. NON-MIXING FLOW MIGRATION

Proof. Steps 1 & 2 of Algorithm 5 need to be repeated at most k times, with
k being the number of commodities/flows, resulting in at most k network
updates: If a flow path already has slack on every edge, this flow does not
need to be updated again. Furthermore, each iteration of Step 1 & 2 needs
to check O(k) flows of length O(n) in the worst case, resulting in a total
runtime of O(k2n).

We note that if a sequence of non-mixing consistent network updates
leads to a non-mixing consistent migration from F to F ′, then this sequence
can also be applied “backwards” to F ′, leading to a non-mixing consistent
migration from F ′ to F . We cast this observation into the following state-
ment:
Observation 4. A non-mixing consistent migration from F to F ′ exists if
and only if a non-mixing consistent migration from F ′ to F exists.

Non-mixing consistent migration. Let Fslack be a multi-commodity
flow in N where every edge used by the flow has a slack of at least s, and
similarly, let F ′slack be a multi-commodity flow in N where every edge used
by the flow has a slack of at least s. We can then use a method from
SWAN [37] to migrate in a non-mixing consistent fashion with d1/se − 1
updates: Every network update moves a share of s (possibly less in the
last update) of each flow to its new path, resulting in the given number of
updates. E.g., if the slack is 1/10, then 10% of the original flow size will be
moved in every update, resulting in 9 updates in total. As the invariant of
a slack of at least s will be maintained after every update, each performed
update is non-mixing consistent.

Input: (Old) multi-commodity flow F and a desired multi-commodity flow F ′.
Output: yes, if a non-mixing consistent migration from F to F ′ is possible, no
otherwise.

1. Run Algorithm 5 on F ,F ′ and F ′,F . If either output is no, then output
no, else output yes.

Algorithm 6: Deciding non-mixing consistent migration

Theorem 16. Algorithm 6 decides in a runtime of O(k2n) if a non-mixing
consistent migration is possible.

5.4. AN ALGORITHM FOR TWO-SPLITTABLE FLOW MIGRATION99

We defer the complete proof of Theorem 16 and first give the following
algorithm for non-mixing consistent migration:

Input: (Old) multi-commodity flow F and a desired multi-commodity flow F ′.
Output: Either a sequence of non-mixing consistent network updates, starting
from F , which form a non-mixing consistent migration to F ′, or an output that
this is not possible.

1. Run Algorithm 5 on F ,F ′ and F ′,F . If either output is no, then output
no. Else, denote the resulting networks gotten by applying updates U ,U ′
by Fslack and F ′slack.

2. Let s be the smallest slack on any edge in N used by Fslack,F ′slack.
3. Apply the calculated non-mixing consistent updates U to F , resulting in
Fslack.

4. Perform d1/se − 1 non-mixing consistent updates, each moving an original
share of s to its new path, resulting in F ′slack.

5. Apply the non-mixing consistent updates U ′ in reverse, resulting in F ′, and
output yes .

Algorithm 7: Performing non-mixing consistent migration

Combining the above argumentation and Lemma 7, 8 yields:

Corollary 9. The migration performed by Algorithm 7 is non-mixing con-
sistent, with at most 2k + d1/se − 1 updates.

As thus, we know that a migration performed by Algorithm 7 is non-
mixing consistent, but we still need to show that an output of no is correct
as well:

Lemma 9. If Algorithm 7 outputs no, then no consistent non-mixing mi-
gration from F to F ′ is possible.

Proof. Assume for the sake of contradiction that Algorithm 7 outputs no,
but that a consistent non-mixing migration from F to F ′ exists with the
updates U1, U2, As Algorithm 7 outputs no, Algorithm 5 ouputs no as
well for the case of F to F ′ or the case of F ′ to F . Due to Observation 4,
we can assume w.l.o.g it was at least for the case of F to F ′. Note that if
Algorithm 5 would have output yes for both cases, then Algorithm 7 would
have output yes as well.

100 CHAPTER 5. NON-MIXING FLOW MIGRATION

Let Uj be the first update where a flow Fi was (partially) moved that
Algorithm 5 failed to create slack for on its new path. By assumption,
Algorithm 5 was able to create slack (or there was already slack) for all
flows of F moved in U1, U2, . . . , Uj−1. Note that if Uj was a non-consistent
mixing network update, then we can create a non-consistent mixing network
update U∗j from Uj that just contains moving the respective parts of the flow
Fi. Recall that Algorithm 5 never removed slack completely from any edge.
As thus, Algorithm 5 would have been able to create slack for Fi, as it could
have moved a part of flow Fi to its new path after making sure that there
is slack for all new flow paths contained in the updates U1, U2, . . . , Uj−1.
Thus, no such non-mixing consistent update Uj could have existed, leading
to the desired contradiction, which concludes the proof of Lemma 9.

We now have all the methods necessary to prove Theorem 16:

Proof of Theorem 16. It directly follows that the runtime is O(k2n), as we
essentially just run Algorithm 5 twice, cf. Lemma 8. It is left to show that
Algorithm 6 is correct, which we will infer from its usage in Algorithm 7:
With Corollary 9 we know that an output of yes is correct. Similarly, with
Lemma 9 we know that an output of no is correct, concluding the proof of
Theorem 16.

What if no non-mixing consistent migration exists? It can be the
case that Algorithm 7 outputs that no non-mixing consistent migration of
flows exists for two-splittable flows, but that the benefits of the desired new
flow F ′ outweigh the downsides of congestion during the migration.

In this case, we can apply Algorithm 5 to F ,F ′ to pre-compute updates
for as many edges with slack as possible in Fslack,F ′slack, and migrate non-
mixing consistent to Fslack using these updates from Algorithm 5. Then,
in the next step, we use the approach from Dionysus [42], which breaks
consistency during some updates, but still migrates the flows from Fslack
to F ′slack. Lastly, we can migrate in a non-mixing consistent fashion from
F ′slack to the desired multi-commodity flow F ′, using the pre-computed
updates from Algorithm 5.

5.5. SUMMARY 101

5.5 Summary

We introduced and motivated the concepts of non-mixing consistent flow
updates and migration, where un-/two-splittable flows respect waypoint
traversals and service chaining. For unsplittable flow migration, we showed
that non-mixing consistency respecting old and new flow paths is NP-hard,
with a proof that also applies for consistent migration of unsplittable flows
without intermediate paths. However, when the flows are two-splittable, we
give a fast polynomial algorithm for a non-mixing consistent migration, and
outlined alternatives when no non-mixing consistent migration is possible.

6
Lossless Flow Migration

In this chapter, we are going to discuss that all current network update
techniques overlook the effect of flows congesting their own path during a
network update, with the reason being latency on the links (Section 6.1).
Furthermore, while congestion will be resolved eventually after the network
update, the buffers of the affected routers can be filled for a long time
period, leading to the following paradox: A flow is moved to a path with
less latency, but the latency stays the same! As flows are often migrated
because of latency concerns, this is highly undesirable.

We show in Section 6.2 that these effects will occur in networks in prac-
tice, formally model the problem in Section 6.3, and give algorithms in Sec-
tion 6.4 to check if a network update is consistent in this context. Further-
more, in Section 6.5 we also give a polynomial time algorithm to check if a
sequence of intermediate lossless updates exists that will result in the desired
network update, leading to the first polynomial time schedule generation
algorithm for (temporarily) splittable multi-commodity flows. Nonetheless,

103

104 CHAPTER 6. LOSSLESS FLOW MIGRATION

the migration problem turns out to be NP-hard for known latencies, already
for a single splittable flow, see Section 6.6.

6.1 Motivation

Understanding network updates has issues besides the previously described
consistency for flow migration: Namely, flows congesting themselves. We
would like to motivate these issues with a simple example. In your small
gigabit ethernet, you transport a single flow at a rate of one gigabit as well.
The end-to-end latency of the flow is undesirably high, so you move the flow
to a path with low latency. Naturally, you expect the latency of your flow
to be reduced, however, paradoxically, the end-to-end latency of the flow
does not change at all! Later, you decide to move your flow to yet another
path with low latency. This time it works, but a lot of packets are dropped
in the process! Both phenomena can be explained with a simple example
network, see Figure 6.1.

low latency

𝒗

capacity = 1

size = 1

size = 1

𝒖𝒔 𝒕

𝒘

Figure 6.1: In this network, the flow along the solid path is moved to the dashed
path, causing congestion at v. Current methods overlook this issue of flows con-
gesting “themselves”.

When the flow is moved from the solid path to the dashed path by, e.g.,
switching the forwarding rule at u, congestion will occur at node v. For some
time, packets from both w and u will arrive at v, at a rate of 2 gigabits,
twice the rate the outgoing link of v can manage. Thus, v will need to buffer
the extra packets, or if the buffer is not large enough, drop them.

In the case of a UDP flow and large enough buffer size, all the extra delay
from the old path is “moved” into the buffer at v. If the rate of the flow
is not limited, this buffer will never decrease, causing the delay to be there
permanently. In the case of a TCP flow, not only will packets be dropped if
the buffer is not large enough, but the re-ordering of the packets will lead to

6.1. MOTIVATION 105

further problems: In addition to the lost packets, the source will decrease its
sending rate, taking additional time until the original throughput is reached
again.

Overview We start this chapter by confirming that latency-induced con-
gestion upon updates does happen in practice. Motivated by our findings,
we then develop the first theoretical network update framework which can
deal with link latency during network updates for flows.

We describe provably correct algorithms, checking for link capacity viola-
tions for any set of given (or even unknown) delays, considering unsplittable
flows.

Should a single update violate link capacities, we explore the option of
migration via intermediate updates, and also consider the case of migrating
multi-commodity flows.

A heterogeneous picture unfolds: On the one hand, checking for a lossless
migration with known latency is NP-hard already for a single flow. On the
other hand, if we allow to split the flows into a linear number of paths, we
can check in polynomial time if a lossless migration exists with unknown
latencies – even for multi-commodity flows. We then turn this decision
procedure into a polynomial time algorithm to give a schedule for lossless
migration, using only a linear number of additional flow splittings.

Contribution The contribution of this chapter is a combination of a prac-
tical evaluation and an in-depth theoretical analysis, with each part of in-
dependent interest, but together forming a framework on how to deal with
edge latency for network flow updates.

Practical Evaluation In Section 6.2, we show that the effects described in
the introduction for the network in Figure 6.1 appear in practice, by setting
up a network and collecting data during and following network updates.
We study both TCP and UDP, and give measurements for packet loss and
latency.

Theoretical Analysis and Algorithms We perform an extensive theoret-
ical analysis regarding the impact of link latency on lossless flow migration
during network updates. After defining the model in Section 6.3, we com-
pletely explore the problem in two dimensions, distinguishing between the
cases where the network latencies are known (called `-consistency), respec-
tively unknown (called ∀-consistency).

106 CHAPTER 6. LOSSLESS FLOW MIGRATION

We start in Section 6.4, where we show how to check in linear time if a
given network update is consistent for a single unsplittable flow. We extend
this line of thought by exploring if a set of intermediate consistent updates
exists s.t. one can migrate in a lossless fashion.

For unknown latencies and n-splittable flows, we give a polynomial time
algorithm in Section 6.5 for lossless migration, which also works for multi-
commodity flows.

Surprisingly, if the latencies are fixed, the problem of lossless migration
turns out to be NP-hard, even for a single splittable flow, cf. Section 6.6.

6.2 Practical Evaluation

In this section, we show that the congestion effects highlighted in Figure 6.1
do occur in practice, inducing congestion during potentially seconds upon
updates. We start by describing a brief model, that formalizes the effects
described in the introduction, followed by a description of our testbed. We
then evaluate the effects considering both UDP and TCP flows, confirming
our model assumptions.

Model We start with some notations and assumptions. Consider the net-
work in Figure 6.1 and let F be the old flow arriving via w and F ′ be
the new flow arriving via the lower path from u. Denote the size of F by
dF = F ((w, v)) ≥ 0 and the size of F ′ by dF ′ = F ′((u, v)) ≥ 0. Let the
latency ∆old > 0 of the path u,w, v be larger than the latency ∆new > 0
of the path u,w and denote the time difference by ∆. Lastly, let the buffer
size of v be B(v) ≥ 0 and let the outgoing link of v have a capacity of c > 0
with dF + dF ′ > c.

We conjecture that the following effects will appear after the node u has
switched its forwarding from w to v:

• The buffer at v will be filled up at most to:

min ((dF + dF ′ − c) ·∆, B(v)) , (6.1)

i.e., the buffer will at most be filled with surplus data, not being able
to be drained, arriving during the time when both flows arrive at v.

• The amount of data dropped at v will be:

(dF + dF ′ − c) ·∆−B(v), (6.2)

6.2. PRACTICAL EVALUATION 107

i.e., the amount of surplus data not fitting into the buffer.
• The buffer at v will be drained after the following time:

(dF + dF ′ − c) ·∆
dF ′ − c

, (6.3)

i.e., after the incoming flow F from w has stopped, the drain of the
buffer is equivalent to the difference between the capacity of the out-
going link and the throughput of the remaining new flow F ′.

We note that in theory, if the new flow F ′ has the same size as the capacity
c of the outgoing link, the term 6.3 implies that the buffer at v will never
be drained.

Methodology & Testbed To validate our theoretical model in practice,
we replicated Figure 6.1 in a testbed composed of five servers connected
through Gigabit links. Each of the machines has at least the following
specifications: Ubuntu 64bit server 14.04 with kernel 3.16, 8GB of RAM, 2x
Intel Xeon quadcore 2.4GHz. We configure the one-way latency along the
links (u,w) and (w, v) as well as the buffer size at v using tc.

We create traffic in the network by establishing UDP and TCP connec-
tions from s to t with iperf. Initially, we configure the network so that
traffic is forwarded via the (slow) path s − u − w − v − t. After about 15
seconds, we switch u to the fast-path s− u− v − t. In parallel, we monitor
the buffer at v and the round-trip time from s to t using iperf. After the
switch, we let the flows run for 60s. We repeated all our measurements at
least 30 times and report the median values in the following.

Upon updates, congestion can appear for several seconds when
link utilization is high. We start by considering the effect of updating a
network whose link utilization is high such as a Wide-Area Network (WAN)
where link utilization is often above 90% [37]. For this, we run a single
UDP connection at a rate close to the link capacity, yet without creating
any congestion. We set the buffer size B(v) such that no packet would be
dropped at v.

Figure 6.2 depicts the evolution of the delay prior and after the update.
The dotted vertical line indicates the moment traffic is switched to the low
delay path. We observe that the end-to-end delay stays stable up to 5
seconds after the switch. As described in our model, this is due to the

108 CHAPTER 6. LOSSLESS FLOW MIGRATION

10 15 20 25 30

2
4

6
8

10
12

sec
R
TT
in
m
s

Figure 6.2: Median end-to-end latency over 30 UDP experiments. The dotted
vertical line denotes the update time. It takes seconds for the congestion induced
by latency to disappear.

0 2 4 6 8 10 12

sec

C
D
F

0

20

40

60

80

100

Figure 6.3: CDF of the duration length. In 50% of the experiments, congestion
lasted for more than 4 seconds, in 10%, for more than 8 seconds.

10 15 20 25 30

0
5

10
15

20

sec

R
TT
in
m
s

Figure 6.4: Median end-to-end latency over 30 TCP experiments. The dotted
vertical line denotes the update time. Latency-induced congestion is also detri-
mental for TCP flows, albeit for shorter time.

6.3. MODEL & PROBLEM SETTING 109

latency from the packets in flight along the slow path u − w − v which
was moved into the buffer at v after the switch. Figure 6.3 depicts the
CDF of the number of seconds it takes for congestion to disappear across
all experiments. In the majority of the cases, congestion appeared for more
than 4 seconds. In 10% of the case, the congestion lasted for 10 seconds or
more. This clearly shows that not accounting for latency (as SWAN [37] or
zUpdate [50]) can be highly detrimental for network traffic. Observe also
that with additional cross traffic at v, the congestion measured above will
last even longer.

Congestion did not appear when the rate of the UDP flow was below
50%. In these situations, the buffer drained nearly immediately after the
switch, together with the dropping of the additional delay.

Congestion also appears for TCP flows, but last shorter due to
congestion avoidance mechanisms. We now show that latency-induced
congestion also impacts TCP flows, which accounts for the vast majority of
the Internet traffic.

Figure 6.4 reports the evolution of the delay prior and after the update
when running 10 concurrent TCP connections between s and t instead of
one UDP connection. The effect of congestion (higher end-to-end delay) is
still clearly visible. It takes about 3 seconds for the flows to stabilize around
the minimum delay. This is explained as the throughput of TCP flows
fluctuates due to congestion avoidance mechanisms. As such, the link is not
perfectly filled all the time as some flows back off when they experience a
packet loss or receive three duplicate ACKs. Such backing off enables the
buffer to drain.

Our model precisely captures the practical effects measured. In all
our experiments, the amount of packets dropped and the maximum buffer
size at v was consistent with the terms 6.1, 6.2 with delays ranging from
2ms to 40ms.

6.3 Model & Problem Setting

We first define some common notation, such as network, latency, or flow,
before describing network updates in Subsection 6.3. Afterwards, in Subsec-
tion 6.3, we investigate why current systems overlook the effect of latency

110 CHAPTER 6. LOSSLESS FLOW MIGRATION

on network flow updates, leading to our own approaches in the subsequent
sections.

Network, graph, capacity, latency We define a network as a simple (i.e.,
no self-loops) directed graph with edge capacities.
Definition 16. Let G = (V,E) be a simple connected directed graph with
n = |V | nodes, representing the routers, and m = |E| edges, representing the
links. We denote the set of outgoing edges (v, u) of a node v ∈ V by out(v)
and the set of incoming edges (u, v) by in(v). A network N is a pair (G, c),
with c : E → R+ being a function assigning each edge e ∈ E a capacity of
c(e).

For ease of readability, we model delays in the network as latency on the
edges, i.e., the time it takes from arriving at some router to the next hop
along the path.

Definition 17. Let N = (G, c) be a network. The latency of N is a function
` : E → R+ assigning each edge e = (u, v) ∈ E a latency of `(e), with `(e)
being the time T it takes data to arrive at v from u.

Buffers We note that that besides not dropping packets due to edges being
over capacity, we also want to avoid congestion in the form of buffer build-
ups. As thus, we effectively model the available buffer sizes as zero, meaning
in turn that our methods will work for any current buffer utilization and
sizes.

Flows Next, we define an unsplittable flow according to the standard flow
constraints, i.e., demand satisfaction, flow conservation, and capacity con-
straints. As common in this context, we only consider cycle-free flows in
this chapter.

Definition 18. Let N = (G, c) be a network. A map F : E → R≥0 is called
an (unsplittable) flow (from s to t) if it is cycle-free and fulfills the standard
flow constraints, i.e.,

∀v ∈ V \ {s, t} :
∑

e∈out(v)
F (e) =

∑
e∈in(v)

F (e), (6.4)∑
e∈out(s)

F (e) = dF =
∑

e∈in(t)
F (e), (6.5)

∀e ∈ E : F (e) ≤ c(e), (6.6)

6.3. MODEL & PROBLEM SETTING 111

with dF being the size of F and the edges with F (e) > 0 forming a simple
path from s to t.
Definition 19. Let F1, F2, . . . , Fk be a set of unsplittable flows. F =
(F1, . . . , Fk) is called a multi-commodity flow, if for all edges e in E holds:∑k

i=1 Fi(e) ≤ c(e).

Network Updates
In this chapter we only consider network updates for flows, i.e., given a set
of old forwarding rules for some flow F , we want to change to a set of new
forwarding rules for another flow F ′.
Definition 20. Let N be a network and let F, F ′ be flows in N , both from
node s to t. A network update is a triple (N,F, F ′).

Atomicity of network updates We assume that the change from a flow
F to a flow F ′, both from s to t, is performed as an atomic operation
on the ingress router s. In practice, this can be achieved by a two-phase
protocol as described in, e.g., [68]: All forwarding rules in the network for
F ′ are installed by the SDN controller first. When these installations are
confirmed, the ingress router s will start tagging all packets, that previously
were marked with F , with F ′. Note that with this method, if the latency
from s to some node in the network is the same for F and F ′, the flow F ′

will arrive after F has departed already.

𝒗𝒔
latency = 1 latency = 1

𝒕

Figure 6.5: This picture depicts the network one time unit after the ingress router
s switches from F (solid) to F ′ (dashed).

Updates under known latency We can now define when a network up-
date is consistent under the effects of latency:
Definition 21. Let (N,F, F ′) be a network update where the ingress router
s switches from F to F ′ at time T = 0. Let ` be the latency of N . The
network update (N,F, F ′) is `-consistent, if there is no time T ≥ 0 s.t. the
capacity limit of some edge is violated at time T .

112 CHAPTER 6. LOSSLESS FLOW MIGRATION

For an example of Definition 21 being applied, consider the network
update in Figure 6.1: When the ingress router switches from F (solid path)
to F ′ (dashed path), the flow of F ′ is always behind F , until F ′ takes a
shortcut to v: Then, for a time equal to the latency differences between
both paths, the router v will have an incoming flow of 2, even though the
only outgoing edge has a size of 1. Thus, there will be congestion, and the
network update is not `-consistent.

Updates under unknown latency We will also cover the special case
that the latency of the network is unknown and say that a network update
is ∀-consistent if it is `-consistent for all `:

Definition 22. Let (N,F, F ′) be a network update where the ingress router
s switches from F to F ′ at time T = 0. The network update (N,F, F ′)
is ∀-consistent, if for all possible latencies ` of N holds: (N,F, F ′) is `-
consistent.

For a small example, consider the network in Figure 6.1: The network
update from F to F ′ is not ∀-consistent, and the reverse situation from F ′ to
F would not be ∀-consistent either, as the edges depicted with low latency
could have high latency and vice versa.

Effects on Current Systems

To the best of our knowledge, current network update mechanisms that aim
at lossless migration overlook at large the effects of latency in the network.1
Systems like SWAN keep their focus on the asynchrony caused by changing
multiple flows at once, which is not an atomic operation such as changing
just one flow. E.g., zUpdate defines a network update of multiple flows
F1, . . . , Fk to be lossless if the following condition holds:

∀e ∈ E :
∑

1≤i≤k
max

(
Fi (e) , F ′i (e)

)
≤ c (e) . (6.7)

Even though this is an elegant way to capture the asynchrony of different
flows Fi, Fj with each other, it does not account for flows Fi, F ′i congesting
the same edge due to latency. When considering Figure 6.1, all edges satisfy

1We note that flow scheduling systems, which by design do not move flows while
they are running, do not suffer from this problem.

6.4. CHECKING UNSPLITTABLE FLOW NETWORK UPDATES 113

Condition (6.7), yet there is congestion: For some time, the old flow F and
the new flow F ′ use the same edge outgoing from v, violating the edge’s
capacity.

Enforcing enough space for old and new flow A straightforward way
to “fix” Condition (6.7) would be to replace the maximum operation with
the addition operation similar to Definition 13 in the last chapter, i.e.,

∀e ∈ E :
∑

1≤i≤k

(
Fi (e) + F ′i (e)

)
≤ c (e) . (6.8)

Now, the network update in Figure 6.1 is no longer detected as lossless.
However, Condition (6.8) is “too strong”, cf. Figure 6.6: In this example,
there will be no congestion, as the flows do not meet again once they divert
from each other’s path. Yet, the network update in Figure 6.6 violates
Condition (6.8)!

𝒗

capacity = 1

size = 1

size = 1

𝒖

Figure 6.6: When changing from the solid (F) to the dashed path (F ′), Condition
(6.7) is satisfied on all edges, but Condition (6.8) is violated on the incoming edges
of u and v.

Thus, we need different methods to deal with congestion during network
updates, which will be covered in the next sections.

6.4 Checking Unsplittable Flow Network Updates

In this section, we will start by checking if a network update for unsplittable
flows is consistent for known latency values. Afterwards, we show how to
check the consistency of a network update if the latency in the network is
unknown.

Known Network Latencies
The main idea for `-consistent network updates for unsplittable flows can

114 CHAPTER 6. LOSSLESS FLOW MIGRATION

be described as follows: If the new flow F ′ utilizes some edge e while the old
flow F is still using edge e, then the capacity of e needs to be large enough
to accommodate both, i.e., F (e) + F ′(e) ≤ c(e). We refer to Figure 6.7 for
a first illustration, before giving an algorithm to solve the problem.

𝒔 𝒕
𝑐=2𝒗1 𝒗2

ℓ=4 𝒗3 𝒗4 𝒗5

𝑛𝑜 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑛𝑜 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

Figure 6.7: In this network, the solid line represents the old flow F , while the
dashed line represents the new flow F ′, both of size one. All edges have a delay
and capacity of one, unless denoted otherwise. On the edge (v1, v2) there is no
congestion, as F ′ arrives when the edge is not used anymore by F . For one time
unit F, F ′ are on the edge(v3, v4), but there is enough capacity for both flows.
On the last edge (v5, t) however, the capacity is violated for one time unit, as its
capacity is just one.

Theorem 17. A network update (N,F, F ′) is `-consistent if and only if the
∆max computed by Algorithm 8 is 0.

Proof. We start by assuming that the network update (N,F, F ′) is not `-
consistent and that Algorithm 8 will output that (N,F, F ′) is `-consistent.
Let T ∗ be the first time when the capacity of some edge ei = (vi−1, vi) is
violated, i.e., the capacity of all other edges will not be violated until time
T ∗.

The capacity of ei is violated because there is flow arriving at vi−1 from
F and F ′ at time T ∗, even though F (ei) + F ′(ei) > c(e) holds. However,
for that to happen, the latency of the path of F ′ from s to vi−1 needs to
be lower than the latency of the path of F from s to vi−1. This leads to a
contradiction, as Algorithm 8 checks exactly for this Condition.

We now consider the reverse case, i.e., that the network update (N,F, F ′)
is `-consistent and Algorithm 8 will output that (N,F, F ′) is not `-consistent.
The idea is essentially analogous, if Algorithm 8 detects a ∆max > 0 for some
edge, then the update cannot be `-consistent.

Runtime By choosing data structures with an O(1)-access time and all
input values being pre-sorted, Algorithm 8 can be implemented to run in

6.4. CHECKING UNSPLITTABLE FLOW NETWORK UPDATES 115

Input: A network N = (G, c), a latency `, and flows F, F ′ along the paths s =
v0, . . . , vp = t and s = v′0, . . . , v

′
p′ = t

1: Set latency at s to zero for F and F ′ with vF0 := 0 and v′F
′

0 := 0
2: for i← 1 to p do
3: vFi := vFi−1 + `((vi−1, vi)) . calculate latency for F
4: end for
5: for i← 1 to p′ do
6: v′F

′
i := v′F

′
i−1 + `((v′i−1, v

′
i)) . calculate latency for F ′

7: end for
8: ∆max := 0 . Initialize max latency error to 0
9: for ∀ (vi−1, vi) = (v′j−1, v

′
j) =: ei do . all edges in both F, F ′

10: if vFi−1 − v
′F ′
j−1 > ∆max and F (ei) + F ′(ei) > c(ei) then

11: ∆max := vFi−1 − v
′F ′
j−1

12: end if
13: end for
Output: ∆max

Algorithm 8: The algorithm computes for unsplittable flows F, F ′ how much
(∆max) the new flow F ′ has to be delayed s.t. F ′ will not utilize an edge that
F still uses with not enough capacity to support both F and F ′. Should ∆max
be > 0, then the network update (N,F, F ′) is not `-consistent, else (N,F, F ′) is
`-consistent.

linear time. Else, at most a logarithmic overhead needs to be added for
sorting the values.

Corollary 10. Algorithm 8 has a runtime of O(n logn).

Unknown Network Latencies
In this subsection, we will deal with unknown latency in the network, i.e.,
checking if a network update is ∀-consistent. A first thought could be to
re-use Algorithm 8, and just set the latency of all edges with F ′ to ε and
the latency of all edges with F to some arbitrarily large value ∞. However,
how do we deal with edges e where F (e) > 0 and F ′(e) > 0 holds?

We propose the following Algorithm 9, which checks for a first edge e
along the path of F after F ′ rejoins the path of F where F (e)+F ′(e) > c(e)
holds.

116 CHAPTER 6. LOSSLESS FLOW MIGRATION

Input: A network N = (G = (V,E), c), and flows F, F ′ along the paths s =
v0, . . . , vp = t and s = v′0, . . . , v

′
p′ = t

1: AWAY:=false . F ′ has not left the path of F yet
2: CONSISTENCY:=true . ∀-consistency not violated yet
3: for i← 1 to p do
4: if F ′((vi−1, vi)) = 0 then
5: AWAY:= true . F ′ has left the path of F
6: end if
7: if F ′((vi−1, vi)) + F ((vi−1, vi)) > c((vi−1, vi)) and AWAY= true then
8: CONSISTENCY:=false . ∀-consistency violated
9: end if

10: end for
Output: CONSISTENCY

Algorithm 9: The algorithm computes if the network update is ∀-consistent by
checking if F ′ rejoins the path of F on an edge without enough capacity

Theorem 18. The network update (N,F, F ′) is ∀-consistent if and only if
Algorithm 9 outputs true.

Proof. Recall that the flows F, F ′ are cycle-free. Assume that AWAY stays
as false forever. Then the path of F and F ′ is identical and the network
update (N,F, F ′) is ∀-consistent, i.e., the output is correct.

Now consider that AWAY gets set to false for the first time due to some
edge ej having the property F ′(ej) = 0. As the path of F and F ′ has been
identical before ej , ∀-consistency will not be violated if F and F ′ do not
share any further edges behind ej along the path of F or only edges e with
F (e) + F ′(e) ≤ c(e).

Assume that Algorithm 9 now outputs false. Then, there was a first
edge ej′ behind ej along along the path of F with F (ej′) +F ′(ej′) > c(ej′).
We define a latency ` as follows: All edges except ej have a latency of
some arbitrarily small ε and the edge ej has a latency of some arbitrarily
high value ∞. Now, after at least a time of n · ε, the utilization of F ′ on
ej′ is F ′(ej′) – but at the same time, the utilization of F on ej′ is F (ej).
As it holds that F (ej′) + F ′(ej′) > c(ej′), the considered network update
(N,F, F ′) is not ∀-consistent, which concludes the proof.

Runtime As only a path of length p ≤ n needs to be checked, it follows

6.5. CHECKING FOR A ∀-CONSISTENT MIGRATION 117

that the runtime is linear.

Corollary 11. Algorithm 9 has a runtime of O(n).

6.5 Checking for a ∀-Consistent Migration

So far, we just checked the losslessness for a single given network update,
for just a single unsplittable flow. However, if the update is not consistent,
maybe there is still a way to reach the desired flow by a migration with in-
termediate update steps, also handling multi-commodity flows? One central
problem appearing in this context is the asynchrony of updating multiple
flows at once: As the update happens in multiple parts of the network, a
completely synchronized update is not possible, the individual routers could
execute their updates in any ordering, cf. [36,42,49].

Unsplittable ∀-consistent migration is NP-hard For both the cases
of the flows only being allowed to be either on the old or new path, or
also allowing arbitrary flow reroutings, the constructions in the previous
Sections 4.2 and 5.3 can be easily adapted to show that unsplittable lossless
migration is NP-hard to decide for unknown latencies. Hence, we will allow
the splitting of flows to turn the migration problem tractable.

Splitting flows vs. n-splittable flows A natural approach, inspired from
mathematical flow theory, is to allow a single flow to be splittable: I.e., the
flow packets arriving at routers are to be split according to some pre-set
distribution.

However, the standard hash based flow splitting is not exact from a
theory point of view: It is based on probabilistic assumptions, meaning
that in practice, there can be a sequence of packets which will not be split
according to the pre-set distribution. As we do not want to drop packets, we
are going for another approach, as done by, e.g., [41]: We will split each flow
into at separate (unsplittable) flow paths, each having its own flow rules,
totally eliminating any probabilistic splitting.

Linear programming vs combinatorial algorithms Linear program-
ming is currently the method of choice when considering flow migration in
partial stages, cf., e.g., [37, 50, 86]. We see two main problems with this
approach:

118 CHAPTER 6. LOSSLESS FLOW MIGRATION

1. The number of possible unsplittable flow paths in a graph can be
exponential. As thus, when checking for all path options (e.g., when
adopting the LP formulation in [86] for our case), the LP grows to be
of exponential size.

2. The number of intermediate updates for a lossless migration can be su-
perpolynomial. As thus, an LP calculating the intermediate steps will
take superpolynomial runtime too, and cannot decide if a migration
is possible at all. E.g., SWAN [37] performs a binary search over the
number of intermediate steps, with the corresponding halting problem
addressed in Chapter 4, while the work in [86] takes the number of
intermediate steps as an input.

Therefore, inspired by our two previous chapters, we will take a combi-
natorial approach, checking for intermediate flow placements in a lossless
manner.

∀-consistent migration In the following, we will speak about splittable
flows, but each splittable flow Fi is in reality a collection of unsplittable
flows Fi,1, Fi,2 . . . from si to ti. A ∀-consistent migration will begin and end
with a set of unsplittable multi-commodity flows F , F ′, but in intermediate
updates, each flow Fi can consist of multiple paths:
Definition 23. A sequence of r ∀-consistent network updates (N, (F1, . . . , Fk),
(F 1

1 , . . . , F
1
k)), (N, (F 1

1 , . . . , F
1
k), (F 2

1 , . . . , F
2
k)), . . . , (N, (F r−1

1 , . . . , F r−1
k), (F ′1,

. . . , F ′k)), with dFi = dF ′
i

= d
F

j
i

for all 1 ≤ i ≤ k and 1 ≤ j ≤ r−1, is called
a ∀-consistent migration (from F = (F1, . . . , Fk) to F ′ = (F ′1, . . . , F ′k)).

Should dFi > dF ′
i
, then one could first reduce the size of dF to the one

of dF ′ before migrating, or vice versa for dF < dF ′ .

Let’s generate slack A key concept used by [37] is the concept of slack,
i.e., free capacity on the edges. When we speak about slack s, we mean free
capacity of size s, while relative slack sR denotes a free fraction of capacity.
One of the central ideas by SWAN [37] is that (lossless) migration is easy if
there is relative slack sR on every edge: E.g., if sR is 1/10, one can migrate
in 9 ∀-consistent updates by moving 10% of the flow utilization each time
to the new flow rules, never breaking any capacity constraints.

We note that for ∀-consistent updates, we can weaken this requirement
of all edges having slack: Given an old flow Fi ∈ F and a new flow F ′i ∈

6.5. CHECKING FOR A ∀-CONSISTENT MIGRATION 119

F ′, we introduce the concept of a divergence node vF,F ′ . For the old flow
path PFi and the new flow path PF ′

i
, the divergence node vF,F ′ is the first

node, starting from si along both paths, beyond which both flows take a
different edge to continue. E.g., in Figure 6.6, the divergence node is v.
For completeness reasons, we define vF,F ′ to be ti if PFi = PF ′

i
. As both

flows are the “same” until vF,F ′ , we do not need any slack until vF,F ′ when
migrating between Fi and F ′i . Note that other flows on these edges might
enforce the need for slack though when using the method of SWAN.

In the following Algorithm 10 we will give a method to check how slack
can be generated on as many edges as possible under the restriction of ∀-
consistent network updates:

Input: Network N and m.-c. flow F = (F1, . . . , Fk).
1. For every edge e = (u, v) without slack, check via BFS if there is a flow Fi,j

on e s.t. there is a path P with slack s > 0 from u to ti. If yes, let w be the
node in Fi,j closest to si if you travel along Fi,j , that is also contained in P .
Let P ′ be the subpath of P from w to ti. Perform a network update where
Fi,j is split into two by reducing the size of Fi,j by min

{
dFi,j

/2, s/2
}

and
adding a new unsplittable flow of size min

{
dFi,j

/2, s/2
}

along the path of
Fi,j to u and then via P ′ to ti.

2. Repeat Step 1 until either all edges have slack or there has been one iteration
of Step 1 without any network updates (i.e., all edges without slack were
checked for all flows).

Output: The obtained m.-c. flow F∗ = (F ∗1 , . . . , F ∗k).

Algorithm 10: The algorithm creates slack on every edge where slack can be
created by a sequence of ∀-consistent network updates. Note that the slack gen-
eration is non-destructive in the sense that if an edge has slack at some point, it
will always keep some slack greater than zero.

Lemma 10. Using ∀-consistent updates, Algorithm 10 creates slack on ev-
ery edge where slack can be created via a ∀-consistent migration.

Proof. Observe that the performed network updates by Algorithm 10 are
∀-consistent, as flows are only split and rerouted via paths of free capacity.
Assume that there exists some ∀-consistent migration M that creates slack
on further edges: Consider the first update U of M where free capacity on

120 CHAPTER 6. LOSSLESS FLOW MIGRATION

an edge e′ was created where Algorithm 10 was not able to create slack. In
U , a flow F using e′ is rerouted (partially) along some path P not containing
e′. Denote the flow induced in M before U was applied by FU . F∗ has slack
on every edge where FU has slack as well. As thus, we can also reroute F
(partially) along the same path P , inducing slack on e′.

Complexity of slack generation Observe that Algorithm 10 creates slack
on at least one edge when a new flow (path) is introduced. As thus, at most
|E| = m new flows are created with at most m network updates. Note that
each flow is split at most n times. Furthermore, a BFS can be performed in
O(m) time. With O(n) destinations and m edges, the total computational
runtime is therefore O(nm3).

Corollary 12. Algorithm 10 has a runtime of O(nm3), performing at most
m network updates and introducing at most m new flows.

We can now use Algorithm 10 to check (and in the positive case, perform)
for a ∀-consistent migration. The idea is as follows: We see if we can create
slack on all edges beyong the divergence points of the old and new flows. If
yes, we can migrate between these two states step by step using the slack
method of SWAN. Else, no ∀-consistent migration is possible.

Lemma 11. If Algorithm 11 performs a migration it is ∀-consistent, else
no ∀-consistent migration is possible.

Proof. We begin by showing that the migration is ∀-consistent. The migra-
tion via Algorithm 10 is ∀-consistent due to Lemma 10. Note that every
∀-consistent network update is also ∀-consistent if applied in reverse. Hence,
using Algorithm 10 in reverse is a ∀-consistent migration as well. Lastly,
when using the SWAN method, we only insert an amount of flow to edges
that is at most the available slack, which is ∀-consistent.

We now show that else no ∀-consistent migration is possible. Assume
that for some i there is an edge e∗ behind vFi,F

′
i

in Fi s.t. Algorithm 10
cannot induce slack on e∗ for F (the symmetric case for F ′i and F ′ can be
handled analogously due to the reversibility of ∀-consistent updates), but
that there is a ∀-consistent migration M from F to F ′. As e∗ is behind
vFi,F

′
i
, there must have been some update U in M that reroutes some part

of Fi going along e∗. The rerouted flow part cannot use e∗ directly after

6.5. CHECKING FOR A ∀-CONSISTENT MIGRATION 121

Input: Network N and m.-c. flows F ,F ′.
1. Execute algorithm 10 on N and F .
2. For every corresponding pair of flows Fi ∈ F , F ′i ∈ F

′, check if all edges
behind vFi,F

′
i

in Fi have slack in the output of Step 1.

3. Repeat Steps 1, 2 for F ′ instead of F .
4. If the answer is yes in both executions of Step 2, then migrate from F to F ′

as follows. Else, no ∀-consistent migration is possible.

(a) Migrate from F to F∗ as described in Algorithm 10.
(b) Migrate from F∗ to F ′∗ using the technique from SWAN.
(c) Migrate from F ′∗ to F ′ using Algorithm 10 in reverse.

Output: A ∀-consistent migration from F to F ′, if it exists.

Algorithm 11: The algorithm first utilizes two executions of Algorithm 10 to
check if a ∀-consistent migration is possible. If yes, then the algorithm proceeds
in three steps by first creating slack on F , migrating to a modified version of F ′
with slack, and lastly migrating to F ′, all with ∀-consistent network updates.

U , as ∀-consistency requires some slack on e∗. Thereby, U could be used to
create slack on e∗, which is a contradiction to the above assumption.

Complexity of ∀-consistent migration Note that the number of network
updates and new flow rules created by the executions of Algorithm 10 are
at most 2m, respectively. When migrating between F∗ and F ′∗, no further
flow rules are needed for the updates of the SWAN method. The number
of network updates for this step are d1/sRe, with sR being the smallest
relative slack of F∗ and F ′∗. For the computational runtime, note that the
implicit schedule generation of the SWAN method (perform d1/sRe network
updates of the same type) is dominated by the executions of Algorithm 10
with runtimes of O(nm3).
Corollary 13. Let sR be the smallest relative slack created by Algorithm
10 on F ,F ′. Algorithm 11 performs at most d1/sRe+ 2m network updates
with at most 2m additional flows. The runtime for the (implicit) schedule
generation is O(nm3).

Waypoint enforcement Lastly, we note that in the current form, our

122 CHAPTER 6. LOSSLESS FLOW MIGRATION

migration algorithm does not respect waypointing (e.g., firewalls) or service
chains in general, cf. [54]. However, observe that each intermediate (splitted)
flow has its own forwarding rules, as we use the method of [68]. As thus, we
can extend our migration algorithm to enforce such rules. E.g., intermediate
paths are only allowed if they pass a firewall.

6.6 Checking for a `-Consistent Migration

In the previous Section 6.5, we checked for ∀-consistent migrations using
splittable flows. While every ∀-consistent network update is `-consistent by
definition, the reverse is not true, cf. Figure 6.1. However, the problem of
a lossless migration becomes intractable for `-consistency, even for a single
splittable flow.

`-consistent migration is NP-hard The problem of checking for a `-
consistent migration is already hard for a single flow, due to a reduction from
the Hamiltonian path problem. Essentially, in order to find an alternative
path on where to temporarily store the current flow, one needs to find a
longer path, which is intractable.

Theorem 19 ([29]). Let G = (V,E) be a graph. The problem of finding
a cycle-free path of |V | − 1 edges in G, denoted as Hamiltonian path, is
NP-hard.

Theorem 20. Deciding if a `-consistent migration from F to F ′ exists is
NP-hard.

Proof. Let I = (G = (V,E)) be an instance of the Hamiltonian path
problem, with |V | = x+2 nodes. We construct an instance I ′ for `-consistent
migration, which is solvable if and only if I contains a Hamiltonian path (of
length x+ 1). The idea of the construction is depicted in Figure 6.8.

I ′ contains G = (V,E) and seven additional nodes s, t, z, w,w′, u, u′. s
has outgoing edges to all nodes of V with a latency of 1, while w has incoming
edges from all nodes of V with a latency of 1 as well. Furthermore, there
are edges (s, u′), (s, u), (u′, u), (u, z), (z, w′) and (w, t), with a latency of 1
too, but the edges (z, w) and (w′, w) have a latency of x. All edges in I ′

have a capacity of 1. The flow F of size 1 is routed via s−u′−u−z−w− t,
while the flow F ′ of size 1 is to be routed via s− u− z − w′ − w − t.

6.6. CHECKING FOR A `-CONSISTENT MIGRATION 123

𝒘

capacity = 1

size = 1

size = 1

𝒖𝒔

𝒖′

𝑮

Latency of x
𝒕

𝒘′

𝒛

Figure 6.8: In this network, the task is to migrate in a `-consistent way from the
flow F , depicted in solid blue, to the flow F ′, depicted as a blue dashed path. All
edges have a capacity of 1 and a latency of 1, except for (z, w) and (w′, w) with a
latency of x. The only way to migrate in a `-consistent fashion is if there is a path
P via G from s to w that has a length of exactly x+ 3. Then, one can migrate F
to P − w − t, and then to F ′, both of which are `-consistent updates.

Observe that a network update from F to F ′ is not `-consistent, as the
capacity of (u, z) will be violated for some time. It would be possible to
update F to be routed via w′, but then the flow between s and w has a
latency of x+ 4 instead of x+ 3.

As thus, the only option is to find an alternate path of length ≥ x + 3
from s to u via G. However, such a path only exists if and only if G contains
a Hamiltonian path H of length x+1 Then, one can update in a `-consistent
way to s−H−w−t, and then to F ′, as the latency for both to w is x+3.

Note that the above proof of Theorem 20 still works even if the flows are
splittable (during the migration), as the problem of finding a longer path
remains. Additionally, both edges of latency x could be replaced with a
path of length x, where each edge has a latency of one.

Corollary 14. Deciding if a `-consistent migration from F to F ′ exists is
NP-hard, even for splittable flows and all edges having unit latency.

Furthermore, if the nodes u′, w′ are removed, then it would be NP-hard
to decide if there is any alternative path at all to which one can update:

Corollary 15. Deciding if any flow F ′ exists s.t. the network update (N,F, F ′)

124 CHAPTER 6. LOSSLESS FLOW MIGRATION

is `-consistent is NP-hard, even if the flows are splittable and all edges have
unit latency.

Mitigating the longest path problem If we examine the polynomial
computation time migration Algorithm 11 from Section 6.5, then it leaves
the tractable realm when looking for alternative intermediate paths: All the
∀-consistent updates still work, but with `-consistency, we can also perform
updates such as from the dashed to the solid flow in Figure 6.1. If we
could solve the problem of finding a longest path (which is NP-hard as
well, [29]), we could decide if intermediate `-consistent updates exist. In
general though, no better approximation ratio for the longest path than n1−ε

exists for directed graphs unless P=NP [8], even if all weights are uniform.
However, there are special cases where a polynomial time algorithm for
the longest path problem is possible: The easiest one is if the number of
paths in total is polynomial, as then we could check all possibilities. If the
path length is bounded by a constant, then one could resort to dynamic
programming, as the problem is fixed-parameter tractable, e.g., [9]. Lastly,
should the longest path be of at most logarithmic edge length, one can use
color-coding to find it in polynomial time [2].

6.7 Summary

We give the first study of network updates for flows under the effect of edge
latencies. Our measurements show that packet loss and extended end-to-end
latency appear in practice, for both UDP and TCP flows – to which existing
frameworks are oblivious. We perform an extensive theoretical analysis and
give algorithms to check if a network update is lossless for splittable flows
for both known and unknown latencies.

Should a single network update not be consistent, we explore if a se-
quence of lossless intermediate update exists that lead to the desired migra-
tion. By allowing the multi-commodity flows to be temporarily split along
a linear number of extra paths, we can give the first complete polynomial
time algorithm for lossless updates under unknown latencies. Previous ap-
proaches were not lossless, not complete, or used exponential runtimes. For
the case of known latencies, we proved that already the migration of a sin-
gle splittable flow is NP-hard, and give methods how to find alternative
intermediate paths in practice.

7
Augmenting Flow Migration

In this chapter, we study flow migration using the concept of flow augmen-
tation algorithms. While augmenting s-t flows of a single commodity is
a well-understood concept, we study updating flows in a multi-commodity
setting.

After discussing the motivation and background in Sections 7.1 and 7.2,
we continue with the model Section 7.3, where we formally define the flow
migration problem discussed in this chapter: Given a directed network with
flows of different commodities, how can the capacity of some commodities be
increased, without reducing capacities of other commodities, when moving
flows in the network in an orchestrated order? To this extent, we show in
Sections 7.4 how the notion of augmenting flows can be efficiently extended
to multiple commodities for applications with a single logical destination.

We develop algorithms for two settings, first for consistent migration in
Section 7.5, and then for lossless migration in Section 7.6, the latter trading
additional updates for dealing with packets in-flight.

125

126 CHAPTER 7. AUGMENTING FLOW MIGRATION

Maybe the most fundamental take-away message is that both consistent
and lossless migration to new demands is always possible in a polynomial
number of updates in this context: For the related problem of migration to
a new specific flow, no consistent/lossless solution has to exist, and even if,
the number of updates needed can be unbounded.

Lastly, we prove the consistent/lossless migration to new demands to be
NP-hard for unsplittable flows (Section 7.7), and discuss extensions for the
case of multiple source-destination pairs (Section 7.8).

7.1 Motivation

The rise of Software Defined Networks (SDNs) has sparked an increasing
interest in applying network flow algorithms. In contrast to networks that
use standardized distributed protocols, SDNs allow for utilizing the available
bandwidth almost completely. The algorithmic tool to manage network
traffic in an efficient way is provided by flow algorithms.

Since network traffic is highly dynamic, existing SDN solutions [11, 37,
41, 42, 50] frequently re-compute the optimal way to route traffic demands,
usually using an approach based on linear programming (LP), often accept-
ing the overhead that a new solution will re-route many existing flows that
did not change their demands.

However, these approaches (and our own in the previous chapters) are
oblivious to how the new demands should be managed: A new network
configuration is output by some LP, and the task of the network updates is
to migrate to this new configuration, no matter the cost.

In this chapter we propose to abandon these oblivious solutions in fa-
vor of path augmentation, a technique developed and studied primarily in
the era of The Beatles. Even though path augmentation is still taught in
introductory lectures, little research has been devoted to it since, proba-
bly because more versatile (and also polynomial-time) LP-based techniques
were introduced.

We believe that SDNs should be managed in an incremental way. If a
commodity (a source-destination node pair) wants to reduce its bandwidth,
we can simply do that without harm. If a commodity wants to increase its
bandwidth (or a new commodity is introduced to the network), we try to
increase its flow by using path augmentation. Maybe we are lucky, and the

7.1. MOTIVATION 127

increased demand fits without changing any of the other flows. Maybe we
are less lucky, and re-routing (also called migration) of some other flows is
necessary, conceivably even recursively.

Understanding flow migration is still in its infancy: It is not clear in
general (1) to what solution one should actually attempt to migrate, and
(2) how to reasonably bound the migration time.

Moreover, there is another problem: Apart from a few exceptions that
we discuss in the background section, path augmentation was only devel-
oped for s-t-flow problems with a single commodity. In real networks we
have multiple commodities, so we first need to generalize path augmentation
to flow augmentation, a path augmentation technique supporting multiple
commodities.

It turns out that generalizing path augmentation is not as easy as one
may hope. As Hu notes in his influential article [38], “it is unlikely that
similar techniques can be developed for constructing multicommodity flows”.

This is why this article focuses on an important case of multi-commodity
flow, the so-called anycast problem, cf. [76]. In the anycast problem, we have
different commodities, one for each source node. All these commodities must
be routed to an arbitrary set T of destination nodes. In contrast to gen-
eral multi-commodity flow problems, it does not matter which commodity
ends up at which destination, as long as the destination is in the set T .
Commodities may route to any destination of the set T , hence anycast.

Using popular terminology, think of T as the set of servers of a cloud
provider; customers do not care which server gets the (potentially enor-
mous [85]) data, as long as “the data gets to the cloud”.

Applying our method of flow augmentation, we develop an efficient al-
gorithm for consistently migrating to any desired feasible set of traffic de-
mands. We require only one augmenting flow per commodity, minimizing
network overhead. Thus, for the anycast setting, we solve both issues (1), (2)
mentioned above.

Furthermore, we show that our method can also be extended to stronger
notions of consistency, by adding a polynomial number of intermediate up-
dates to the flow migration. Lastly, we also prove that the consistent mi-
gration problem to new demands turns out to be NP-hard for unsplittable
flows.

128 CHAPTER 7. AUGMENTING FLOW MIGRATION

7.2 Flow Augmentation Background

The notion of augmenting paths for single-commodity flows has been in-
troduced in the seminal works of Ford and Fulkerson [21, 22], with their
concepts influencing thousands of publications to this day.

Hu [38] studied augmenting paths for a two-commodity setting and gen-
eralized the results of Ford and Fulkerson to maximize the simultaneous flow
of two commodities. By limiting the problem to just two commodities, he
introduced so-called backward and forward paths, which together allow for
an augmentation of the network.

Furthermore, in 1978, shortly before the celebrated publication of the
Ellipsoid method [46], Itai [39] published an improved version of Hu’s two-
commodity flow algorithm and showed that maximizing a two-commodity
flow is as difficult as linear programming in the sense that they are polyno-
mially equivalent.

However, while many further results were published for multi-commodity
flow problems in general and augmenting path algorithms for the case of
single-commodity flow problems in particular, the application of augmenting
paths to multi-commodity flow problems has been sparse.

Rothfarb et al. applied augmenting paths in the following way [71]: To
maximize multi-commodity flows with just one destination t, they added a
logical super-source s, considered all commodities as the same commodity
with new source s, and then solved the obtained single-commodity flow prob-
lem using the standard augmenting path method. Afterwards, the single-
commodity flow is split into a multi-commodity flow again, using arc-chain
decomposition. Since the arc-chain decomposition is independent of the
initial flow, possibly all single-commodity flows are re-routed completely,
even though already a small modification might have been sufficient. Fur-
thermore, their algorithm does not deal with the problem of asynchrony in
SDNs (which is not surprising, considering the concept of SDNs was still
decades away), and as thus, will induce congestion if used for migration.

7.3 Model

We consider a network as a directed graph with edge capacities. For the defi-
nition of a multi-commodity flow, we first need to define a single-commodity
flow via the usual flow constraints:

7.3. MODEL 129

Definition 24. Let G = (V,E) be a simple connected directed graph with
|V | = n nodes and |E| = m edges. Denote the set of edges outgoing from a
node v ∈ V by out(v) and the set of incoming edges by in(v). A network is
a pair N = (G, c) where c : E → R+ is a map assigning each edge a positive
capacity. We call a pair of distinct nodes s, t ∈ V a commodity K. We
define a single-commodity flow for K as a map F : E → R≥0 s.t.

F (e) ≤ c(e) for all e ∈ E, (7.1)∑
e∈out(v)

F (e) =
∑

e∈in(v)

F (e) for all v ∈ V \ {s, t}, (7.2)

∑
e∈out(s)

F (e) = dF =
∑
e∈in(t)

F (e), (7.3)

where dF is called the demand of K (w.r.t. F). We also call dF the size of
F .

We now extend the definition of a single flow to multi-commodity any-
cast, for which we encompass all nodes in T in a single node t. Our results
can be applied analogously to the “edge reversed” model variant, where an
arbitrary set of source nodes S routes multiple commodities to their assigned
distinct destinations.
Definition 25. Let N be a network and let Ki = (si, t) be commodities
where s1, s2, . . . , sk, t ∈ V are pairwise distinct nodes. Then we call a tu-
ple K = (K1,K2, . . . ,Kk) a multi-commodity. Let Fi be a flow for the
commodity Ki for all 1 ≤ i ≤ k. A tuple F = (F1, . . . , Fk) is called a
multi-commodity flow for K if

k∑
i=1

Fi(e) ≤ c(e) for all e ∈ E. (7.4)

We will assume in the following that all considered flows are cycle-free.
In the presented algorithms, cycles may appear temporarily, but will always
be explicitly removed. In particular, this implies that

∑
e∈in(s) F (e) = 0 =∑

e∈out(t) F (e) if dF > 0. For the sake of simplicity, we assume that this
equation also holds for the case of dF = 0 (which is a natural assumption
from a practical point of view as we want to study the traffic from a source
s to a destination t).

130 CHAPTER 7. AUGMENTING FLOW MIGRATION

Definition 26. We call a flow F cycle-free, if there is no directed cycle C
in N s.t. F (e) > 0 for all e ∈ C.

Lastly, we will need the concept of a partial flow in the following sections:

Definition 27. Let F be a single-commodity flow for the commodity K =
(s, t) and let v ∈ V . We call a flow F ′ for the commodity K′ = (v, t) a
partial flow of F starting in v if the following conditions hold:

F ′(e) ≤ F (e) for all e ∈ E

F ′(e) = F (e) for all e ∈ out(v)
Furthermore, we call a flow F ′′ for the commodity K a subflow of F if
F ′′(e) ≤ F (e) for all e ∈ E.

Note that, since we assume all considered flows to be cycle-free, all the
traffic leaving v (in the flow F) must finally end up in t which implies that
(for each v ∈ V) there exists a partial flow of F starting in v.

Consistent Migration
From a conceptual point of view, our following definition of the term con-
sistent migration in this chapter is the same as before in Definition 11.
However, due to the nature of network model in this chapter, we slightly
change the notation s.t. our upcoming proofs can be more concise and easy
to follow:

Definition 28. Let N be a network and let F = (F1, . . . , Fk), F ′ =
(F ′1, . . . , F ′k) be multi-commodity flows for the multi-commodity K s.t. dFi ≤
dF ′

i
, 1 ≤ i ≤ k. The tuple (N,F ,F ′) is a consistent migration update from

F to F ′ if
k∑
i=1

max
(
Fi(e), F ′i (e)

)
≤ c(e) for all e ∈ E. (7.5)

A consistent migration from F to F∗ is a sequence of consistent migration
updates (N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F∗).

Note that for each K ∈ K the demand of K w.r.t F ,F1, . . . ,Fj ,F∗ is
non-decreasing. If the demand of flows was smaller in F ′, then one would
drop corresponding parts of the flows before migration.

7.4. AUGMENTING FLOWS FOR MULTIPLE COMMODITIES 131

7.4 Augmenting Flows for Multiple Commodities

In the case of one source and one destination, it is well-known [22] how to
use an obtained augmenting path P in order to transform a given flow into
a new enhanced flow whose size is increased by the “capacity” of P . When
we have multiple sources, the “standard” augmenting path does not account
for moving multiple commodities at once, since it is only defined to modify
the flow of a single commodity.

In the following Definition 29, we define an augmenting flow for the
case of a multi-commodity flow where we have multiple sources (but only
one destination). The augmenting flow may use edges from the residual
network, which is created by adding a back-edge in the reverse direction
for every edge with some flow on it, cf. the dashed edges in Subfigure 7.1b.
Note that while the augmenting flow may use these back-edges, there will
be never any “real” flow routed over these edges, as they are not part of the
physical network and just used for our algorithms.

We further introduce the notion of a farthest back-edge which is a back-
edge used by the augmenting flow “after which” the augmenting flow only
uses forward edges.

Definition 29. Let N be a network and let F be a multi-commodity flow
for the multi-commodity K. We denote by G the graph obtained from G by
adding an edge e∗ = (v, u) to G for any edge e = (u, v) ∈ E. Let E∗ be
the set of all newly added edges. If an edge e∗ ∈ E∗ starts and ends in the
same vertices as some edge in E, we still consider them as distinct edges.
Set N :=

(
G, c
)

where c(e∗) := c(e) := c(e) for all e ∈ E. Let K ∈ K.
We call a cycle-free (single-commodity) flow FA for K in N an augmenting
flow w.r.t. F if FA(e) ≤ c(e) −

∑
F∈F F (e) and FA(e∗) ≤

∑
F∈F F (e) for

all e ∈ E. Set E∗FA
:= {e∗ ∈ E∗|FA(e∗) > 0}. We call an edge (u, v) ∈ E∗FA

a farthest back-edge if there is no path P from v to t s.t. for all edges e ∈ P
we have FA(e) > 0 and there is an edge e∗ ∈ P with e∗ ∈ E∗FA

. Since FA is
cycle-free, such a farthest back-edge exists if E∗FA

6= ∅.

Note that in this article, such an augmenting flow always “belongs” to a
specific commodity K contained in the respective multi-commodity.

We develop a technique in the following Algorithm 12 to transform the
given multi-commodity flow step by step into a multi-com-modity flow where
the flow size for K is increased by the size of the augmenting flow, see

132 CHAPTER 7. AUGMENTING FLOW MIGRATION

(a) Initial network with just one flow
from s1 to t. Currently, there is no
space for a flow from s2 to t, the red
flow needs to be moved first.

(b) An augmenting flow for s2 is
found from s2 to t, using a dashed
edge in G that pushes the red flow
back to the top.

(c) After the red flow has been
pushed to the top, the resulting green
augmenting flow uses only “real”
edges from the network. Thus, in a
next step, it can be replaced with a
proper “real” flow.

(d) The resulting flows are feasible
and use only edges in the “real”
network, none of the (hidden) dashed
ones from G.

Figure 7.1: In this small introductory example network to illustrate augmenting
flows, all edges have a capacity of one and all flows have a size of one. The solid
edges are the “real” edges in the network N , while the dashed edges in Subfigure
7.1b exist just in G: A reverse edge for every edge with some flow on it. Dashed
edges from G are never used for routing, they are just used to find augmenting
flows. If the task is to add a flow from s2 to t, then one searches for an (augmenting)
flow from s2 to t – but not just in N , the dashed edges from G are allowed as well.

7.4. AUGMENTING FLOWS FOR MULTIPLE COMMODITIES 133

Theorem 21. A very small introductory example is given in Figure 7.1.
We show that the transformation steps correspond to consistent migration
updates, thus proving that the new (multi-commodity) flow can be obtained
from the old one by a consistent migration.

The general idea is as follows: Given a multi-commodity flow and an
augmenting flow, Algorithm 12 will perform a consistent migration update
(Lemma 17) in the network.1 Essentially, one execution of Algorithm 12 will
process one edge of the augmenting flow. As the augmenting flow can have
at most m = |E| edges, the augmenting flow will be inserted consistently
after a linear number of iterations of the algorithm (Theorem 21). We refer
to Figure 7.2 for an advanced illustration of Algorithm 12.

In the following, we will state and prove various lemmas to lastly prove
Theorem 21 in this section. We begin with Lemma 12 and Lemma 13,
which state that the new augmenting flow F ′A will not violate the capacity
constraints set in Definition 29:

Lemma 12. F ′A(e) +
∑

F ′∈F′ F
′(e) ≤ c(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. F , it holds that FA(e) +∑
F∈F F (e)

≤ c(e) for all e ∈ E. Thus, after step 1 we have F ′A(e)+
∑

F ′∈F′ F
′(e) ≤ c(e)

for all e ∈ E. In step 2, F ′A(e) +
∑

F ′∈F′ F
′(e) remains unchanged for all

e ∈ E. In steps 3, 4, and 5 this is also the case since for each e ∈ E, F ′A(e)
is diminished by the same amount by which

∑
F ′∈F′ F

′(e) grows larger,
resp. vice versa. As the cycle removals in step 6 can only diminish the
above sum, we obtain Lemma 12.

Lemma 13. F ′A(e∗) ≤
∑

F ′∈F′ F
′(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. the multi-commodity flow F ,
it holds for F ′A(e∗) that F ′A(e∗) ≤

∑
F ′∈F′ F

′(e) for all e ∈ E after step
1. In step 2, both

∑
F ′∈F′ F

′(e0) and F ′A(e∗0) are diminished by F ′A(e∗0),
while nothing changes for the edges e 6= e0. In step 3,

∑
F ′∈F′ F

′(e) cannot
decrease, while F ′A(e∗) cannot be increased. Thus, at this point, F ′A(e∗) ≤∑

F ′∈F′ F
′(e) still holds for all e ∈ E. In step 4, the left hand side of the

1The calculation of the corresponding augmenting flow for Algorithm 12 is discussed
in Section 7.5. Essentially, we will calculate one augmenting flow per commodity that
needs to be augmented, and apply Algorithm 12 sequentially.

134 CHAPTER 7. AUGMENTING FLOW MIGRATION

Let N be a network and F = (F1, . . . , Fk) be a multi-commodity flow for the multi-
commodity K = (K1, . . . ,Kk). Let FA be an augmenting flow w.r.t. F for some
commodity (s, t) = K ∈ K. Let E∗FA

be non-empty and let (u0, v0) = e∗0 ∈ E
∗
FA

be a farthest back-edge. Let Fk1 , ..., Fkq ∈ F , k1 < · · · < kq be the flows2 which
assign the edge e0 (i.e., the edge which induced the adding of e∗0 to G) a non-zero
value, i.e., the flows which are present on this edge. Let r be the smallest index such
that

∑r

z=1 Fkz (e0) ≥ FA(e∗0). Set U := FA(e∗0)−
∑r−1

z=1 Fkz (e0). We migrate to
a new multi-commodity flow F ′ = (F ′1, . . . , F ′k) for K and a new augmenting flow
F ′A w.r.t. F ′ as follows:

1. Begin by setting F ′y(e) := Fy(e) for all e ∈ E and all 1 ≤ y ≤ k, and
F ′A(e) := FA(e) for all e ∈ E ∪ E∗.

2. Redefine F ′ on e0 and F ′A on e∗0: Set F ′kz
(e0) := 0 for all 1 ≤ z ≤ r − 1,

F ′kr
(e0) := F ′kr

(e0)− U , and F ′A(e∗0) := 0.

3. Choose a partial flow of FA starting in v0 and choose a subflow Fa (of this
partial flow) of size FA(e∗0). (Note that Fa(e∗) = 0 for all e∗ ∈ E∗ because
e∗0 is a farthest back-edge.) Decompose Fa in r subflows F

(1)
a , . . . , F

(r)
a

of sizes Fk1 (e0), . . . , Fkr−1 (e0), U such that, for each edge e ∈ E, we have∑r

z=1 F
(z)
a (e) = Fa(e). Now set F ′kz

(e) := F ′kz
(e)+F (z)

a (e) for all 1 ≤ z ≤ r
and all e ∈ E, and set F ′A(e) := F ′A(e)− Fa(e) for all e ∈ E.

4. For all 1 ≤ z ≤ r, choose a partial flow of Fkz starting in u0 and choose
a subflow F (z) (of this partial flow) of size Fkz (e0) if z 6= r and of size
U if z = r. Then replace these subflows by the augmenting flow, i.e., set
F ′kz

(e) := F ′kz
(e)−F (z)(e) for all 1 ≤ z ≤ r and all e ∈ E, and set F ′A(e) :=

F ′A(e) +
∑r

z=1 F
(z)(e) for all e ∈ E.

5. Replace possible cycles for flows in F ′ by cycles for F ′A: If there is some
flow F ′ ∈ F ′ which is not cycle-free, then find a (directed) cycle C s.t.
F ′(e) > 0 for all e ∈ C. Set F ′(e) := F ′(e) −mine′∈C F ′(e′) for all e ∈ C,
thus “removing” the cycle, and set F ′A(e) := F ′A(e) + mine′∈C F ′(e′) for
all e ∈ C. Continue removing (and replacing) cycles in this way (for all
flows in F ′) until there are no cycles left in F ′. (Note that the removal of
a cycle implies that there is some edge e which changes in the process from
F ′(e) > 0 to F ′(e) = 0. Thus, all flows contained in F ′ are cycle-free after
removing at most O(mk) cycles.)

6. Remove possible cycles for F ′A: First remove cycles for the flow F ′A which
consist only of an edge e ∈ E and its corresponding edge e∗ ∈ E∗, until no
such cycles remain. Subsequently, remove arbitrarily chosen cycles for F ′A
iteratively until F ′A is cycle-free. Analogously to the above, at most O(m)
cycles need to be removed.

Algorithm 12: Edge augmentation algorithm

7.4. AUGMENTING FLOWS FOR MULTIPLE COMMODITIES 135

(a) Multi-commodity flow F = (F1, F2, F3, F4) and augmenting flow FA, be-
fore applying Algorithm 12 w.r.t. e∗0.

(b) Multi-commodity flow F ′ = (F ′1, F ′2, F ′3, F ′4) and augmenting flow FA,
after applying Algorithm 12.

Figure 7.2: In this example network, all unmarked edges have a capacity of one.
The green flow F3 starting in s3 has a size of two, all other solid flows have a size
of one. The dashed augmenting flow FA for the commodity K1 starting in s1 has a
size of three. In Subfigure 7.2a, the (not drawn) edge (u, v) = e∗0 in N is a farthest
back-edge. When executing Algorithm 12, we obtain q = 3, k1 = 1, k2 = 3, k3 = 4,
FA(e∗0) = 2, r = 2, and U = 1. A part of the augmenting flow is re-routed in the
node u via former paths of F1 and F3, whereas F1 and half of F3 are re-routed in
the node v via a former path of the augmenting flow. The occurring cycles wvx
and zyu are removed afterwards by Algorithm 12.

136 CHAPTER 7. AUGMENTING FLOW MIGRATION

inequality is not increased, since e∗ /∈ E. As in this step F ′A(e) is increased by
the same amount by which

∑
F ′∈F′ F

′(e) is diminished, we obtain F ′A(e∗) ≤∑
F ′∈F′ F

′(e)+F ′A(e), for all e ∈ E after step 4. By an analogous argument,
this new inequality holds also after step 5. After removing the “small”
cycles in the first part of step 6 we have F ′A(e∗) = 0 or F ′A(e) = 0 for
all e ∈ E, while the new inequality still holds. As the subsequent cycle
removals in the second part of step 6 cannot decrease

∑
F ′∈F′ F

′(e) to
less than 0, the inequality given in Lemma 13 holds for all e ∈ E with
F ′A(e∗) = 0. Thus, consider the edges e ∈ E with F ′A(e) = 0. For these
edges, F ′A(e∗) ≤

∑
F ′∈F′ F

′(e) + F ′A(e) implies F ′A(e∗) ≤
∑

F ′∈F′ F
′(e)

which yields the desired statement of Lemma 13 since the cycle removals in
the second part of step 6 cannot decrease

∑
F ′∈F′ F

′(e).

Next, in Lemma 14 and 15, we show that the flows adhere to the flow
conditions and keep their demand unchanged.

Lemma 14. F ′A is a (single-commodity) flow for the commodity K and
dF ′

A
= dFA .

Proof. We first show that F ′A is non-negative on all edges in E ∪ E∗ and
then that F ′A satisfies Conditions (7.1)–(7.3) from Definition 24.

The only step where F ′A can switch to a negative value on some edge
e ∈ E ∪E∗ is step 3 and this can only be the case if e ∈ E. But since Fa is
a subflow of a partial flow of FA, we have Fa(e) ≤ F ′A(e) for all e ∈ E and
F ′A(e) remains non-negative in step 3. Note that at the beginning of step 3,
it holds that F ′A(e) = FA(e) for all e ∈ E.

By an analogous argument, F ′y(e) is non-negative for all 1 ≤ y ≤ k and
all e ∈ E. Since, in addition, F ′A(e∗) is never increased in steps 2 to 6 for
all e∗ ∈ E∗ (which implies F ′A(e∗) ≤ FA(e∗)), Condition (7.1) holds due to
Lemma 12 and Definition 29.

We will now show that Conditions (7.2) and (7.3), i.e., flow conservation
and demand satisfaction, are maintained. ConsiderDA(v) :=

∑
e∈in(v) F

′
A(e)−∑

e∈out(v) F
′
A(e) for all v ∈ V . After step 1, DA(v) = 0 for all v ∈ V \ {s, t},

and −DA(s) = DA(t) = dFA . However, in step 2, DA(u0) is increased
by F ′A(e∗0) and DA(v0) is diminished by F ′A(e∗0). In step 3, DA(v0) is in-
creased by F ′A(e∗0), DA(t) gets diminished by F ′A(e∗0), and DA(v) remains
unchanged for all other nodes v. In step 4, DA(u0) is diminished by F ′A(e∗0),

7.4. AUGMENTING FLOWS FOR MULTIPLE COMMODITIES 137

DA(t) gets increased by F ′A(e∗0), and DA(v) remains unchanged for all other
nodes v. Lastly, the replacement of cycles in step 5 and the removal of
cycles in step 6 do not change any DA(v). Thus, DA(v) = 0 for all
v ∈ V \ {s, t}, and −DA(s) = DA(t) = dFA . Since F ′A is cycle-free, this
implies

∑
e∈out(s) F

′
A(e) = dFA =

∑
e∈in(t) F

′
A(e), i.e., dF ′

A
= dFA .

Lemma 15. F ′ is a multi-commodity flow for K and dF ′y = dFy for all
1 ≤ y ≤ k.

Proof. Lemma 15 follows by a proof analogous to the proof of Lemma 14.
Note that Condition (7.4) holds due to Lemma 12.

Combining Lemmas 12 to 15, we obtain the following corollary:
Corollary 16. F ′A is an augmenting flow w.r.t. F ′.

Furthermore, we need to prove that Algorithm 12 actually makes progress,
i.e., at least one of the edges e∗ has an augmenting flow of zero afterwards.
Lemma 16. The number of edges e∗ ∈ E∗ with F ′A(e∗) > 0 is strictly
smaller than the number of edges e∗ ∈ E∗ with FA(e∗) > 0.

Proof. As observed in the proof of Lemma 14, we have F ′A(e∗) ≤ FA(e∗) for
all e∗ ∈ E∗. Thus, F ′A(e∗) > 0 implies FA(e∗) > 0. Moreover, FA(e∗0) > 0,
but F ′A(e∗0) = 0 (due to step 2). The result follows.

Lastly, we show that the update performed by Algorithm 12 is actually
consistent:
Lemma 17. (N,F ,F ′) is a consistent migration update.

Proof. By Lemma 15, we only have to show that Condition 7.5 holds, i.e.,
that for all e ∈ E:

∑k

y=1 max
(
Fy(e), F ′y(e)

)
≤ c(e) . Let e be an arbitrary

edge in E. We observe that, for all 1 ≤ y ≤ k, the only step (after setting
F ′y(e) := Fy(e)) where F ′y(e) gets possibly increased is step 3. Moreover, a
positive increase in step 3 is only possible if y = kz for some 1 ≤ z ≤ r.
More specifically, we have F ′kz

(e) ≤ Fkz (e) + F
(z)
a (e) after step 6 for all

1 ≤ z ≤ r. Since F (z)
a (e) ≥ 0 for all 1 ≤ z ≤ r, we obtain

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤

k∑
y=1

Fy(e) +
r∑
z=1

F (z)
a (e) = Fa(e) +

k∑
y=1

Fy(e) .

138 CHAPTER 7. AUGMENTING FLOW MIGRATION

Since Fa is a subflow of a partial flow of FA (compare step 3), we have
Fa(e) ≤ FA(e). Thus,

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤ FA(e) +

k∑
y=1

Fy(e) ≤ c(e) .

The last inequality follows since FA is an augmenting flow w.r.t. F .

We can now prove Theorem 21, which states that we can update con-
sistently to the new augmented flow in just a linear number of updates3,
resulting from applying the augmenting flow:

Theorem 21. Let N be a network and let F = (F1, . . . , Fk) be a multi-
commodity flow for the multi-commodity K = (K1, . . . ,Kk). Let FA be an
augmenting flow w.r.t. F for the commodity (s, t) = Kx ∈ K where 1 ≤ x ≤
k. Then there is a multi-commodity flow F∗ for K s.t. dF∗x = dFx +dFA and
dF∗y = dFy for all 1 ≤ y ≤ k with y 6= x. Moreover, there is a consistent
migration from F to F∗, consisting of at most m + 1 consistent migration
updates.

Proof. W.l.o.g., let h ∈ N be the number of times that the steps 1 to 6
of Algorithm 12 are performed until, for the resulting augmenting flow FhA
w.r.t. the resulting multi-commodity flow Fh, there is no edge e∗ ∈ E∗

with FhA(e∗) > 0. Note that, due to Lemma 16, it holds that h ≤ m.
Thus, by Lemmas 15 and 17, every one of the h iterations of the steps 1
to 6 corresponds to a consistent migration update. Moreover, dFh

y
= dFy

for all 1 ≤ y ≤ k, by Lemma 15, and FhA(e) +
∑

Fh∈Fh F
h(e) ≤ c(e) for

all e ∈ E, by Lemma 12. Therefore, increasing Fhx (e) by FhA(e) for all
e ∈ E corresponds to a consistent migration update and the resulting multi-
commodity flow F∗ satisfies the conditions given in Theorem 21.

7.5 Consistent Flow Migration with Augmentation

A standard approach in the single-commodity case for increasing the size
of a flow is to compute augmenting paths, apply them to the network, and

3We note that other mechanisms such as, e.g., SWAN [37] or zUpdate [50], do not
give any bound on the number of updates needed for consistent migration.

7.5. CONSISTENT FLOW MIGRATION WITH AUGMENTATION 139

iterate this process until the desired demand is reached, if possible. However,
this method requires a lot of updates in the network itself, as the number of
augmenting paths needed can be linear in the number of edges. Due to the
fact that we augment our multi-commodity flow in Section 7.4 with a flow
instead of a path, in our framework just one augmenting flow per commodity
suffices to satisfy any possible new demands, as we show in this section.

While a linear programming solution does not show how to migrate
the network consistently, we can use LPs to compute the augmenting flows
needed for the consistent migration. For our method we will first need
the notion of difference flows, which are flows obtained by “subtracting” a
multi-commodity flow from another.

Definition 30. Let N be a network, let K = (K1, . . . ,Kk) be a multi-
commodity, and fix some i ∈ N with 1 ≤ i ≤ k. Let F = (F1, . . . , Fk),F ′ =
(F ′1, . . . , F ′k) be multi-commodity flows for K with dFi < dF ′

i
and dFj = dF ′

j

for all 1 ≤ j ≤ k, j 6= i.
We define a difference flow ZF,F

′ for F and F ′ in N as follows: First,
for all e ∈ E: i) If

∑k

y=1 F
′
y(e) −

∑k

y=1 Fy(e) ≥ 0, then ZF,F
′(e) :=∑k

y=1 F
′
y(e)−

∑k

y=1 Fy(e) and ZF,F′(e∗) := 0. ii) If
∑k

y=1 F
′
y(e)−

∑k

y=1 Fy(e)

< 0, then set ZF,F′(e∗) := −
(∑k

y=1 F
′
y(e)−

∑k

y=1 Fy(e)
)

and ZF,F′(e) :=

0. Second, remove cycles until ZF,F′ is cycle-free.

A difference flow is also an augmenting flow:

Lemma 18. Let ZF,F′ be a difference flow for F and F ′ with dFi < dF ′
i
.

Then, ZF,F′ is an augmenting flow w.r.t. F for the commodity Ki of size
dF ′

i
− dFi > 0.

Proof. Recall that F and F ′ are multi-commodity flows in N .
We start by checking the conditions for an augmenting flow given in Def-

inition 29. For all e ∈ E, we have ZF,F′(e) ≤
∑k

y=1 F
′
y(e)−

∑k

y=1 Fy(e) ≤
c(e) −

∑k

y=1 Fy(e) in case i), and ZF,F
′(e) = 0 ≤ c(e) −

∑k

y=1 Fy(e) in
case ii). For all e∗ ∈ E∗, we have ZF,F′(e∗) = 0 ≤

∑k

y=1 Fy(e) in case i),

and ZF,F′(e∗) ≤ −
(∑k

y=1 F
′
y(e)−

∑k

y=1 Fy(e)
)
≤
∑k

y=1 Fy(e) in case ii).
Note that removing cycles can never increase the flow on any edge.

140 CHAPTER 7. AUGMENTING FLOW MIGRATION

As ZF,F′ is cycle-free, it is only left to show that ZF,F′ is a single-
commodity flow for Ki in N of size dF ′

i
− dFi . Condition (7.1) follows

directly from the previous considerations. The definition of ZF,F′ ensures
that Condition (7.2) is satisfied for all nodes except si and t. Note that
removing cycles does not change the difference between the amount of out-
going and incoming flow for a node.

As dF ′
i
−dFi > 0 holds due to the construction of ZF,F′ and as all cycles

were removed from ZF,F
′ , we obtain that

∑
e∈out(si) Z

F,F′(e) = dF ′
i
−dFi =∑

e∈in(t) Z
F,F′(e), i.e., Condition (7.3) holds and ZF,F

′ is an augmenting
flow for the commodity Ki of size dF ′

i
− dFi > 0.

In the following Algorithm 13, we will show how any desired demands
can be obtained by consistent migration, if there is a multi-commodity flow
satisfying these demands.

Let N be a network and let F be a multi-commodity flow for the multi-commodity
K. Let (d1, . . . , dk) be a vector of demands s.t. i) there exists a multi-commodity
flow for K satisfying these demands, and ii) d1 ≥ dF1 , . . . , dk ≥ dFk

.
1. Compute a multi-commodity flow F ′1 with a demand vector of (d1, dF2 , . . . ,

dFk
) using an LP.

2. Compute the difference flow ZF,F
′
1 .

3. Augment F with ZF,F
′
1 by using Algorithm 12 iteratively until no more

back-edges exist for the resulting augmenting flow FA. Then, replace FA by
a flow of commodity K1 and eliminate all cycles for commodity K1, thereby
obtaining some flow F1 with a demand vector of (d1, dF2 , . . . , dFk

).
4. Iterate the above three steps for the remaining commodities K2, . . . ,Kk,

thereby obtaining the flows F2, . . . ,Fk with the demand vectors of
(d1, d2, dF3 , . . . , dFk

), . . . , (d1, d2, d3, . . . , dk−1, dFk
), (d1, . . . , dk).

Algorithm 13: Performing consistent migration to new demands via augmenting
flows

Corollary 17. Algorithm 13 performs a consistent migration from F to
some multi-commodity flow with a demand vector of (d1, . . . , dk), using only
k augmenting flows.

7.6. STRONGLY CONSISTENT FLOW MIGRATION 141

We note that Algorithm 13 can be used for any imaginable purpose, as
long as the respective desired demand vector (for which some flow exists) can
be computed. Common examples in practice are maximizing the sum of all
commodities or reaching max-min fairness. The respective desired demand
vectors can be computed with an LP, cf., e.g., [1] [14]. If the computation
time is an issue as well, one can also resort to approximation algorithms
with a better runtime [32].

Furthermore, the actual updates performed in the network itself are
expensive, while “off-line” computations are cheap regarding the execution
time in SDNs, rendering the computation overhead induced by the LPs to
be bearable in practice.

7.6 Strongly Consistent Flow Migration

In Definition 11 and Definition 28 we defined the consistency model for
capacity constraints as proposed in [37]. A main motivation behind this
model is that changes in the flow should not violate the capacity of any edge,
no matter what “mix” of old and new flow rules is currently in place due
to asynchrony. However, the model only considers specific discrete points
in time: Either a flow Fi has changed completely or it has not. Thus, the
impact of latency on the different routes is neglected, as shown in Chapter
6.

Subsequently, we developed a framework in Chapter 6 to obtain lossless
updates, differentiating between fixed and arbitrary latencies. We now pro-
pose an even stronger consistency model: When a (part of a) flow changes
its route at some node due v to a network update, we consider the node v
to be a new virtual source that duplicates the flow along the old and the
new route. Only if both the old and the new flow fit into the network at the
same time, we allow the network update.

In other words, a part of the old flow that coincides with a part of the new
flow is left in the network unchanged. The remaining part B of the old flow
is migrated to the remaining part B′ of the new flow, but we only consider
this migration to be strongly consistent if B′ can be added to the complete
old flow without violating any edge capacity constraints. This ensures that
there cannot be any congestion due to latency. What is required for the
migrated part B′ of the new flow is that any packets in B′ stay in B′ until

142 CHAPTER 7. AUGMENTING FLOW MIGRATION

they reach their destination (otherwise, again, congestion can occur due to
latency). In other words, we require B′ to be a half flow as given by the
following definition:

Definition 31. A half flow is a function H : E → R≥0 s.t. for all nodes v ∈
V \ {s} it holds that

∑
e∈in(v) H(e) ≤

∑
e∈out(v) H(e). A multi-commodity

half flow is a tuple H = (H1, . . . , Hk) of half flows.

By formalizing the above considerations, we obtain a stronger consistency
model:

Definition 32. Let N be a network and let F = (F1, . . . , Fk) and F ′ =
(F ′1, . . . , F ′k) be multi-commodity flows for the multi-commodity K s.t. dFi ≤
dF ′

i
, 1 ≤ i ≤ k. A consistent migration update from F to F ′ is called a

strongly consistent migration update if there exists a multi-commodity half
flow H = (H1, . . . , Hk) s.t. the following three conditions hold: 1) Hi(e) ≤
F ′i (e) for all e ∈ E and all 1 ≤ i ≤ k, 2) F ′i (e)−H ′i(e) ≤ Fi(e) for all e ∈ E
and all 1 ≤ i ≤ k, and 3) F(e) +

∑k

i=1 Hi(e) ≤ c(e) for all e ∈ E.
A strongly consistent migration is a sequence of strongly consistent mi-

gration updates.

Condition 1) ensures that each half flow is contained in the respective
new flow, Condition 2) ensures that when subtracting the half flow from the
respective new flow, the result is contained in the respective old flow (thus, it
can remain in the network unchanged) and Condition 3) ensures that even if
the old flow is still completely present in the network, the multi-commodity
half flow can be added without violating any edge capacity constraints.

Note that every strongly consistent update is lossless as well. However,
as we will show, we do not need to weaken our strong consistency model to
completely cover the space of lossless updates, both for fixed and arbitrary
latencies: As long as the new demands fit into the network, we can always
migrate to these demands in a strongly consistent fashion.

Extending our previous work to strong consistency
As Figure 7.3 shows, the migration updates performed by Algorithm 12 are
not necessarily strongly consistent.

In the following, we show how to adapt Algorithm 12 in order to make the
performed migration update strongly consistent. In a way, the point where
the strong consistency breaks in Algorithm 12 is the replacement/removal

7.6. STRONGLY CONSISTENT FLOW MIGRATION 143

(a) Initial network with a solid green
flow F of size 2 and a dashed aug-
menting flow FA for F of size 1 via
s1, w, u, v, x, y, t. All edges have a ca-
pacity of 1.

(b) Network with F ′ after apply-
ing a consistent update via Algorithm
12. The purple arrows depict where
strong consistency cannot be main-
tained.

Figure 7.3: In this small example, Algorithm 12 updates directly from F in
Subfigure 7.3a to F ′ in Subfigure 7.3b. While the update is consistent, it is not
strongly consistent: The purple arrows in Subfigure 7.3b from u to v, from v to x,
and from v to t depict where strong consistency cannot be maintained: Assume
that the update is strongly consistent and a half flow as required exists. Due to
Condition 1), the half flow on (v, x) needs to be zero. Due to Condition 2), the
half flow on (u, v) needs to be positive. Lastly, due to Condition 3), the half flow
on (v, t) needs to be zero as well. Hence the half flow definition is violated at node
v, since the incoming half flow is positive, but all outgoing half flow is zero.

of cycles in steps 5 and 6. More precisely, if there are no cycles in any flow
in F after step 4, then the performed update is strongly consistent as the
flows added in step 3 can be taken as the multi-commodity half flow whose
existence is required. The design of Algorithm 12 asserts immediately that
the flow added in step 3 indeed satisfies the half flow conditions. Note that
cycles occurring in the augmenting flow FA do not change this assessment
and therefore do not have to be avoided specifically.

Our adapted algorithm proceeds as follows: Starting from the destina-
tion t, find a first back-edge along the augmenting flow. However, now,
starting from this farthest back-edge, we will consider each commodity indi-

144 CHAPTER 7. AUGMENTING FLOW MIGRATION

vidually, and augment along the farthest cycle beyond this back-edge (seen
from s), made up of the augmenting flow and the respective commodity.

If one arc of the cycle is constituted by the augmenting path and the
remaining arc by the chosen commodity (i.e., the cycle consists only of
two continuous segments of commodity or augmenting flow), then we can
augment along a cycle analogously to augmenting w.r.t. a back-edge. As we
will show, there is always a farthest cycle of this kind.

Initially starting from t, in each of these augmenting updates, we will
progress closer towards the farthest back-edge, guaranteeing that the num-
ber of updates is polynomial. As such, we need a more fine-grained Algo-
rithm 14, that handles these updates.

For ease of readability, we give a high-level description of the algorithm:
We will now show that Algorithm 14 performs a strongly consistent

migration for a given multi-commodity flow and a corresponding augmenting
flow FA belonging to commodity K. Recall that all flows are cycle-free and
observe that the design of the algorithm prevents the occurrence of flows for
any commodity. The only cycles occurring are those containing augmenting
flow, which are subsequently deleted.

Further observe that in step 4, Fa can be decomposed into at most m
augmenting paths by, e.g., iteratively choosing a path F ja in Fa from u to t
s.t. there exists some edge e′′ with F ja (e′′) = Fa(e′′) and removing F ja from
Fa.

After every execution of step 7 (and also during every execution of 5),
the respective augmenting flow F ja has the following property Q: There is
a node w (after step 7 we have w = u′) s.t. all edges beyond w are marked
and all edges before w are not marked, with the flow F ja constituting the
same simple path between u and w as in the last iteration of steps 5 to
7. Note that even though we start with an unsplitted flow F ja in step 5,
the augmenting flow F ja beyond w may be splitted due to the performed
augmentations.

Before showing property Q, we assume for now that Q holds, in order
to show two things: First, we show that in step 6, when choosing a cycle,
we can actually choose a cycle as described in step 6.

Property Q guarantees the existence of at least one such cycle: Just
choose some arbitrary cycle and then follow the continuous part of the cycle
consisting of commodity Ki from u′ to the other end, given by some node x.
Then there must be a path from u′ to x consisting of marked edges, which

7.6. STRONGLY CONSISTENT FLOW MIGRATION 145

1. Choose a farthest back-edge (u, v) = e∗.
2. Choose a commodity Ki.
3. Choose a partial flow Fa of FA starting from u of size min(Fi(e), FA(e∗))

s.t. Fa(e∗) = min(Fi(e), FA(e∗)).
4. Decompose Fa into r ≤ m augmenting unsplitted flows F 1

a , . . . , F
r
a , i.e.,∑r

j=1 F
j
a = Fa.

5. Mark edges on F 1
a successively from t towards u until a cycle composed

of marked edges and Fi appears. Let e′ = (u′, v′) be the edge which was
marked last.

6. Choose such a cycle where one continuous arc consists of marked edges and
the remaining arc of commodity Ki. Augment along this cycle. Iterate until
there is no cycle composed of marked edges and Fi left.

7. Delete cycles of F 1
a until no more cycles of F 1

a exist. For this, always choose
cycles of the following kind: There exists a node y on the not re-routed
part of F 1

a s.t. the cycle consists of a part of F 1
a from y to u′ that was not

re-routed in step 6 and a part of F 1
a from u′ to y that was re-routed. Of

these cycles, choose one with the largest number of edges in the second part.
From now on, consider just the edges of F 1

a between u′ and t (according to
the order given by F 1

a) as marked.
8. Iterate steps 5 to 7, always starting from the farthest unmarked edge and

proceeding towards u in step 5, until all edges in F 1
a are marked.

9. Iterate steps 5 to 8 for the flows F 2
a , . . . , F

r
a successively.

10. Iterate steps 3 to 9 for all other commodities than Ki successively.
11. Iterate steps 2 to 10, always choosing a farthest back-edge, until no back-edge

remains.
12. Iterate steps 3 to 9 for the commodity K to which the augmenting flow FA

“belongs”, where we set u := s. However, after each execution of step 8,
replace the respective augmenting flow F ja with a flow of commodity K.

Algorithm 14: Strongly consistent edge augmentation algorithm

146 CHAPTER 7. AUGMENTING FLOW MIGRATION

together with the aforementioned path forms a cycle as described. After
augmenting along this cycle, we may consider the re-routed augmenting
flow as marked. Thus, property Q still holds and hence guarantees the
existence of another cycle as described, under the condition that a cycle
of marked edges and commodity Ki still exists. Note that in this context
we still speak of marked edges, though technically some specific flow on
the edges is marked (which is necessary because of potential cycles in the
augmenting flow after augmenting along the first cycle).

Second, we show that in step 7, when choosing a cycle, we can actually
choose a cycle as described in step 7. Again assuming property Q, for the
first cycle deletion we can choose a cycle as described due to the choice of
u′ (if a cycle exists).

According to the properties of the deleted cycle, the (deleted) flow going
from y to u′ must continue towards t only along edges which cannot be part
of a cycle. Thus, if we ignore this deleted flow and its continuation towards
t, all the (augmenting) flow re-routed in step 6 still arises from u′. Hence,
after deleting the first (and any subsequent) cycle, we can again choose a
cycle as described, should a cycle still exist. Note that the amount of flow
in F ja going from u to u′ is sufficient for all cycle deletions determined by
the re-routed flow. Moreover, note that the considered cycles may use any
edge only once, but are allowed to contain a node more than once in the
corresponding cyclic order of nodes.

We now show that property Q holds: Observe that property Q holds in
the beginning of each iteration of steps 5 to 8. If property Q holds in the
beginning of step 5, then it holds during the whole step 5. Also, it holds
after step 7, due to the last sentence in step 7 in conjunction with the above
considerations regarding step 7. In particular, a part of the (unmarked) flow
from u to u′ must remain after the deletion of cycles in step 7, since all the
flow in F ja starts along this path and some part of F ja must actually arrive
at t.

Note that the edges marked at the end of any execution of step 7 together
with the edges of commodity Ki cannot form a cycle, since these newly
marked edges were used by commodity Ki before the augmentation in step
6 (while the reverse applies to the re-routed flow of commodity Ki).

All of the above applies analogously for the execution of step 12.
After these preliminaries regarding the correctness of Algorithm 14, we

will now show the strong consistency. Observe that the only updates per-

7.6. STRONGLY CONSISTENT FLOW MIGRATION 147

formed in the physical network occur in step 6 and step 12. We first deal
with step 6:

When flow of commodity Ki is re-routed in step 6, it replaces (parts of)
the augmenting flow F ja , yielding a half flow Hj

a. Note that as this replaced
flow did not form a cycle with itself or together with flow of the commodity
Ki, adding flow Fi along these edges will not form a cycle with F ja or the
commodity Ki either.

It remains to show for step 6 that Hj
a satisfies the strong consistency

conditions given in Definition 32. As Hj
a is part of the new flow, it satisfies

Condition 1). Furthermore, the new flow was just increased by Hj
a, thus

guaranteeing Condition 2). Lastly, as the augmenting flow F ja together
with the old flow did not violate any edge capacity constraints (and the
augmenting flow is not actually inserted in the physical network), Condition
3) follows.

Again, analogous arguments apply for step 12, as the newly added flow
just replaces an augmenting flow. Hence, the migration performed by Algo-
rithm 14 is a strongly consistent migration.

We will now bound the number of performed strongly consistent migra-
tion updates from above: The only (physical) network updates performed
occur in steps 6 and 12.

We first omit step 12, before adding the number of updates it induces at
the end: As there are at most m back-edges, k commodities, and at most
m flows in the decomposition of each Fa, steps 5 to 8 are iterated at most
km2 times. In each such iteration, the number of iterations of steps 5 to 7
is at most n, since F ja is a simple path in the beginning and the number of
unmarked edges in F ja decreases by at least one in each iteration. Hence,
step 6 is executed at most km2n times.

For the analysis of 6, we go into further details of its execution, which we
omitted above for the ease of readability: Observe that all cycles considered
in step 6 pass through the edge (u′, v′), and as thus, through the node u′.
Furthermore, we can define a partial ordering of the nodes along the marked
flow F ja , beginning with u′. Let z be a node of highest order s.t. there is a
flow of commodity Ki from z to u′. Now, let dz be the size of the flow of
commodity Ki from z to u′ and let d′z be the size of the augmenting flow
F ja from u′ to z.

Imagine that we introduce a new edge from u′ to z in our network with
capacity min{dz, d′z}, which is fully used by F ja , and a new edge from z to

148 CHAPTER 7. AUGMENTING FLOW MIGRATION

u′ with capacity min{dz, d′z}, which is fully used by commodity Ki. At the
same time, reduce the usage of F ja and Fi elsewhere in the network s.t. both
Fi and F ja fulfill the flow constraints again. Now, augment along the new
(imaginary) cycle between u′ and z (which also deletes the previously added
edges). The re-routed part of the augmenting path now leaves u′ via edges
that are different from e′, as the re-routed part uses edges previously used
by commodity Ki, and Ki does not use e′ before or after the augmentation
(otherwise, an e′ “closer” to t would have been chosen). Therefore, the re-
routed part is not part of any cycle consisting of Fi and F ja , and hence we do
not get any new candidates for node z (i.e., a node along the marked edges
of F ja from where there is a flow of commodity Ki to u′) when repeating
this augmentation technique. Thus, the number of candidates for such a z
strictly decreases, meaning we need to augment at most n times in step 6.

We obtain at most km2n2 strongly consistent migration updates, before
considering step 12. As step 12 invokes iterations of the steps 3 to 9, and
performs a strongly consistent migration update after each invocation of
step 8, the asymptotic number of updates does not change. Hence, we can
bound the total number of updates by O(km2n2).

However, in order to strongly consistently migrate to new desired de-
mands, we still need a framework akin to Algorithm 13, which we will now
provide with Algorithm 15.

Let N be a network and let F be a multi-commodity flow for the multi-commodity
K. Let (d1, . . . , dk) be a vector of demands s.t. i) there exists a multi-commodity
flow for K satisfying these demands, and ii) d1 ≥ dF1 , . . . , dk ≥ dFk

.
1. Compute a multi-commodity flow F ′1 with a demand vector of (d1, dF2 , . . . ,

dFk
) using an LP.

2. Compute the difference flow ZF,F
′
1 .

3. Augment F with ZF,F
′
1 by using Algorithm 14.

4. Iterate the above three steps for the remaining commodities K2, . . . ,Kk,
thereby obtaining the flows F2, . . . ,Fk with the demand vectors of
(d1, d2, dF3 , . . . , dFk

), . . . , (d1, d2, d3, . . . , dk−1, dFk
), (d1, . . . , dk).

Algorithm 15: Strongly consistent migration to new demands via augmenting
flows

Note that all calculations performed by Algorithm 15 (and by its invoked

7.7. HARDNESS OF FLOW MIGRATION TO NEW DEMANDS 149

Algorithm 14) can be performed in polynomial time.
Corollary 18. Algorithm 15 performs a strongly consistent migration from
F to some multi-commodity flow with a demand vector of (d1, . . . , dk), using
only O(k2m2n2) strongly consistent migration updates.

7.7 Hardness of Flow Migration to new Demands

So far we considered splittable multi-commodity flows as defined in Sec-
tion 7.3, however this is just one side of the coin. As already defined in the
previous chapters, an unsplittable flow is defined as a flow only taking one
simple path from its source to its destination:
Definition 33. A single-commodity flow F is called an unsplittable single-
commodity flow if the set of edges e ∈ E : F (e) > 0 forms a simple (i.e.,
cycle-free) path from s to t. A multi-commodity flow F is called an unsplit-
table multi-commodity flow if all of its single-commodity flows are unsplit-
table single-commodity flows.

Similarly, as in the previous chapters, we define an unsplittable consis-
tent migration to be a consistent migration using only unsplittable flows:
Definition 34. A consistent migration update (N,F ,F ′) is called an un-
splittable consistent migration update if both F ,F ′ are unsplittable multi-
commodity flows. A consistent migration is called an unsplittable consistent
migration if it consists of unsplittable consistent migration updates.

Hardness of Deciding if Demands can be Satisfied
Even et al. [18] showed for general4 multi-commodity flow problems that it
is NP-hard to decide if even the demand of two commodities can be met by
integral flows in graphs with unit capacities; this case is equivalent to un-
splittable multi-commodity flows. Kleinberg showed the NP-hardness also
for the single-source unsplittable multi-commodity flow case [47], which is
equivalent to the model used in this article (by reversing all edge directions).
From the results of Baier et al. [6], it can be inferred that the NP-hardness
also holds for just two unsplittable flows with common source s and destina-
tion t. The case of just one unsplittable single-commodity flow can be solved

4I.e., with each flow having a possibly distinct source and destination respectively.

150 CHAPTER 7. AUGMENTING FLOW MIGRATION

in polynomial time by, e.g., finding the path with the highest capacity from
s to t.

Consistently Migrating Unsplittable Flows to new Demands

As it is already NP-hard to decide if the demands of some commodities
can be met, it is also an NP-hard problem to consistently migrate to a
multi-commodity flow meeting these demands.

However, what happens if we know that the desired demands of the com-
modities can be met? I.e., if we are given the current multi-commodity flow
and a multi-commodity flow meeting the desired demands (both unsplit-
table), is unsplittably consistently migrating NP-hard as well? As it turns
out, the answer is yes:

Theorem 22. Let N be a network and let F = (F1, . . . , Fk), F ′ = (F ′1, . . . , F ′k)
be unsplittable multi-commodity flows for the multi-commodity K s.t. dFi ≤
dF ′

i
, 1 ≤ i ≤ k. It is NP-hard to decide if there is an unsplittable consistent

migration from F to some unsplittable multi-commodity flow satisfying the
demands of F ′.

Note that for multi-commodity flows F ,F ′ with identical demands, the
problem is trivial as zero updates are required to meet the demands of F ′.

We will prove Theorem 22 by reduction from the classic NP-hard problem
Partition (also known as number partitioning). We note that our proof is
similar in concept to the proof of Theorem 14, we still state the Partition
problem again and give the proof in full length for ease of readability.

Definition 35 (Partition [29]). Let A be a multiset of k positive real-valued
elements a1, . . . , ak, and set A :=

∑k

i=1 ai. Is it possible to partition A into
two sets A1,A2 s.t. the sums A1 :=

∑
ai∈A1

ai, A2 :=
∑

ai∈A2
ai of their

respective elements are identical, i.e., A1 = A2 = A
2 ?

Theorem 23 ([29]). The Partition problem from Definition 35 is NP-hard.

We can now prove Theorem 22:

Proof of Theorem 22. For every instance I of the Partition problem we will
construct in polynomial time an instance I ′ of the problem described in

7.7. HARDNESS OF FLOW MIGRATION TO NEW DEMANDS 151

Theorem 22 s.t. I is a yes-instance if and only if I ′ is a yes-instance.

Construction of the new Instance I ′

Given an instance I of the Partition problem, we create a network N =
(G = (V,E), c) as follows: V consists of k sources s1, . . . , sk, two sources
sa, sb, two nodes va, vb, and a destination t, i.e., k + 5 nodes in total. E is
composed of an edge from each s1, . . . , sk to both va and vb with capacity
of ai, 1 ≤ i ≤ k respectively. Furthermore, there are edges from va, vb to
t with a capacity of A each, and edges from sa to va and sb to va, vb with
capacities of A/2. In total, there are 2k + 2 + 1 + 2 = 2k + 5 edges.

The unsplittable multi-commodity flow F composed of the unsplittable
flows F1, . . . , Fk, Fb, Fa is defined as follows: dF1 = a1, . . . , dFk = ak, with
each of these k flows Fi being routed from its source si via va to t, 1 ≤
i ≤ k. Furthermore, dFb = A/2, with it being routed from its source sb
via vb to t. Lastly, dFa = 0. The unsplittable multi-commodity flow F ′,
composed of the unsplittable flows F ′1, . . . , F ′k, F ′b, F ′a, is defined as follows:
dF ′1 = a1, . . . , dF ′

k
= ak, but with each of these k flows Fi being routed from

their source si via vb to t, 1 ≤ i ≤ k. Lastly, dFb = dFa = A/2, with both
being routed via va. The construction can be performed in polynomial time
and is depicted in Figure 7.4.

If I is a yes-instance, then I ′ is a yes-instance
Let us start by assuming that the Partition instance I is solvable, i.e., it
is a yes-instance. Then, we can select the flows corresponding to A1 and
unsplittably consistently migrate them to the path via vb, as their combined
size is exactly A/2. In the next step, we can add an unsplittable flow F ′a of
size A/2 from sa via va to t, showing that I ′ is a yes-instance as well.

If I is a no-instance, then I ′ is a no-instance
To conclude the proof, let us assume that the Partition instance I is not
solvable, i.e., it is a no-instance. Observe that currently, the edge from va
to t has no free capacity, and the edge from vb to t has a free capacity of
exactly A/2. Unless we can move a subset of the set of flows F1, . . . , Fk of
combined size exactly A/2 to the path via vb, neither the edge from va to
t nor the edge from vb to t will have a free capacity of at least A/2. As
the Partition instance is not solvable, this is not possible, meaning neither
Fb can be moved consistently nor Fa can be added to the network, as both
their sizes are A/2. Hence, I ′ is a no-instance as well.

152 CHAPTER 7. AUGMENTING FLOW MIGRATION

(a) Unsplittable multi-commodity fl. F (b) Unsplittable multi-commodity fl. F ′

Figure 7.4: The old unsplittable multi-commodity flow F is depicted in Subfigure
7.4a on the left, while the new unsplittable multi-commodity flow F ′ is depicted
in Subfigure 7.4b on the right. In Subfigure 7.4a, the edge from va to t is used
at full capacity. Similarly, in Subfigure 7.4b both edges from va, vb to t are used
at full capacity. In order to consistently migrate to a multi-commodity flow with
the same demands as F ′, flows from F1, . . . , Fk of combined size exactly A/2 need
to migrate to the edge from vb to t. However, this is equivalent to solving the
corresponding Partition instance.

7.8 Augmenting Flows beyond a Single Destination

Besides the case of unsplittable flows as covered in Section 7.7, there is an-
other natural extension of our model: Namely, the case of multi-commodity
flows with multiple sources and multiple destinations.

As a simple example shows (cf. Figure 7.5), applying an augmenting path
in a straightforward way to a network with multiple sources and destinations
will not even necessarily result in a correct multi-commodity flow. The
outgoing flow can end up being re-routed to a wrong destination.

A logical consequence is to admit only augmenting flows which re-route
correctly, i.e., each outgoing flow of a source is still routed to its assigned
destination. However, as Hu noted [38], it is unlikely that the technique
of augmenting paths can be extended to a general multi-commodity setting
(cf. Section 7.1). Nonetheless, what would happen if we could develop an
augmenting path approach that results in correct multi-commodity flows?

Sacrificing polynomial runtime, one could check all possible flows be-

7.9. SUMMARY 153

(a) Initial network with
just one flow from s1 to
t1.

(b) An augmenting flow
is found from s2 to t2.

(c) The resulting flows
are not feasible in the
network!

Figure 7.5: The existence of an augmenting flow does not guarantee feasible flows
for multiple sources and destinations. E.g., the flow from s1 might end up in t2.

tween source-destination pairs in the residual networks to see if there is an
augmenting flow that respects each flow ending at its correct destination.

However, a more intricate example (cf. Figure 7.6) shows that, even in
this case, it is not always possible to migrate consistently from the initial
flow to the augmented flow.

7.9 Summary

In this chapter, we extended the notion of augmenting flows to the setting of
multi-commodity flows for a single logical destination, providing algorithms
to efficiently tackle the problem of consistent migration in Software Defined
Networks. We also showed that augmenting flows can guarantee stronger
consistency properties in this setting, and that consistent migration is NP-
hard for unsplittable flows, even if both initial and desired demands are
satisfiable. A natural question arises: Can we generalize the concept of an
augmenting path to the general multi-commodity setting? As it turns out,
even if we could efficiently find augmenting paths respecting the source-
destination pairs, they will break consistency during migration. We thus
believe that fundamentally different techniques are required to apply the
method of augmenting flows for consistent migration updates beyond the
anycast setting.

154 CHAPTER 7. AUGMENTING FLOW MIGRATION

(a) There is an augmenting flow from s2 to t2 that results in a proper multi-
commodity flow.

(b) The resulting new flow after the augmenting flow from above is applied to the
network.

Figure 7.6: Neither (part of) the red nor the green flow can consistently migrate
to any imaginable flow in the network: Moving any part of the red flow to the
bottom path (or any part of the green flow to the top path) in Subfigure 7.6a will
violate the consistency condition. Still, there is an augmenting flow moving both
flows to other edges – which also respects the assignment of the sink-destination
pairs, see Subfigure 7.6b for the resulting network. Hence, even an augmenting
flow resulting in a proper multi-commodity flow does not guarantee a consistent
migration for multiple sources and destinations.

Part III

Outlook

155

8
Future Directions

Research on loop freedom has a rich history in network reconfigurations,
but there is still a plethora of algorithmic challenges to be tackled. Older
work focuses mostly on reliability and feasibility, while SDN allowed to aim
for optimization of various performance metrics: While it is known that
any dynamic/greedy update schedule will succeed for a single destination,
finding optimal or even non-trivial approximation algorithms seems to be
out of reach right now. Nearly all work, including ours in this thesis, explores
the hardness of loop-free updates, similar for its combination with blackhole
freedom.

However, inapproximability results are still rare, implicitly posing the
question of where loop freedom falls on the complexity scale. Algorithmic
progress was made for the specific case of dynamic/greedy updates, but
scheduling loop-free updates has the difficulty of it being a dynamic problem
as well in some way: Each set of forwarding rules that gets updated changes
the problem graph in the next iteration, leading to an explosion of the state

157

158 CHAPTER 8. FUTURE DIRECTIONS

space.
We believe that fundamentally different approaches will have to be de-

veloped for the problem of efficiently scheduling loop-free updates, especially
when also considering the additional restriction of limited memory in the
case of prefix-based rules. Beyond strengthening other complexity results,
we consider it to be the most crucial research question in the field of loop
freedom.

Similarly to loop freedom, flow migration has a well-studied background,
in the form of bandwidth throughput optimization and allocation. Consis-
tent migration of flows in its current state uses the mechanisms provided by
flow tagging protocols, which in turn provide packet coherence. An interest-
ing concept beyond the scope of this thesis would be to tackle congestion-free
migration on the basis of forwarding rules, without tagging. Still, there are
many open problems within the reach of the current state of the art to be
considered.

On a conceptual basis, most other work uses linear or integer program-
ming for consistent migrations, while we used the toolkit of flow augmen-
tation for many of our results. It would be interesting to see if another
mathematical paradigm allows for better algorithmic results. Next, for the
complexity of unsplittable migration with intermediate paths, it is not even
clear if the decision problem in general is in NP, or what the ballpark for
the optimal number of updates is. If it is polynomial, the decision problem
would be in NP as well, but we see no strong evidence for either possibil-
ity. Analogously, the maximum number of updates needed for splittable
flows is not completely classified yet. Some trivial bounds can be deducted
based on the free capacity in the network, but we suspect a combinatorial
classification to be possible.

Lastly, it is not clear how our fast augmenting flow methods can be ex-
tended to multiple destinations. It seems to be inherently connected to de-
veloping augmenting flow techniques for multi-commodity flows in general,
but research results have mostly ceased since the prevalence of (polynomial)
linear programming methods starting decades ago.

Beyond the Consistent Network Update Problem

We have provided multiple new algorithmic concepts and complexity clas-
sifications for fundamental consistent network updates in this thesis, but

159

we believe this to be just one part of the greater puzzle. In the standard
consistent update problemat, the task of finding intermediate states is de-
coupled from the task of providing a new network configuration. As thus,
it can be that the same performance goals can be met with, e.g., another
new routing table, but that the number of intermediate states needed to
reach this routing table in a loop-free way is greatly reduced. The ongoing
enhancement of the programmability of SDNs seems to be a strong factor
for this decoupling: Driven by the desire to provide tools for the manual
fine-tuning of networks, researchers all over the world jumped on the band-
wagon of studying algorithms and complexities for consistent updates – and
this thesis is no exception to that.

Nonetheless, we started to work in the previous chapter of this thesis
towards the unification of both problems, by just targeting that new de-
mands can be reached in a consistent way, without (over)specifying where
the flows should be in the network, allowing for greatly improved bounds
on the number of updates.

Going even a step further, we envision that SDNs manage all relevant op-
timization properties on their own without manual input. Especially smaller
companies cannot (and do not want to) constantly manage their network by
an (expensive) expert, they want a (cheap) off-the-shelf controller that just
works. The current lines of work on consistent network updates, including
the results of this thesis, would then be a building block of the ongoing opti-
mization algorithms inside the logically centralized controller, which would
act independently – akin to a Skynet for computer networking.1

1Hopefully, without the unpleasant side-effects depicted in the Terminator movies.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows - theory,
algorithms and applications. Prentice Hall (1993)

[2] Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4) (July
1995) 844–856

[3] Amiri, S., Ludwig, A., Marcinkowski, J., Schmid, S.: Transiently con-
sistent sdn updates: Being greedy is hard. In: Structural Informa-
tion and Communication Complexity - 23rd International Colloquium,
SIROCCO 2016. (2016)

[4] Anderson, E., Anderson, T.E.: On the stability of adaptive routing in
the presence of congestion control. In: Proceedings IEEE INFOCOM
2003, The 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies, San Franciso, CA, USA, March 30 - April
3, 2003, IEEE (2003)

[5] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.:
RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels. Network
Working Group, Category: Standards Track (December 2001)

[6] Baier, G., Köhler, E., Skutella, M.: The k-splittable flow problem.
Algorithmica 42(3-4) (2005) 231–248

161

162 BIBLIOGRAPHY

[7] Bennett, C., Tseitlin, A.: NetFlix. Chaos Monkey Re-
leased Into The Wild. http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html.

[8] Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest di-
rected paths and cycles. In Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D., eds.: Automata, Languages and Programming: 31st Interna-
tional Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Pro-
ceedings. Volume 3142 of Lecture Notes in Computer Science., Springer
(2004) 222–233

[9] Bodlaender, H.: On linear time minor tests with depth-first search.
Journal of Algorithms 14(1) (1993) 1 – 23

[10] Borokhovich, M., Schmid, S.: How (not) to shoot in your foot with
SDN local fast failover - A load-connectivity tradeoff. In Baldoni, R.,
Nisse, N., van Steen, M., eds.: Principles of Distributed Systems -
17th International Conference, OPODIS 2013, Nice, France, December
16-18, 2013. Proceedings. Volume 8304 of Lecture Notes in Computer
Science., Springer (2013) 68–82

[11] Casado, M., Foster, N., Guha, A.: Abstractions for software-defined
networks. Commun. ACM 57(10) (2014) 86–95

[12] Claburn, T.: Google Vs. Zombies – And Worse. InformationWeek -
Network Computing (2013) http://ubm.io/1ftfjxA.

[13] Comer, D., ed.: Internetworking with TCP/IP - Principles, Protocols,
and Architectures, Fourth Edition. Prentice-Hall (2000)

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms (3. ed.). MIT Press (2009)

[15] Dinitz, Y.: Dinitz’ algorithm: The original version and even’s version.
In Goldreich, O., Rosenberg, A.L., Selman, A.L., eds.: Theoretical
Computer Science, Essays in Memory of Shimon Even. Volume 3895 of
Lecture Notes in Computer Science., Springer (2006) 218–240

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://ubm.io/1ftfjxA

BIBLIOGRAPHY 163

[16] Dudycz, S., Ludwig, A., Schmid, S.: Can’t touch this: Consistent
network updates for multiple policies. In: Proc. 46th IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN).
(2016)

[17] Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica 20(2)
(1998) 151–174

[18] Even, S., Itai, A., Shamir, A.: On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput. 5(4) (1976) 691–
703

[19] Flammini, M., Gambosi, G., Salomone, S.: Boolean Routing. In
Schiper, A., ed.: Distributed Algorithms. Volume 725 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (1993) 219–233

[20] Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checka-
bility, no strings attached. In: Proceedings of the 17th International
Conference on Distributed Computing and Networking. ICDCN ’16,
New York, NY, USA, ACM (2016) 21:1–21:10

[21] Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canad.
J. Math 8 (1956) 399–404

[22] Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University
Press, Princeton, NJ, USA (1962)

[23] Förster, K.T., Mahajan, R., Wattenhofer, R.: Consistent Updates
in Software Defined Networks: On Dependencies, Loop Freedom, and
Blackholes. In: Proceedings of the 15th IFIP Networking Conference,
Networking 2016, Vienna, Austra, 17-19 May, 2016, IEEE (2016)

[24] Fraigniaud, P., Gavoille, C.: A characterization of networks supporting
linear interval routing. In: PODC. (1994)

[25] François, P., Bonaventure, O.: Avoiding transient loops during the
convergence of link-state routing protocols. IEEE/ACM Trans. Netw.
15(6) (2007) 1280–1292

164 BIBLIOGRAPHY

[26] François, P., Filsfils, C., Evans, J., Bonaventure, O.: Achieving sub-
second IGP convergence in large IP networks. Computer Communica-
tion Review 35(3) (2005) 35–44

[27] Fuller, V., Li, T.: RFC 4632, classless inter-domain routing (cidr): The
internet address assignment and aggregation plan. Network Working
Group (August 2006)

[28] Gao, R., Blair, D., Dovrolis, C., Morrow, M., Zegura, E.W.: Inter-
actions of intelligent route control with TCP congestion control. In
Akyildiz, I.F., Sivakumar, R., Ekici, E., de Oliveira, J.C., McNair, J.,
eds.: NETWORKING 2007. Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet, 6th International IFIP-TC6 Net-
working Conference, Atlanta, GA, USA, May 14-18, 2007, Proceedings.
Volume 4479 of Lecture Notes in Computer Science., Springer (2007)
1014–1025

[29] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA (1990)

[30] Gavoille, C.: A survey on interval routing. Theor. Comput. Sci. 245(2)
(2000) 217–253

[31] Ghorbani, S., Caesar, M.: Walk the line: Consistent network updates
with bandwidth guarantees. In: HotSDN. (2012)

[32] Goldberg, A.V., Oldham, J.D., Plotkin, S.A., Stein, C.: An imple-
mentation of a combinatorial approximation algorithm for minimum-
cost multicommodity flow. In Bixby, R.E., Boyd, E.A., Ŕıos-Mercado,
R.Z., eds.: Integer Programming and Combinatorial Optimization, 6th
International IPCO Conference, Houston, Texas, USA, June 22-24,
1998, Proceedings. Volume 1412 of Lecture Notes in Computer Sci-
ence., Springer (1998) 338–352

[33] Hartman, T., Hassidim, A., Kaplan, H., Raz, D., Segalov, M.: How to
split a flow? In Greenberg, A.G., Sohraby, K., eds.: Proceedings of the
IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012, IEEE
(2012) 828–836

BIBLIOGRAPHY 165

[34] H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4)
(2001) 798–859

[35] He, J., Rexford, J.: Toward internet-wide multipath routing. IEEE
Network 22(2) (2008) 16–21

[36] He, K., Khalid, J., Gember-Jacobson, A., Das, S., Prakash, C., Akella,
A., Li, L.E., Thottan, M.: Measuring control plane latency in sdn-
enabled switches. In Rexford, J., Vahdat, A., eds.: Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR ’15, Santa Clara, California, USA, June 17-18, 2015,
ACM (2015) 25:1–25:6

[37] Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri,
M., Wattenhofer, R.: Achieving high utilization with software-driven
WAN. In Chiu, D.M., Wang, J., Barford, P., Seshan, S., eds.: SIG-
COMM, ACM (2013) 15–26

[38] Hu, T.C.: Multi-commodity network flows. Operations Research 11(3)
(1963) 344–360

[39] Itai, A.: Two-commodity flow. J. ACM 25(4) (1978) 596–611

[40] Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Avoiding routing loops
on the internet. Theory Comput. Syst. 36(6) (2003) 597–609

[41] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A.,
Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stu-
art, S., Vahdat, A.: B4: experience with a globally-deployed software
defined wan. In Chiu, D.M., Wang, J., Barford, P., Seshan, S., eds.:
ACM SIGCOMM 2013 Conference, SIGCOMM’13, Hong Kong, China,
August 12-16, 2013, ACM (2013) 3–14

[42] Jin, X., Liu, H.H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M.,
Rexford, J., Wattenhofer, R.: Dionysus: Dynamic scheduling of net-
work updates. In Bustamante, F.E., Hu, Y.C., Krishnamurthy, A., Rat-
nasamy, S., eds.: ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, USA, August 17-22, 2014, ACM (2014) 539–550

166 BIBLIOGRAPHY

[43] Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynamic load balancing
without packet reordering. SIGCOMM CCR (2007)

[44] Kandula, S., Menache, I., Schwartz, R., Babbula, S.R.: Calendaring
for wide area networks. In: SIGCOMM. (2014)

[45] Katta, N.P., Rexford, J., Walker, D.: Incremental consistent updates.
In: HotSDN. (2013)

[46] Khachian, L.G.: A polynomial algorithm in linear programming. Dokl.
Akad. Nauk SSSR 244 (1979) 1093–1096 English translation in Soviet
Math. Dokl. 20, 191-194, 1979.

[47] Kleinberg, J.M.: Single-source unsplittable flow. In: 37th Annual Sym-
posium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, IEEE Computer Society (1996)
68–77

[48] Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.:
The internet topology zoo. IEEE Journal on Selected Areas in Com-
munications 29(9) (2011) 1765–1775

[49] Kuzniar, M., Pereśıni, P., Kostic, D.: What you need to know about
SDN flow tables. In Mirkovic, J., Liu, Y., eds.: Passive and Active
Measurement - 16th International Conference, PAM 2015, New York,
NY, USA, March 19-20, 2015, Proceedings. Volume 8995 of Lecture
Notes in Computer Science., Springer (2015) 347–359

[50] Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.A.:
zUpdate: updating data center networks with zero loss. In Chiu, D.M.,
Wang, J., Barford, P., Seshan, S., eds.: SIGCOMM, ACM (2013) 411–
422

[51] Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure
network updates. In: Proc. ACM SIGMETRICS. (2016)

[52] Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free net-
work updates: It’s good to relax! In Georgiou, C., Spirakis, P.G., eds.:
Proceedings of the 2015 ACM Symposium on Principles of Distributed

BIBLIOGRAPHY 167

Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23,
2015, ACM (2015) 13–22

[53] Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates
for bad packets: Waypoint enforcement beyond destination-based rout-
ing policies. In Katz-Bassett, E., Heidemann, J.S., Godfrey, B., Feld-
mann, A., eds.: Proceedings of the 13th ACM Workshop on Hot Top-
ics in Networks, HotNets-XIII, Los Angeles, CA, USA, October 27-28,
2014, ACM (2014) 15:1–15:7

[54] Lukovszki, T., Schmid, S.: Online admission control and embedding of
service chains. In Scheideler, C., ed.: Structural Information and Com-
munication Complexity - 22nd International Colloquium, SIROCCO
2015, Montserrat, Spain, July 14-16, 2015. Volume 9439 of Lecture
Notes in Computer Science., Springer (2015) 104–118

[55] Luo, L., Yu, H., Luo, S., Zhang, M.: Fast lossless traffic migration for
SDN updates. In: 2015 IEEE International Conference on Communi-
cations, ICC 2015, London, United Kingdom, June 8-12, 2015, IEEE
(2015) 5803–5808

[56] Luo, S., Yu, H., Luo, L., Li, L.: Arrange your network updates as you
wish. In: Proc. of IFIP Networking. (2016)

[57] Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: Inferring link
weights using end-to-end measurements. In: Internet Measurement
Workshop. (2002)

[58] Mahajan, R., Wattenhofer, R.: On consistent updates in software
defined networks. In Levine, D., Katti, S., Oran, D., eds.: Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII, College Park, MD,
USA, November 21-22, 2013, ACM (2013) 20:1–20:7

[59] McClurg, J., Hojjat, H., Cerný, P., Foster, N.: Efficient Synthesis
of Network Updates. In Grove, D., Blackburn, S., eds.: PLDI, ACM
(2015) 196–207

[60] Mizrahi, T., Rottenstreich, O., Moses, Y.: TimeFlip: Scheduling net-
work updates with timestamp-based TCAM ranges. In: INFOCOM,
IEEE (2015) 2551–2559

168 BIBLIOGRAPHY

[61] Mizrahi, T., Moses, Y.: On the necessity of time-based updates in
SDN. In Sherwood, R., ed.: Open Networking Summit 2014 - Research
Track, ONS 2014, Santa Clara, CA, USA, March 2-4, 2014, USENIX
Association (2014)

[62] Mizrahi, T., Moses, Y.: Software Defined Networks: It’s About Time.
In: INFOCOM. (2016)

[63] Mizrahi, T., Saat, E., Moses, Y.: Timed consistent network updates.
In Rexford, J., Vahdat, A., eds.: Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research, SOSR
’15, Santa Clara, California, USA, June 17-18, 2015, ACM (2015) 21:1–
21:14

[64] Noyes, A., Warszawski, T., Cerný, P., Foster, N.: Toward synthesis of
network updates. In: SYNT. (2013)

[65] Orlin, J.B.: Max flows in o(nm) time, or better. In Boneh, D., Rough-
garden, T., Feigenbaum, J., eds.: Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, ACM
(2013) 765–774

[66] Paris, S., Destounis, A., Maggi, L., Paschos, G.S., Leguay, J.: Control-
ling flow reconfigurations in sdn. In: Proc. of INFOCOM. (2016)

[67] Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., Fugal, H.: Fast-
pass. In: SIGCOMM. (2014)

[68] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Ab-
stractions for network update. In Eggert, L., Ott, J., Padmanabhan,
V.N., Varghese, G., eds.: ACM SIGCOMM 2012 Conference, SIG-
COMM ’12, Helsinki, Finland - August 13 - 17, 2012, ACM (2012)
323–334

[69] Reitblatt, M., Foster, N., Rexford, J., Walker, D.: Consistent updates
for software-defined networks: change you can believe in! In Balakrish-
nan, H., Katabi, D., Akella, A., Stoica, I., eds.: Tenth ACM Workshop
on Hot Topics in Networks (HotNets-X), HOTNETS ’11, Cambridge,
MA, USA - November 14 - 15, 2011, ACM (2011) 7

BIBLIOGRAPHY 169

[70] Roskind, J., Tarjan, R.E.: A note on finding minimum-cost edge-
disjoint spanning trees. Math. Oper. Res. 10(4) (1985) 701–708

[71] Rothfarb, W., Shein, N.P., Frisch, I.T.: Common terminal multicom-
modity flow. Operations Research 16(1) (1968) 202–205

[72] Santoro, N., Khatib, R.: Routing without routing tables. Technical
report, SCS-TR-6, School of Computer Science, Carleton University,
Ottawa (1982)

[73] Schmid, S., Suomela, J.: Exploiting locality in distributed SDN con-
trol. In Foster, N., Sherwood, R., eds.: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, HotSDN 2013, The Chinese University of Hong Kong, Hong
Kong, China, Friday, August 16, 2013, ACM (2013) 121–126

[74] Shelly, N., Tschaen, B., Förster, K., Chang, M.A., Benson, T., Van-
bever, L.: Destroying networks for fun (and profit). In de Oliveira,
J., Smith, J., Argyraki, K.J., Levis, P., eds.: Proceedings of the 14th
ACM Workshop on Hot Topics in Networks, Philadelphia, PA, USA,
November 16 - 17, 2015, ACM (2015) 6:1–6:7

[75] Siegel, J.: Azure’s Search Chaos Monkey is wreaking havoc to find
potential points of failure http://bit.ly/1HPLtQ9.

[76] Tanenbaum, A.S., Wetherall, D.J.: Computer Networks. 5th edn. Pren-
tice Hall Press, Upper Saddle River, NJ, USA (2010)

[77] Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J.
Comput. 1(2) (1972) 146–160

[78] Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Process.
Lett. 2(6) (1974) 160–161

[79] Tseitlin, A.: The antifragile organization. Commun. ACM 56(8) (Au-
gust 2013) 40–44

[80] Van Leeuwen, J., Tan, R.B.: Interval routing. The Computer Journal
30(4) (1987) 298–307

http://bit.ly/1HPLtQ9

BIBLIOGRAPHY

[81] Vanbever, L.: Methods and techniques for disruption-free network
reconfiguration. PhD thesis, Université catholique de Louvain (2012)

[82] Vanbever, L., Vissicchio, S., Pelsser, C., Francois, P., Bonaventure, O.:
Lossless migrations of link-state igps. IEEE/ACM Trans. Netw. 20(6)
(December 2012) 1842–1855

[83] Vissicchio, S., Cittadini, L.: Flip the (flow) table: Fast lightweight
policy-preserving sdn updates. In: 2016 IEEE Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-
15, 2016, IEEE (2016)

[84] Wang, W., He, W., Su, J., Chen, Y.: Cupid: Congestion-free con-
sistent data plane update in software defined networks. In: Proc. of
INFOCOM. (2016)

[85] Zhang, L., Wu, C., Li, Z., Guo, C., Chen, M., Lau, F.C.M.: Moving big
data to the cloud: An online cost-minimizing approach. IEEE Journal
on Selected Areas in Communications 31(12) (2013) 2710–2721

[86] Zheng, J., Xu, H., Chen, G., Dai, H.: Minimizing transient conges-
tion during network update in data centers. In: 23rd IEEE Interna-
tional Conference on Network Protocols, ICNP 2015, San Francisco,
CA, USA, November 10-13, 2015, IEEE Computer Society (2015) 1–10

[87] Zhou, W., Jin, D.K., Croft, J., Caesar, M., Godfrey, P.B.: Enforc-
ing customizable consistency properties in software-defined networks.
In: 12th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, USENIX
Association (2015) 73–85

Publications

The following lists the publications related to Computer Science, in the
English language, during my time as a PhD student at ETH Zurich. In
order to have a consistent subject, and for space constraints, only a subset
of these papers is presented in this thesis, namely the ones focusing on
Software Defined Networks. Part I is (partially) based on the articles at
ICCCN 2016, IFIP Networking 2016, HotNets 2015, and 1. Part II is based
on the articles at ICCCN 2016, INFOCOM 2016, ICDCN 2016, in Pervasive
and Mobile Computing, and 2. Finally, some results of this thesis have not
been published yet.

Manuscripts (partially) included in this thesis

1. Local Checkability, No Strings Attached: (A)cyclicity, Reachability,
Loop Free Updates in SDNs. Klaus-Tycho Förster, Thomas Lüdi,
Jochen Seidel and Roger Wattenhofer. Invited to a special issue of
Theoretical Computer Science.

2. Not so Lossless Flow Migration: The Impact of Latency on Network
Updates. Sebastian Brandt, Klaus-Tycho Förster, Laurent Vanbever
and Roger Wattenhofer.

BIBLIOGRAPHY

Accepted Publications

3. Local Checkability in Dynamic Networks. Klaus-Tycho Förster,
Oliver Richter, Jochen Seidel and Roger Wattenhofer. 18th Interna-
tional Conference on Distributed Computing and Networking (ICDCN),
Hyderabad, India, January 2017.

4. Distributed Discussion Diarisation. Pascal Bissig, Klaus-Tycho Förster,
Simon Tanner and Roger Wattenhofer. 14th Annual IEEE Consumer
and Networking Conference (CCNC), Las Vegas, NV, USA, January
2017.

5. RTDS: Real-Time Discussion Statistics. Pascal Bissig, Jan Deriu,
Klaus-Tycho Förster and Roger Wattenhofer. 15th International Con-
ference on Mobile and Ubiquitous Multimedia (MUM), Rovaniemi,
Finland, December 2016.

6. Reducing the Latency-Tail of Short-Lived Flows: Adding Forward Er-
ror Correction in Data Centers. Klaus-Tycho Förster, Demian Jäger,
David Stolz and Roger Wattenhofer. 15th IEEE International Sym-
posium on Network Computing and Applications (NCA), Cambridge,
MA, USA, November 2016.

7. Augmenting Flows for the Consistent Migration of Multi-Commodity
Single-Destination Flows in SDNs. Sebastian Brandt, Klaus-Tycho
Förster and Roger Wattenhofer. accepted for publication in Pervasive
and Mobile Computing, September 2016.

8. A Concept for an Introduction to Parallelization in Java: Multithread-
ing with Programmable Robots in Minecraft. Klaus-Tycho Förster,
Michael König and Roger Wattenhofer. 17th Annual Conference on
Information Technology Education (SIGITE), Boston, MA, USA,
September 2016.

9. Integrating Programming into the Mathematics Curriculum: Combin-
ing Scratch and Geometry in Grades 6 and 7. Klaus-Tycho Förster.
17th Annual Conference on Information Technology Education (SIG-
ITE), Boston, MA, USA, September 2016.

BIBLIOGRAPHY

10. The Power of Two in Consistent Network Updates: Hard Loop Free-
dom, Easy Flow Migration. Klaus-Tycho Förster and Roger Watten-
hofer. 25th International Conference on Computer Communication
and Networks (ICCCN), Waikoloa, Hi, USA, August 2016.

11. Consistent Updates in Software Defined Networks: On Dependencies,
Loop Freedom, and Blackholes. Klaus-Tycho Förster, Ratul Maha-
jan and Roger Wattenhofer. 15th IFIP Networking Conference (IFIP
Networking), Vienna, Austria, May 2016.

12. On Consistent Migration of Flows in SDNs. Sebastian Brandt, Klaus-
Tycho Förster and Roger Wattenhofer. 36th IEEE International Con-
ference on Computer Communications (INFOCOM), San Francisco,
California, USA, April 2016.

13. Augmenting Anycast Network Flows. Sebastian Brandt, Klaus-Tycho
Förster and Roger Wattenhofer. 17th International Conference on
Distributed Computing and Networking (ICDCN), Singapore, Jan-
uary 2016.

14. Local Checkability, No Strings Attached. Klaus-Tycho Förster, Thomas
Lüdi, Jochen Seidel and Roger Wattenhofer. 17th International Con-
ference on Distributed Computing and Networking (ICDCN), Singa-
pore, January 2016.

15. Lower and Upper Competitive Bounds for Online Directed Graph Ex-
ploration. Klaus-Tycho Förster and Roger Wattenhofer. Accepted for
publication in Theoretical Computer Science, November 2015.

16. Destroying networks for fun (and profit). Nick Shelly, Brendan Tschaen,
Klaus-Tycho Förster, Michael Chang, Theophilus Benson and Laurent
Vanbever. 14th ACM Workshop on Hot Topics in Networks (HotNets),
Philadelphia, PA, USA, November 2015.

17. Programming in Scratch and Mathematics: Augmenting Your Geom-
etry Curriculum, Today!. Klaus-Tycho Förster. 16th Annual Con-
ference on Information Technology Education (SIGITE), Chicago, IL,
USA, October 2015.

BIBLIOGRAPHY

18. Lower Bounds for the Capture Time: Linear, Quadratic, and Be-
yond. Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto and Roger
Wattenhofer. 22nd International Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO), Montserrat, Spain,
July 2015.

19. SpareEye: A Smart Phone App that Enhances the Safety of the Inat-
tentionally Blind. Klaus-Tycho Förster, Alex Gross, Nino Hail, Jara
Uitto and Roger Wattenhofer. The 13th International Conference on
Mobile and Ubiquitous Multimedia (MUM), Melbourne, Australia,
November 2014.

20. Deterministic Leader Election in Multi-Hop Beeping Networks. Klaus-
Tycho Förster, Jochen Seidel and Roger Wattenhofer. 28th Interna-
tional Symposium on Distributed Computing (DISC), Austin, Texas,
USA, October 2014.

21. Approximating Fault-Tolerant Domination in General Graphs. Klaus-
Tycho Förster. SIAM Analytic Algorithmics and Combinatorics
(ANALCO), New Orleans, Louisiana, USA, January 2013.

22. Directed Graph Exploration. Klaus-Tycho Förster and Roger Watten-
hofer. 16th International Conference On Principles Of Distributed
Systems (OPODIS), Rome, Italy, December 2012.

Further Manuscripts

23. Survey of Consistent Network Updates. Klaus-Tycho Förster, Stefan
Schmid and Stefano Vissicchio. arXiv:1609.02305 [cs.NI] , September
2016.

24. Multi-Agent Pathfinding with n Agents on Graphs with n Vertices:
Combinatorial Classification and Tight Algorithmic Bounds. Klaus-
Tycho Förster, Linus Groner, Torsten Hoefler, Michael König, Sascha
Schmid and Roger Wattenhofer.

	Introduction
	The Consistent Network Update Problem
	Thesis Overview

	I Loop Freedom
	On Loop-Free Network Updates
	A Model for Loop-Free Network Updates
	Loop-Free Network Updates
	Dynamic and Scheduling Loop-Free Network Updates

	Related Work and Background
	State of the Art for Loop-Free Updates & Results
	Hardness of Multi-Destination Loop-Free Updates
	Hardness of the Dynamic Case
	Hardness of the Scheduling Case

	Hardness of Scheduling Two-Destinations
	Single-Destination Loop-Free Updates
	Hardness of the Dynamic Case
	Approximation of the Dynamic Case

	Hardness of Blackhole Freedom
	Loop-Free Updates and Local Checkability
	A Local Migration Scheme
	Beyond a Single Update
	Further Applications in SDNs

	Flipping the Approach: Reachability Testing
	Problem Properties and Algorithms
	Evaluation
	Further Applications in SDNs

	II Consistent Migration of Flows
	On Consistency for Flow Updates
	Models for Consistent Flow Migrations
	Related Work and Background
	State of the Art and Results

	Consistent Flow Migration
	Model
	Hardness of Unsplittable Flow Migration
	Consistent Migration for Splittable Flows
	Insertion of Unsplittable Flows
	Increasing Splittable Flows
	Summary

	Non-Mixing Flow Migration
	Motivation
	Model
	Hardness of Unsplittable Flow Migration
	An Algorithm for Two-splittable Flow Migration
	Summary

	Lossless Flow Migration
	Motivation
	Practical Evaluation
	Model & Problem Setting
	Checking Unsplittable Flow Network Updates
	Checking for a -Consistent Migration
	Checking for a -Consistent Migration
	Summary

	Augmenting Flow Migration
	Motivation
	Flow Augmentation Background
	Model
	Augmenting Flows for Multiple Commodities
	Consistent Flow Migration with Augmentation
	Strongly Consistent Flow Migration
	Hardness of Flow Migration to new Demands
	Augmenting Flows beyond a Single Destination
	Summary

	III Outlook
	Future Directions

