
6

Input-Dynamic Distributed Algorithms
for Communication Networks

KLAUS-TYCHO FOERSTER, Faculty of Computer Science, University of Vienna, Austria

JANNE H. KORHONEN, IST Austria, Austria

AMI PAZ, Faculty of Computer Science, University of Vienna, Austria

JOEL RYBICKI, IST Austria, Austria

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

Consider a distributed task where the communication network is fixed but the local inputs given to the nodes

of the distributed system may change over time. In this work, we explore the following question: if some of

the local inputs change, can an existing solution be updated efficiently, in a dynamic and distributed manner?

To address this question, we define the batch dynamic CONGESTmodel in which we are given a bandwidth-

limited communication network and a dynamic edge labelling defines the problem input. The task is to

maintain a solution to a graph problem on the labeled graph under batch changes. We investigate, when a

batch of 𝛼 edge label changes arrive,

– how much time as a function of 𝛼 we need to update an existing solution, and

– how much information the nodes have to keep in local memory between batches in order to update the

solution quickly.

Our work lays the foundations for the theory of input-dynamic distributed network algorithms. We give a

general picture of the complexity landscape in this model, design both universal algorithms and algorithms

for concrete problems, and present a general framework for lower bounds. In particular, we derive non-trivial

upper bounds for two selected, contrasting problems: maintaining a minimum spanning tree and detecting

cliques.

CCS Concepts: • Networks→ Network algorithms; • Theory of computation→ Distributed comput-
ing models; Dynamic graph algorithms.

Additional Key Words and Phrases: dynamic graph algorithms; congest model; distributed algorithms; com-

munication networks; network management

ACM Reference Format:
Klaus-Tycho Foerster, Janne H. Korhonen, Ami Paz, Joel Rybicki, and Stefan Schmid. 2021. Input-Dynamic

Distributed Algorithms for Communication Networks. Proc. ACM Meas. Anal. Comput. Syst. 5, 1, Article 6
(March 2021), 33 pages. https://doi.org/10.1145/3447384

1 INTRODUCTION
There is an ongoing effort in the networking community to render networks more adaptive and

“self-driving” by automating network management and configuration tasks [34]. To this end, it is

Authors’ addresses: Klaus-Tycho Foerster, Faculty of Computer Science, University of Vienna, Vienna, Austria, klaus-

tycho.foerster@univie.ac.at; Janne H. Korhonen, IST Austria, Klosterneuburg, Austria, janne.korhonen@ist.ac.at; Ami

Paz, Faculty of Computer Science, University of Vienna, Vienna, Austria, ami.paz@univie.ac.at; Joel Rybicki, IST Austria,

Klosterneuburg, Austria, joel.rybicki@ist.ac.at; Stefan Schmid, Faculty of Computer Science, University of Vienna, Vienna,

Austria, stefan_schmid@univie.ac.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2021/3-ART6 $15.00

https://doi.org/10.1145/3447384

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

https://doi.org/10.1145/3447384
https://doi.org/10.1145/3447384

6:2 Klaus-Tycho Foerster et al.

essential to design network protocols that solve various tasks, such as routing and traffic engineering,

adaptively and fast.
Especially in large and long-lived networks, change is inevitable: new demand may increase

congestion, network properties such as link weights may be updated, nodes may join and leave,

and new links may appear or existing links fail. As distributed systems often need to maintain

data structures and other information related to the operation of the network, it is important to

update these structures efficiently and reliably upon changes. Naturally the naive approach of

always recomputing everything from scratch after a change occurs might be far from optimal and

inefficient. Rather, it is desirable that if there are only few changes, the existing solution could be

efficiently utilised for computing a new solution.

However, developing robust, general techniques for dynamic distributed graph algorithms — that

is, algorithms that reuse and exploit the existence of previous solutions — is challenging [11, 53]:

even small changes in the communication topologymay force communication and updates over long

distances or interfere with ongoing updates. Nevertheless, a large body of prior work has focused on

how to operate in dynamic environments where the underlying communication network changes:

temporally dynamic graphs [19] model systems where the communication structure is changing

over time; distributed dynamic graph algorithms consider solving individual graph problems when

the graph representing the communication networks is changed by addition and removal of nodes

and edges [11, 14, 16, 20, 22, 31, 45, 53]; and self-stabilisation considers recovery from arbitrary

transient faults that may corrupt an existing solution [28, 29].

1.1 Input-dynamic distributed algorithms
In contrast to most prior work which focuses on efficiently maintaining solutions in distributed

systems where the underlying communication network itself may abruptly change, we instead

investigate how to deal with dynamic inputs without changes in the topology: we assume that

the local inputs (e.g. edge weights) of the nodes may change, but the underlying communication

network remains static and reliable. We initiate the study of input-dynamic distributed graph

algorithms, with the goal of laying the groundwork for a comprehensive theory of this setting.

Indeed, we will see that this move from dynamic topology towards a setting more closely resembling

centralised dynamic graph algorithms [46], where input changes and the computational model are

similarly decoupled from each other, enables a development of a general theory of input-dynamic

distributed algorithms.

1.2 Motivation: towards dynamic network management
While the input-dynamic distributed setting is of theoretical interest, it is largely motivated by

practical questions arising in network management and optimisation. In wired communication

networks the communication topology is typically relatively static (e.g. the layout and connections

of the physical network equipment), but the input is highly dynamic. For example, network

operators perform link weight updates for dynamic traffic engineering [41] or to adjust link layer

forwarding in local area networks [68, 77], content distribution providers dynamically optimise

cache assignments [42], and traffic patterns naturally evolve over time [9, 42]. In all these cases, the

underlying topology of the communication network remains fixed, but only some input parameters

change.

Formally, the above network tasks can often be modelled as algorithmic graph problems, where

the input, in the form of edge weights or communication demands, changes over time, while the

network topology remains fixed or changes infrequently. In the light of the current efforts to render

networks more autonomous and adaptive [35, 61, 76], it is interesting to understand the power

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:3

and limitations of such dynamic distributed optimisations, also compared to a model where the

communication topology frequently changes.

To elucidate the connection between fundamental graph problems and basic network manage-

ment tasks, we discuss some motivating examples.

Example 1: Link layer spanning trees. In the context of link layer networking, a typical task is to

maintain a spanning tree on the network with e.g. the (rapid) Spanning Tree Protocol (STP) [68]. A

standard approach to compute spanning trees is that the nodes first elect a root (leader) and then

pick their parent in the tree according to the shortest distance to the root. However, when link

weights change, the leader is tasked with broadcasting such changes, and can hence take a long

time to converge to a new (minimum) spanning tree. In the case of centralised solutions, such as

software-defined networking (SDN) [77], we run into the same conceptual issues, namely that the

changes need to be gathered at a (logically) centralised location, and pushed out to the network.

From the theoretical perspective, there are well-established lower bounds for computing a

minimum spanning tree from scratch in communication-bounded networks: in the classicCONGEST
model, the problem requires Ω(

√
𝑛 + 𝐷) rounds, where 𝑛 is the number of nodes and 𝐷 is the

diameter of the network [26]. However, it is not a priori clear how efficiently maintaining an MST

under input changes can be done in a distributed manner. As one of our results, we show that (1) it

is possible to replace the dependency on

√
𝑛 to be linear in the number edge weight changes while

maintaining a small local memory footprint and (2) there is a matching lower bound showing that

this is essentially the best input-dynamic algorithm one can hope for.

Example 2: Traffic engineering and shortest paths routing. The reliable and efficient data delivery

in ISP networks typically relies on a clever traffic engineering algorithm [10]. Adaptive traffic

engineering is usually performed using dynamic link weight changes, steering the traffic along

certain (approximately) shortest paths in the network. The re-computation of routes can be quite

time consuming and exhibit longer convergence times, including the classic all-pairs shortest paths

(APSP) algorithms based on as distance-vector and link-state protocols [69]. There are theoretical

limits on how fast exact and approximate all-pairs shortest paths can be computed from scratch in

a distributed manner, even when the networks are sparse [1].

In this paper we will show that while similar limitations also extend to the case of input-dynamic

algorithms, there is a simple universal, near-optimal dynamic algorithm for these types of tasks.

Example 3: Detecting network substructures. In many networking applications, it is desirable to

detect whether the network contains certain substructures and locate them efficiently. For example,

the task of cycle detection is a special case of the task of loop detection, i.e., detecting whether

a routing scheme contains a directed cycle. On the other hand, clique detection can be used for

maintaining and assigning e.g. failover nodes and links.

Once again, we can formally characterise the complexity of such tasks, establishing both fast

algorithms and proving non-trivial lower bounds in the case of input-dynamic network algorithms,

for several subgraph detection problems.

Outlook: Towards scalable and efficient network management. Above we gave three examples how

our work can benefit the study of standard network management tasks. In general, we believe that

taking the viewpoint of input-dynamic algorithms has the potential to lead to a paradigm shift

in the design of efficient and scalable network management protocols. Current state-of-the-art

approaches to dealing with network management essentially come in two flavours: distributed

control with recomputations from scratch and centralised control (e.g, SDNs). While the former has

the drawbacks discussed above, limiting the granularity at which optimisations can be performed,

the latter can entail scalability issues. For example, the indirection via a controller, even if it is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:4 Klaus-Tycho Foerster et al.

+10

+8 -3-4

+5

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Examples of input-dynamic minimum-weight spanning tree. (a) The underlying communication graph,
with all edges starting with weight 1. (b) A feasible minimum-weight spanning tree. (c) A batch of two edge
weight increments. (d) Solution to the new input labelling. (e) A new batch of three changes: two decrements
and one increment. (f) An updated solution.

only logically centralised but physically distributed, can result in delays: in terms of reaction and

computation time at the controller and in terms of the required synchronisation in case of multiple

controllers (e.g., to keep states consistent) [59].

In contrast to the two prior approaches, the paradigm of input-dynamic distributed algorithms

aims to realise the best of both worlds: design algorithms that benefit from previously collected

state in distributed protocols, rapidly generate outputs based on existing solutions, and update the

auxiliary data structures for the next set of changes.

1.3 Batch dynamic CONGEST model
Our aim is hence to develop a rigorous theoretical framework for reasoning about distributed

input-dynamic algorithms. While there are standard models for non-dynamic distributed computa-

tions [67], there is no established model for input-dynamic graph algorithms so far (in Section 3 we

overview prior approaches in modelling other aspects of dynamic networks).

To remedy this, we introduce the batch dynamic CONGEST model, which allows us to formally

develop a theory of input-dynamic graph algorithms. In brief, the model is a dynamic variant of

the standard CONGEST model of distributed computation with the following characteristics:

(1) The communication network is represented by a static graph𝐺 = (𝑉 , 𝐸) on |𝑉 | = 𝑛 nodes. The

nodes can communicate with each other over the edges, with 𝑂 (log𝑛) bandwidth per round.

(This is the standard CONGEST model [67].)

(2) The input is given by a dynamic edge labelling of 𝐺 . The input labelling may change and once

this happens nodes need to compute a new feasible solution for the new input labelling. The

labelling can denote, e.g., edge weights or mark a subgraph of 𝐺 . We assume that the labels

can be encoded using 𝑂 (log𝑛) bits so that communicating a label takes a single round.

(3) The goal is to design a distributed algorithm which maintains a solution to a given graph

problem on the labelled graph under batch changes: up to 𝛼 labels can change simultaneously,

and the nodes should react to these changes. The nodes may maintain a local auxiliary state
to store, e.g., the current output and auxiliary data structures, in order to facilitate efficient

updates upon subsequent changes.

Figure 1 gives an example of an input-dynamic problem: maintaining a minimum-weight spanning

tree. We define the model in more detail in Section 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:5

Table 1. Upper and lower bounds for select problems in batch dynamic CONGEST. Upper bounds marked
with † follow from the universal algorithms. The lower bounds apply in a regime where 𝛼 is sufficiently small
compared to 𝑛, with the threshold usually corresponding to the point where the lower bound matches the
complexity of computing a solution from scratch in CONGEST; see Section 8 for details. All upper bounds
are deterministic. The lower bounds hold for both deterministic and randomised algorithms.

Upper bound Lower bound

Problem Time Space Time Ref.

any problem 𝑂 (𝛼 + 𝐷) 𝑂 (𝑚 log𝑛) — §5

any LOCAL(1) problem 𝑂 (𝛼) 𝑂 (𝑚 log𝑛) — §5

minimum spanning tree 𝑂 (𝛼 + 𝐷) 𝑂 (log𝑛) Ω(𝛼/log2 𝛼 + 𝐷) §7, §8.4

𝑘-clique 𝑂 (𝛼1/2) 𝑂 (𝑚 log𝑛) Ω(𝛼1/4/log𝛼) §6, §8.3

4-cycle 𝑂 (𝛼)† 𝑂 (𝑚 log𝑛)† Ω(𝛼2/3/log𝛼) §8.3

𝑘-cycle, 𝑘 ≥ 5 𝑂 (𝛼)† 𝑂 (𝑚 log𝑛)† Ω(𝛼1/2/log𝛼) §8.3

diameter, (3/2 − 𝜀)-apx. 𝑂 (𝛼 + 𝐷)† 𝑂 (𝑚 log𝑛)† Ω(𝛼/log2 𝛼 + 𝐷) §8.3

APSP, (3/2 − 𝜀)-apx. 𝑂 (𝛼 + 𝐷)† 𝑂 (𝑚 log𝑛)† Ω(𝛼/log2 𝛼 + 𝐷) §8.3

Model discussion. As discussed earlier, the underlying motivation for our work is to study how

changes to the input can be efficiently handled, while suppressing interferences arising from

changing communication topology. A natural starting point for studying communication-efficient

solutions for graph problems in networks is the standard CONGEST model [67], which we extend

to model the input-dynamic setting.

Assuming that the communication topology remains static allows us to adopt the basic viewpoint

of centralised dynamic algorithms, where an algorithm can fully process changes to input before

the arrival of new changes. While this may initially seem restrictive, our algorithms can in fact also

tolerate changes arriving during an update: we can simply delay the processing of such changes, and

fix them the next time the algorithm starts. Indeed, this parallels centralised dynamic algorithms,

where the processing of changes is not disrupted by a newer change arriving.

While this model has not explicitly been considered in the prior work, we note that input-

dynamic distributed algorithms of similar flavour have been studied before in limited manner.

In particular, Peleg [66] gives an elegant minimum spanning tree update algorithm that, in our

language, is a batch dynamic algorithm for minimum spanning tree. Very recently, a series of papers

has investigated batch dynamic versions of MPC and 𝑘-machine models, mainly focusing on the

minimum spanning tree problem [27, 43, 63]. However, the MPC and 𝑘-machine models assume a

fully-connected communication topology, i.e., every pair of nodes share a direct communication

link, making them less suitable for modelling large-scale networks.

Finally, we note that in practice, the communication topology rarely remains static throughout

the entire lifetime of a network. However, if the changes in the communication topology are

infrequent enough compared to the changes in the inputs, then recomputing a new auxiliary state

from scratch, whenever the underlying communication network changes, will have a small cost in

the amortised sense. Moreover, any lower bounds for the batch dynamic model also hold in the case

of networks with changing communication topology.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:6 Klaus-Tycho Foerster et al.

2 CONTRIBUTIONS
In this work, we focus on the following fundamental questions. When a batch of 𝛼 edge label

changes arrive, and the communication graph has diameter 𝐷 ,

(a) how much time does it take to update an existing solution, as a function of 𝛼 and 𝐷 , and

(b) how much information does a node need to keep in its local memory between batches, in order

to achieve optimal running time?

With these questions, we lay the foundations for the theory of input-dynamic distributed graph

algorithms. We draw a general picture of the complexity landscape in the batch dynamic CONGEST
model as summarised in Table 1. Our main results are as follows.

2.1 Universal upper bounds
As an almost trivial baseline, we observe that any graph problem can be solved in𝑂 (𝛼 +𝐷) rounds.
Moreover, any graph problem where the output of a node depends only on the constant-radius

neighbourhood of the node – that is, a problem solvable in 𝑂 (1) rounds in the LOCAL model
1
–

can be solved in 𝑂 (𝛼) rounds. However, these universal algorithms come at a large cost in space

complexity: storing the auxiliary state between batches may require up to𝑂 (𝑚 log𝑛) bits, where𝑚
is the number of edges — in the input graph if the input marks a subgraph, and in the communication

graph if the input represents edge weights. (Section 5.)

2.2 Intermediate complexity: clique enumeration
We give an algorithm for enumerating 𝑘-cliques in 𝑂 (𝛼1/2) rounds, beating the universal upper

bound for local problems, and showing that there exist non-trivial problems that can be solved in

𝑜 (𝛼) rounds. To complement this result, we show that dynamic clique detection requires Ω(𝛼1/4)
rounds. This is an example of a natural problem with time complexity that is neither constant nor

Θ(𝛼). (Section 6.)

2.3 Saving space: minimum-weight spanning trees
We show that a minimum-weight spanning tree can be maintained in 𝑂 (𝛼 + 𝐷) rounds using
only 𝑂 (log𝑛) bits per node for storing the auxiliary state; this exponentially improves the storage

requirements of a previous distributed dynamic algorithm of Peleg [66], which uses 𝑂 (𝑛 log𝑛) bits
of memory per node. In addition, we show that our result is tight, in terms of update time, up to

poly log𝛼 : for any 𝛼 ≤ 𝑛1/2, maintaining a minimum-weight spanning tree requires Ω(𝛼/log2 𝛼+𝐷)
rounds. (Section 7.)

2.4 A general framework for lower bounds
We develop a framework for lifting CONGEST lower bounds into the batch dynamic CONGEST
model, providing a vast array of non-trivial lower bounds for input-dynamic problems. These include

lower bounds for classic graph problems, such as cycle detection, clique detection, computing the

diameter, approximating all-pairs shortest paths, and computing minimum spanning trees. The

lower bounds hold for both deterministic and randomised algorithms. (Section 8.)

2.5 Dynamic congested clique
We explore the dynamic variant of the congested clique model, which arises as a natural special case

of the batch dynamic CONGEST. We show that triangle counting can be solved in 𝑂 ((𝛼/𝑛)1/3 +
1) rounds in this model using 𝑂 (𝑛 log𝑛) bits of auxiliary state by applying a dynamic matrix

1
The LOCAL model is similar to the CONGEST model, but without the𝑂 (log𝑛) limitation on the message sizes [67].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:7

multiplication algorithm. To contrast this, we show that any problem can be solved in 𝑂 (⌈𝛼/𝑛⌉)
rounds using 𝑂 (𝑚 log𝑛) bits of auxiliary state. (Section 9.)

2.6 Summary and open questions
As a key takeaway, we have established that the possible time complexities in batch dynamic

CONGEST range from constant to linear-in-𝛼 , and that there are truly intermediate problems in

between. However, plenty of questions remain unanswered; we highlight the following objectives

as particularly promising future directions:

– Upper bounds: Develop new algorithmic techniques for batch dynamic CONGEST.
– Understanding space: Develop lower bound techniques for space complexity. In particular, are

there problems that exhibit time-space tradeoffs, i.e. problems where optimal time and space

bounds cannot be achieved at the same time?

– Symmetry-breaking problems: Understand how problems with subpolynomial complexity in

CONGEST– in particular, symmetry-breaking problems such as maximal independent set –

behave in the batch dynamic CONGEST model.

2.7 Technical overview and methodological advancements
Themain conceptual contribution of our work is the introduction of the batch dynamic model, which

allows the development of a robust complexity theory of input-dynamic distributed algorithms.

A particularly attractive feature of our model is that we can easily leverage standard machinery

developed for non-dynamic CONGEST model in the input-dynamic setting. This for example

immediately yields the baseline results given in Section 5 and the fast triangle counting algorithms

for batch dynamic congested clique in Section 9.

However, to obtain efficient input-dynamic algorithms, it is necessary to develop new algorithmic

and analysis techniques. As our main technical contributions, we analyse two different algorithmic

problems, clique enumeration (a local problem) and maintaining minimum-spanning trees (a global

problem), and devise a general framework for proving lower bounds for input-dynamic distributed

algorithms.

Clique enumeration. The clique enumeration problem is a local problem: the nodes need to decide

whether their local neighbourhood contains a clique of a certain size. In the dynamic setting, the

main challenge is to deal with the fact that nodes do not know the number 𝛼 of changes in advance,

but the running time should be bounded in terms of 𝛼 . When dealing with a global problem that

requires Ω(𝐷) rounds in networks with diameter𝐷 , we can simply broadcast the number of changes

in the network using standard broadcasting techniques. However, as clique enumeration is a local

problem, we wish to obtain running times independent of the diameter of the communication

network.

To this end, we observe that the subgraph defined by the changed input edges has an useful graph

theoretical property, namely, it has bounded degeneracy. This allows us to distributively compute

the Nash–Williams decomposition between after a batch of updates, which can be efficiently used

to route information about the local changes to input while avoiding congestion. This resembles

to approach taken by e.g. Korhonen and Rybicki [54], who use a distributed version of the Nash–

Williams decomposition by Barenboim and Elkin [15], to detect cycles in bounded degeneracy

graphs. The main difference to this work is that here we show how to use this approach in the

batch dynamic model and we show how to interleave the computation of this decomposition and

clique enumeration in a way where nodes only locally have to determine when to halt, without

knowing the total number of changes in advance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:8 Klaus-Tycho Foerster et al.

Minimum-weight spanning trees. Recent work almost exclusively has focused on maintaining

minimum-weight spanning trees in fully-connected communication topologies. The main challenge

in our work is that we consider general communication topologies, where nodes may need to

communicate via large distances. In order to achieve small space complexity, we use a distributed

implementation of the standard Eulerian tour tree data structure, which can be used to recover the

minimum-weight spanning tree as long as we can maintain the said data structure.

Recently, Eulerian tour trees have also been used in fully-connected dynamic models [27, 43, 52],

where direct communication is possible between any pair of nodes. In our model, the analysis is

complicated by the fact, that communication has to be done over the network e.g. via broadcast

trees – to avoid congestion, the changes to the input need to be broadcast in a pipelined fashion.

The key observation is that the steps required for the Eulerian tour tree update can be formulated

as maximum matroid basis problems, which allows us to use the elegant distributed maximum

matroid basis algorithm Peleg [66] to efficiently compute the required changes to this structure.

Lower bound framework. The main technical challenge here is to extend the notion of lower

bound family lower bounds into the batch dynamic setting. While the relevant parameter in

CONGEST is the size 𝑛 of the network, in the batch dynamic model, the time complexity is (mainly)

parameterised in terms of the number 𝛼 of changes. For this reparameterisation, we introduce the

notion of extension properties and a padding technique that allow us to embed a hard input graph

into a larger communication graph.

3 RELATEDWORK
As the dynamic aspects of distributed systems have been investigated from numerous different

perspectives, giving a comprehensive survey of all prior work is outside the scope of the current

work. Thus, we settle on highlighting the key differences and similarities between the questions

studied in related areas and our work.

3.1 Centralised dynamic graph algorithms
Before proceeding to the distributed setting, it is worth noting that dynamic graph algorithms in

the centralised setting have been a major area of research for several years [46]. This area focuses

on designing data structures that admit efficient update operations (e.g. node/edge additions and

removals) and queries on the graph.

Early work in the area investigated how connectivity properties, e.g., connected components

and minimum spanning trees, can be maintained [49, 50]. Later work has investigated efficient

techniques for maintaining other graph structures, such as spanners [17], emulators [47], match-

ings [60], maximal independent sets [7, 8]; approximate vertex covers, electrical flows and shortest

paths [18, 32, 44]. Recently, conditional hardness results have been established in the centralised

setting [2, 6, 48].

Similarly to our work, the input in the centralised setting is dynamic: there is a stream of update

operations on the graph and the task is to efficiently provide solutions to graph problems. Naturally,

the key distinction is that changes in the centralised setting arrive sequentially and are handled

by a single machine. Moreover, in the distributed setting, we can provide unconditional lower

bounds for various input-dynamic graph problems, as our proofs rely on communication complexity

arguments.

3.2 Distributed algorithms in changing communication networks
The challenges posed by dynamic communication networks — that is, networks where communi-

cation links and nodes may appear or be removed — have been a subject of ongoing research for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:9

decades. Classic works have explored the connection between synchronous static protocols and

fault-prone asynchronous computation under dynamic changes to communication topology [12].

Later, it was investigated how to maintain or recompute local [65] and global [33] graph struc-

tures when communication links may appear and disappear or crash. A recent line of work has

investigated how to efficiently fix solutions to graph problems under various distributed set-

tings [7, 8, 14, 20, 22, 31, 38–40, 45, 53]. Another line of research has focused on time-varying

communication networks which come with temporal guarantees, e.g., that every 𝑇 consecutive

communication graphs share a spanning tree [19, 55, 64].

In the above settings, the input graph and the communication network are the same, i.e., the

inputs and communication topology are typically coupled. However, there are exceptions to this,

as discussed next.

3.3 Input-dynamic parallel and distributed algorithms
Several instance of distributed dynamic algorithms can be seen as examples of the input-dynamic

approach. Italiano [51] and later Cicerone et al. [24], considered the problem of maintaining a

solution all-pairs shortest paths problemwhen a single edge weight may change at a time. Peleg [66]

considered the task of correcting aminimum-weight spanning tree after changes to the edgeweights,

albeit with a large cost in local storage, as the algorithm stores the entire spanning tree locally at

each node.

More recently, there has been an increasing interest in developing dynamic graph algorithms for

classic parallel models [3–5, 74, 75] and massively parallel large-scale systems [27, 43, 52, 63]. In

the former, communication is via shared memory, whereas in the latter the communication is via

message-passing in a fixed, fully-connected network, but the input is distributed among the nodes

and the communication bandwidth (or local storage) of the nodes is limited. Thus, the key difference

is that in these parallel models, the communication topology always forms a fully-connected graph,

whereas in the batch dynamic CONGEST considered in our work, the communication topology

can be arbitrary, and thus, communication also incurs a distance cost. However, we note that the

dynamic congested clique model we study in Section 9 falls under this category.

3.4 Self-stabilisation
The area of self-stabilisation [28, 29] considers robust algorithms that eventually recover from

arbitrary transient failures that may corrupt the state of the system. Thus, unlike in our setting

where the auxiliary state and communication network are assumed to be reliable, the key challenge

in self-stabilisation is coping with possibly adversarial corruption of local memory and inconsistent

local states, instead of changing inputs.

3.5 Supported models
Similar in spirit to our model is the supported CONGEST model, a variant of the CONGEST model

designed for software-defined networks [72]. In this model, the communication graph is known

to all nodes and the task is to solve a graph problem on a given subgraph, whose edges are given
to the nodes as inputs. The idea is that the knowledge of the communication graph may allow

for preprocessing, which may potentially offer speedup for computing solutions in the subgraph.

However, unlike the batch dynamic CONGEST model, the supported CONGEST model focuses on

one-shot computation. Korhonen and Rybicki [54] studied the complexity of subgraph detection

problems in supported CONGEST. Later, somewhat surprisingly, Foerster et al. [37] showed that

in many cases knowing the communication graph does not help to circumvent CONGEST lower

bounds. Lower bounds were also studied in the supported LOCALmodel, for maximum independent

set approximation [36].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:10 Klaus-Tycho Foerster et al.

4 BATCH DYNAMIC CONGEST MODEL
In this section, we formally define the the batch dynamic CONGEST model.

4.1 Communication graph and computation
The communication graph is an undirected, connected graph𝐺 = (𝑉 , 𝐸) with 𝑛 nodes and𝑚 edges.

We use the short-hands 𝐸 (𝐺) = 𝐸 and𝑉 (𝐺) = 𝑉 . Each node has a unique identifier of size𝑂 (log𝑛)
bits. In all cases, 𝑛 and𝑚 denote the number of vertices and edges, respectively, in𝐺 , and 𝐷 denotes

the diameter of 𝐺 .

All computation is performed using the graph𝐺 for communication, as in the case of the standard

CONGEST model [67]: in a single synchronous round, all nodes in lockstep

(1) send messages to their neighbours,

(2) wait for messages to arrive, and

(3) update their local states.

We assume 𝑂 (log𝑛) bandwidth per edge per synchronous communication round. To simplify

presentation, we assume that any 𝑂 (log𝑛)-bit message can be sent in one communication round.

Clearly, this only affects constant factors in the running times of the algorithms we obtain.

4.2 Graph problems
A graph problem Π is given by sets of input labels Σ and output labels Γ. For each graph𝐺 = (𝑉 , 𝐸),
unique ID assignment ID : 𝑉 → {1, . . . , poly(𝑛)} for 𝑉 and input labelling of edges ℓ : 𝐸 → Σ, the
problem Π defines a set Π(𝐺, ℓ) of valid output labellings of form 𝑓 : 𝑉 → Γ. We assume that input

labels can be encoded using 𝑂 (log𝑛) bits, and that the set Π(𝐺, ℓ) is finite and computable. We

focus on the following problem categories:

– Subgraph problems: The input label set is Σ = {0, 1}, and we interpret a labelling as defining a

subgraph 𝐻 = (𝑉 , {𝑒 ∈ 𝐸 : ℓ (𝑒) = 1}). Note that in this case, the diameter of the input graph 𝐻

can be much larger than the diameter 𝐷 of the communication graph 𝐺 , but we still want the

running times of our algorithms to only depend on 𝐷 .

– Weighted graph problems: The input label set is Σ = {0, 1, 2, . . . , 𝑛𝐶 } for a constant 𝐶 , i.e., the
labelling defines weights on edges. We can also allow negative weights of absolute value at

most 𝑛𝐶 , or allow some weights to be infinite, denoted by∞.

4.3 Batch dynamic algorithms
We define batch dynamic algorithms via the following setting: assume we have some specified

input labels ℓ1 and have computed a solution for input ℓ1. We then change 𝛼 edge labels on the

graph to obtain new inputs ℓ2, and want to compute a solution for ℓ2. In addition to seeing the local

input labellings, each node can store auxiliary information about the previous labelling ℓ1 and use

it in the computation of the new solution.

More precisely, let Π be a problem. Let Λ be a set of local auxiliary states; we say that a (global)

auxiliary state is a function 𝑥 : 𝑉 → Λ. A batch dynamic algorithm is a pair (𝜉,A) defined by a set

of valid auxiliary states 𝜉 (𝐺, ℓ) and a CONGEST algorithm A that satisfy the following conditions:

– For any𝐺 and ℓ , the set 𝜉 (𝐺, ℓ) is finite and computable. In particular, this implies that there is

a (centralised) algorithm that computes some 𝑥 ∈ 𝜉 (𝐺, ℓ) from 𝐺 and ℓ .

– There is a computable function 𝑠 : Λ→ Γ such that for any 𝑥 ∈ 𝜉 (𝐺, ℓ), outputting 𝑠 (𝑥 (𝑣)) at
each node 𝑣 ∈ 𝑉 gives a valid output labelling, that is, 𝑠 ◦ 𝑥 ∈ Π(𝐺, ℓ).

– The algorithm A is a CONGEST algorithm such that

(a) all nodes 𝑣 receive as local input the labels on their incident edges in both an old labelling

ℓ1 and a new labelling ℓ2, as well as their own auxiliary state 𝑥1 (𝑣) from 𝑥1 ∈ 𝜉 (𝐺, ℓ1),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:11

(b) all nodes 𝑣 will halt in finite number of steps and upon halting produce a new auxiliary

state 𝑥2 (𝑣) so that together they satisfy 𝑥2 ∈ 𝜉 (𝐺, ℓ2).
Note that we do not require all nodes to halt at the same time. We assume that halted nodes

have to announce halting to their neighbours, and will not send or receive any messages after

halting.

We define the running time of A as the maximum number of rounds for all nodes to halt; we use

the number of label changes between ℓ1 and ℓ2 as a parameter and denote this by 𝛼 . The (per node)

space complexity of the algorithm is the maximum number of bits needed to encode any auxiliary

state 𝑥 (𝑣) over 𝑥 ∈ 𝜉 (𝐺, ℓ).
While all of our algorithms are deterministic, one can also consider randomised batch dynamic

algorithms. Here one can adopt different correctness and complexity measures. The most common

one in centralised and parallel dynamic algorithms (e.g. [4, 17, 49, 75]) is to consider Las Vegas
algorithms. In our setting, this means requiring that, upon halting, nodes always output a valid new

auxiliary state; the running time can be measured either (a) by the expected running time of the

algorithm, or (b) by establishing running time bounds that hold with high probability. Alternatively,

one can also consider Monte Carlo algorithms, succeeding with high probability within a fixed

running time (e.g. [70]); however, these have the disadvantage that the algorithm is likely to fail at

some point over an arbitrarily long sequence of batches. Our lower bounds hold for all of these

variants, as we discuss in Section 8.

Remark 4.1. Allowing nodes to halt at different times is done for technical reasons, as we do not
assume that nodes know the number of changes 𝛼 and thus we cannot guarantee simultaneous halting
in general. Note that with additive 𝑂 (𝐷) round overhead, we can learn 𝛼 globally.

4.4 Notation
Finally, we collect some notation used in the remainder of this paper. For any set of nodes𝑈 ⊆ 𝑉 ,

we write𝐺 [𝑈] = (𝑈 , 𝐸 ′), where 𝐸 ′ = {𝑒 ∈ 𝐸 : 𝑒 ⊆ 𝑈 }, for the subgraph of𝐺 induced by𝑈 . For any

set of edges 𝐹 ⊆ 𝐸, we write 𝐺 [𝐹] = (𝑉 ′, 𝐹), where 𝑉 ′ = ⋃
𝐹 . When clear from the context, we

often resort to a slight abuse of notation and treat a set of edges 𝐹 ⊆ 𝐸 interchangeably with the

subgraph (𝑉 , 𝐹) of 𝐺 . Moreover, for any 𝑒 = {𝑢, 𝑣} we use the shorthand 𝑒 ∈ 𝐺 to denote 𝑒 ∈ 𝐸 (𝐺).
For any 𝑣 ∈ 𝑉 , the set of edges incident to 𝑣 is denoted by 𝐸 (𝑣) = {{𝑢, 𝑣} ∈ 𝐸}. The neighbourhood
of 𝑣 is 𝑁 + (𝑣) = ⋃

𝐸 (𝑣). We define

¤𝐸 = {𝑒 ∈ 𝐸 : ℓ1 (𝑒) ≠ ℓ2 (𝑒)}

to be the set of at most 𝛼 edges whose labels were changed during an update.

5 UNIVERSAL UPPER BOUNDS
As a warmup, we establish the following easy baseline result showing that any problem Π has a

dynamic batch algorithm that uses 𝑂 (𝛼 + 𝐷) time and 𝑂 (𝑚 log𝑛) bits of auxiliary space per node:

each node simply stores previous input labelling ℓ1 as the auxiliary state and broadcasts all changes

to determine the new labelling ℓ2. First, we recall some useful primitives that follow from standard

techniques [67].

Lemma 5.1. In the CONGEST model:

(a) A rooted spanning tree 𝑇 of diameter 𝐷 of the communication graph 𝐺 can be constructed in
𝑂 (𝐷) rounds.

(b) Let 𝑀 be a set of 𝑂 (log𝑛)-bit messages, each given to a node. Then all nodes can learn 𝑀 in
𝑂 (|𝑀 | + 𝐷) rounds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:12 Klaus-Tycho Foerster et al.

With the above routing primitives, it is straightforward to derive the following universal upper

bound.

Theorem 5.2. For any problem Π, there exists a dynamic batch algorithm that uses 𝑂 (𝛼 + 𝐷) time
and 𝑂 (𝑚 log𝑛) space.

Proof. Define 𝜉 (𝐺, ℓ) = {ℓ}, that is, the only valid auxiliary state is a full description of the

input. Define the algorithm A as follows:

(1) Let ¤𝐸 ⊆ 𝐸 be the set of edges that changed. Define

𝑀 = {(𝑢, 𝑣, ℓ2 ({𝑢, 𝑣})) : {𝑢, 𝑣} ∈ ¤𝐸} .
The set𝑀 encodes the 𝛼 changes and each message in𝑀 can be encoded using 𝑂 (log𝑛) bits.
By Lemma 5.1b, all nodes can learn the changes in 𝑂 (𝛼 + 𝐷) rounds.

(2) Given𝑀 , each node 𝑣 ∈ 𝑉 can locally construct ℓ2 from𝑀 and ℓ1. Set 𝑥2 (𝑣) = ℓ2.

(3) Each node 𝑣 ∈ 𝑉 locally computes a solution 𝑠 ∈ Π(𝐺, ℓ2) and outputs 𝑠 (𝑣).
The claim follows by observing that the update algorithm A takes 𝑂 (𝛼 + 𝐷) rounds and that

𝜉 (𝐺, ℓ) = {ℓ} can be encoded using 𝑂 (𝑚 log𝑛) bits. □

As a second baseline, we consider problems that are strictly local in the sense that there is a

constant 𝑟 such that the output of a node 𝑣 only depends on the radius-𝑟 neighbourhood of 𝑣 .

Equivalently, this means that the problem belongs to the class of problems solvable in 𝑂 (1) rounds
in the LOCAL model, denoted by LOCAL(1).

Theorem 5.3. For any LOCAL(1) problem, there exists a dynamic batch algorithm that uses 𝑂 (𝛼)
time and 𝑂 (𝑚 log𝑛) space.

Proof. Let 𝑟 be the constant such that the output of a node 𝑣 only depends on the radius-𝑟

neighbourhood of 𝑣 . For each node 𝑣 , the auxiliary state is the full description of the input labelling

in radius-𝑟 neighbourhood of 𝑣 . Define the algorithm A as follows:

(1) Let ¤𝐸 ⊆ 𝐸 be the set of edges that changed. Define

𝑀𝑣,1 = {(𝑢, 𝑣, ℓ2 ({𝑢, 𝑣})) : 𝑢 ∈ 𝑁 + (𝑣), {𝑢, 𝑣} ∈ ¤𝐸} .
The set𝑀𝑣,1 encodes the label changes of edges incident to 𝑣 , and each message in𝑀𝑣,1 can be

encoded using 𝑂 (log𝑛) bits.
(2) For phase 𝑖 = 1, 2, . . . , 𝑟 , node 𝑣 broadcasts𝑀𝑣,𝑖 to all of its neighbours, and then announces it

is finished with phase 𝑖 . Let 𝑅𝑣,𝑖 denote the set of messages node 𝑣 received in phase 𝑖 . Once all

neighbours have announced they are finished with phase 𝑖 , node 𝑣 sets𝑀𝑣,𝑖+1 = 𝑅𝑣,𝑖 \
⋃𝑖

𝑗=1𝑀𝑣,𝑗

and moves to phase 𝑖 + 1.
(3) Once all neighbours of 𝑣 are finished with phase 𝑟 , node 𝑣 can locally reconstruct ℓ2 in it’s

radius-𝑟 neighbourhood and set the new local auxiliary state 𝑥2 (𝑣).
(4) Node 𝑣 locally computes output 𝑠 (𝑣) from 𝑥2 (𝑣) and halts.

The claim follows by observing that each set𝑀𝑖,𝑣 can have size at most 𝛼 , and a node can be in any

of the 𝑟 = 𝑂 (1) phases for 𝑂 (𝛼) rounds. In the worst case, the radius-𝑟 neighbourhood of a node is

the whole graph, in which case encoding the full input labelling takes 𝑂 (𝑚 log𝑛) bits. □

6 BATCH DYNAMIC CLIQUE ENUMERATION
In this section, we show that we can do better than the trivial baseline of 𝑂 (𝛼) rounds for the
fundamental local subgraph problem of enumerating cliques.

We consider a setting where the input is a subgraph of the communication graph, represented

by label for each edge indicating its existence in the subgraph. We show that for any 𝑘 ≥ 3, there is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:13

a sublinear-time (in 𝛼) batch dynamic algorithm for enumerating 𝑘-cliques. More precisely, we give

an algorithm that for each node 𝑣 maintains the induced subgraph of its radius-1 neighbourhood.

This algorithm runs in𝑂 (𝛼1/2) rounds and can be used to maintain, at each node, the list all cliques

the node is part of.

To contrast this upper bound, Section 8 shows that even the easier problem of detecting 𝑘-cliques
requires Ω(𝛼1/4/log𝛼) rounds. While this does not settle the complexity of the problem, it shows

that this central problem has non-trivial, intermediate complexity: more than constant or poly log𝛼 ,

but still sublinear in 𝛼 .

6.1 Acyclic orientations
An orientation of a graph 𝐺 = (𝑉 , 𝐸) is a map 𝜎 that assigns a direction to each edge {𝑢, 𝑣} ∈ 𝐸.
For any 𝑑 > 0, we say that 𝜎 is a 𝑑-orientation if

(1) every node 𝑣 ∈ 𝑉 has at most 𝑑 outgoing edges,

(2) the orientation 𝜎 is acyclic.

We use outdeg𝜎 (𝑣) to denote the number of outgoing edges from 𝑣 in the orientation 𝜎 .

A graph 𝐺 has degeneracy 𝑑 (“is 𝑑-degenerate”) if every non-empty subgraph of 𝐺 contains a

node with degree at most 𝑑 . It is well-known that a graph 𝐺 admits a 𝑑-orientation if and only if 𝐺

has degeneracy of at most 𝑑 . We use the following graph theoretic observation.

Lemma 6.1. Let 𝐺 be a 𝑑-degenerate graph with 𝑛 nodes and𝑚 edges. Then 𝑑 ≤
√
2𝑚 and𝑚 ≤ 𝑛𝑑 .

Proof. For the first claim, suppose that 𝑑 >
√
2𝑚. Then there is a subset of nodes𝑈 such that

𝐺 [𝑈] has minimum degree 𝛿 >
√
2𝑚. It follows that𝑈 has at least 𝛿 + 1 nodes, and thus the number

of edges incident to nodes in𝑈 in 𝐺 is at least

1

2

∑
𝑣∈𝑈

deg𝐺 (𝑣) ≥
1

2

𝛿 (𝛿 + 1) > 1

2

√
2𝑚(
√
2𝑚 + 1) > 𝑚 ,

which is a contradiction. The second claim follows by considering a 𝑑-orientation 𝜎 of 𝐺 and

observing that

𝑚 =
∑
𝑣∈𝑉

outdeg𝜎 (𝑣) ≤ 𝑛𝑑. □

Let ¤𝐸 ⊆ 𝐸 be the set of 𝛼 edges that are changed by the batch update. We show that the edges

of 𝐺 [¤𝐸] can be quickly oriented so that each node has 𝑂 (
√
𝛼) outgoing edges despite nodes not

knowing 𝛼 . This orientation serves as a routing scheme for efficiently distributing relevant changes

in the local neighbourhoods.

Lemma 6.2. An 𝑂 (
√
𝛼)-orientation of 𝐺 [¤𝐸] can be computed in 𝑂 (log2 𝛼) rounds.

Proof. Recall that𝑚 is the number of edges in the communication graph 𝐺 . Let 𝐻 = (𝑈 , ¤𝐸) and
note that |𝑈 | ≤ 2𝛼 and 𝛼 ≤ 𝑚. For an integer 𝑑 , define

𝑓 (𝑑) = 3 ·
√
2
𝑑+1

and 𝑇 (𝑑) =
⌈
log

3/2 2
𝑑+1

⌉
.

The orientation of 𝐻 is computed iteratively as follows:

(1) Initially, each edge 𝑒 ∈ ¤𝐸 is unoriented.

(2) In iteration 𝑑 = 1, . . . , ⌈log𝑚⌉, repeat the following for 𝑇 (𝑑) rounds:
– If node 𝑣 has at most 𝑓 (𝑑) unoriented incident edges, then 𝑣 orients them outwards and

halts. In case of conflict, an edge is oriented towards the node with the higher identifier.

– Otherwise, node 𝑣 does nothing.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:14 Klaus-Tycho Foerster et al.

Clearly, if node 𝑣 halts in some iteration 𝑑 , then 𝑣 will have outdegree at most 𝑓 (𝑑).
Fix

ˆ𝑑 = ⌈log𝛼⌉ ≤ ⌈log𝑚⌉. We argue that by the end of iteration
ˆ𝑑 , all edges of 𝐻 have been

oriented. For 0 ≤ 𝑖 ≤ 𝑇 (ˆ𝑑), define𝑈𝑖 ⊆ 𝑈 to be the set of vertices that have unoriented edges after

𝑖 ≥ 0 rounds of iteration
ˆ𝑑 , i.e.,

𝑈𝑖+1 = {𝑣 ∈ 𝑈𝑖 : deg𝑖 (𝑣) > 𝑓 (ˆ𝑑)},
where deg𝑖 (𝑣) is the degree of node 𝑣 in subgraph 𝐻𝑖 = 𝐻 [𝑈𝑖] induced by𝑈𝑖 .

Note that every 𝑢 ∈ 𝑈 \𝑈0 has outdegree at most 𝑓 (ˆ𝑑). We now show that each node in𝑈0 halts

with outdegree at most 𝑓 (ˆ𝑑) within 𝑇 (ˆ𝑑) rounds. First, observe that |𝑈𝑖+1 | < 2

3
|𝑈𝑖 |. To see why,

notice that by Lemma 6.1 each 𝐻𝑖 has degeneracy at most

√
2𝛼 and thus at most |𝑈𝑖 | ·

√
2𝛼 edges. If

|𝑈𝑖+1 | ≥ 2

3
|𝑈𝑖 | holds, then 𝐻𝑖+1 has at least

1

2

·
∑

𝑣∈𝑈𝑖+1

deg𝑖 (𝑣) >
1

2

· |𝑈𝑖+1 | · 𝑓 (ˆ𝑑) ≥
2

3

· |𝑈𝑖 | · 𝑓 (ˆ𝑑)

= |𝑈𝑖 | ·
√
2
ˆ𝑑+1 > |𝑈𝑖 | ·

√
2𝛼

edges, which is a contradiction. Thus, we get that |𝑈𝑖+1 | < (2/3)𝑖 · |𝑈 | and

|𝑈
𝑇 (ˆ𝑑) | < (2/3)

𝑇 (ˆ𝑑) · 2𝛼 ≤ 2𝛼

2
ˆ𝑑+1
≤ 1.

Therefore, each edge of 𝐻 is oriented by the end of iteration
ˆ𝑑 = ⌈log𝛼⌉ and each node has at most

𝑓 (ˆ𝑑) = 𝑂 (
√
𝛼) outgoing edges. As a single iteration takes at most 𝑂 (log𝛼) rounds, all nodes halt

in 𝑂 (log2 𝛼) rounds, as claimed. □

6.2 Algorithm for clique enumeration
Let𝐺+ [𝑣] denote the subgraph induced by the radius-1 neighbourhood of 𝑣 ; note that this includes

all edges between neighbours of 𝑣 . Let 𝐻1 ⊆ 𝐺 and 𝐻2 ⊆ 𝐺 be the subgraphs given by the previous

input labelling ℓ1 and the new labelling ℓ2, respectively. The auxiliary state 𝑥 (𝑣) of the batch dynamic

algorithm is a map 𝑥 (𝑣) = 𝑦𝑣 such that 𝑦𝑣 : 𝐸 (𝐺+ [𝑣]) → {0, 1}. The map 𝑦𝑣 encodes which edges

in 𝐺+ [𝑣] are present in the input subgraph.

The dynamic algorithm computes the new auxiliary state 𝑥2 encoding the subgraph 𝐻+
2
[𝑣] as

follows:

(1) Each node 𝑣 runs the 𝑂 (𝛼1/2)-orientation algorithm on 𝐺 [¤𝐸] until all nodes in its radius-1

neighbourhood 𝑁 + (𝑣) have halted (and oriented their edges in ¤𝐸).
(2) Let ¤𝐸out (𝑣) ⊆ ¤𝐸 be the set of outgoing edges of 𝑣 in the orientation. Node 𝑣 ∈ 𝑉 sends the set

𝐴(𝑣) = {(𝑒, ℓ2 (𝑒)) : 𝑒 ∈ ¤𝐸out (𝑣)}
to each of its neighbours 𝑢 ∈ 𝑁 (𝑣).

(3) Define 𝑅(𝑣) = ⋃
𝑢∈𝑁 + (𝑣) 𝐴(𝑢) and the map 𝑦 ′𝑣 : 𝐸 (𝐺+ [𝑣]) → {0, 1} as

𝑦 ′𝑣 (𝑒) =
{
ℓ2 (𝑒) if (𝑒, ℓ2 (𝑒)) ∈ 𝑅(𝑣)
𝑦𝑣 (𝑒) otherwise,

where 𝑦𝑣 is the map encoded by the auxiliary state 𝑥1 (𝑣).
(4) Set the new auxiliary state to 𝑥2 (𝑣) = 𝑦 ′𝑣 .

First, we show that the computed auxiliary state of each node 𝑣 encodes the subgraph 𝐻+
2
[𝑣]

induced by the radius-1 neighbourhood of 𝑣 in the new input graph 𝐻2.

Lemma 6.3. Let 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐺+ [𝑣]. Then we have 𝑦 ′𝑣 (𝑒) = 1 if and only if 𝑒 ∈ 𝐻+
2
[𝑣].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:15

Proof. There are two cases to consider. First, suppose 𝑒 = {𝑢,𝑤} ∈ ¤𝐸. After Step (1), the edge

{𝑢,𝑤} is w.l.o.g. oriented towards 𝑢. Hence, in Step (2), if𝑤 ≠ 𝑣 , then𝑤 sends (𝑒, ℓ2 (𝑒)) ∈ 𝐴(𝑤) to
𝑣 , as𝑤 ∈ 𝑁 (𝑣), and if𝑤 = 𝑣 then 𝑣 knows 𝐴(𝑣). Thus, 𝑒 ∈ 𝐺+ [𝑣] ∩ ¤𝐸 ⊆ 𝑅(𝑣). By definition of 𝑦 ′𝑣 it
holds that 𝑦 ′𝑣 (𝑒) = ℓ2 (𝑒) = 1 if and only if 𝑒 ∈ 𝐻+

2
[𝑣] holds.

For the second case, suppose 𝑒 ∉ ¤𝐸. Then, as 𝐻+
1
[𝑣] \ ¤𝐸 = 𝐻+

2
[𝑣] \ ¤𝐸, and by definition of 𝑦 ′𝑣 , we

have that 𝑦 ′𝑣 (𝑒) = 𝑦𝑣 (𝑒) = 1 if and only if 𝑒 ∈ 𝐻+
2
[𝑣] \ ¤𝐸 holds. □

Next, we upper bound the running time of the above algorithm.

Lemma 6.4. Each node 𝑣 computes 𝐻+
2
[𝑣] in 𝑂 (𝛼1/2) rounds.

Proof. By Lemma 6.2, Step (1) completes in𝑂 (log2 𝛼) rounds and |𝐴| = 𝑂 (𝛼1/2). Since each edge
in𝐴 can be encoded using𝑂 (log𝑛) bits, Step (2) completes in𝑂 (𝛼1/2) rounds. As no communication

occurs after Step (2), the running time is bounded by𝑂 (𝛼1/2 + log2 𝛼). By Lemma 6.3, node 𝑣 learns

𝐻+
2
[𝑣] in Step (3). □

Note that if a node 𝑣 is part of a 𝑘-clique, then all the edges of this clique are contained in 𝐻+
2
[𝑣].

Thus, node 𝑣 can enumerate all of its𝑘-cliques by learning𝐻+
2
[𝑣], and hence, we obtain the following

result.

Theorem 6.5. There exists an algorithm for clique enumeration in the batch dynamic CONGEST
model that runs in 𝑂 (𝛼1/2) rounds and uses 𝑂 (𝑚 log𝑛) bits of auxiliary state.

7 MINIMUM-WEIGHT SPANNING TREES
In this section, we construct an algorithm that computes a minimum-weight spanning tree in the

dynamic batch model in𝑂 (𝛼 +𝐷) rounds and using𝑂 (log𝑛) bits of auxiliary state between batches.

For the dynamic minimum spanning tree, we assume that the input label𝑤 (𝑒) ∈ {0, 1, 2, . . . , 𝑛𝐶 } ∪
{∞} encodes the weight of edge 𝑒 ∈ 𝐸, where 𝐶 is a constant, and that the output defines a rooted

minimum spanning tree, with each node 𝑣 outputting the identifier of their parent.

To do this, we will use a distributed variant of an Eulerian tour tree, a data structure familiar from

classic centralised dynamic algorithms. In the distributed setting, it allows us to make inferences

about the relative positions of edges with regard to the minimum spanning tree without full
information about the tree. Moreover, the Eulerian tour tree can be compactly encoded into the

auxiliary state using only 𝑂 (log𝑛) bits per node.
In the following, we first describe a distributed variant of this structure and then how to use it

in conjunction with a the minimum-weight matroid basis algorithm of Peleg [66] to compute the

minimum spanning tree in the dynamic batch CONGEST model efficiently.

7.1 Distributed Eulerian tour trees
We now treat 𝐺 = (𝑉 , 𝐸) as a directed graph, where each edge {𝑢, 𝑣} is replaced with (𝑢, 𝑣) and
(𝑣,𝑢). As before, we treat a subgraph (𝑉 , 𝐹) of 𝐺 interchangeably with the edge set 𝐹 ⊆ 𝐸 and

further abuse the notation by taking a subtree 𝑇 of 𝐺 to mean a directed subgraph of 𝐺 containing

all directed edges corresponding to an undirected tree on 𝐺 . In particular, we use |𝑇 | to denote the

number of directed edges in 𝑇 .

Let 𝐻 ⊆ 𝐺 be a subgraph of 𝐺 . The bijection 𝜏 : 𝐸 (𝐻) → {0, . . . , |𝐸 (𝐻) | − 1} is an Eulerian tour
labelling of 𝐻 if the sequence of directed edges 𝜏−1 (0), 𝜏−1 (1), . . . , 𝜏−1 (|𝐸 (𝐻) | − 1) gives an Eulerian

tour of 𝐻 . We say that 𝑢 is the root of 𝜏 if there is some edge (𝑢, 𝑣) such that 𝜏 (𝑢, 𝑣) = 0. For a map

𝑓 : 𝐴 → 𝐵 and a set 𝐶 ⊆ 𝐴, the restriction of 𝑓 to domain 𝐶 is the map 𝑓 ↾𝐶 : 𝐶 → 𝐴 given by

𝑓 (𝑐) = 𝑓 ↾𝐶 (𝑐) for all 𝑐 ∈ 𝐶 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:16 Klaus-Tycho Foerster et al.

0

1
2

3 4

5
6

7
8

9
10

11
(a) 5

6
7

8

1
0

9
10

3

4

2

11

(d)0

1
2

3

0
1

4
5
6

7
(b)

cut

2

3
4

5

1
0

6
7

0

1(c)

join

Fig. 2. Eulerian tour trees. (a) An example of Eulerian tour labelling, with root node marked in blue. (b) The
updated Eulerian tour labellings after applying a cut operation. The roots of the new blue and red trees are
marked with respective colours. (c) To apply a join operation, we root the red and blue tree to the endpoints
of the join edge. (d) Eulerian tour labelling after the join operation.

Eulerian tour forests. An Eulerian tour forest on F is a tuple L = (𝐿, 𝑟, 𝑠, 𝑎) such that

(1) F = {𝑇1, . . . ,𝑇ℎ} is a spanning forest of 𝐺 ,
(2) 𝐿 : 𝐸 → {0, . . . |𝐸 | − 1} ∪ {∞} is a mapping satisfying the following conditions:

– for each 𝑇 ∈ F the map 𝐿 ↾𝑇 is an Eulerian tour labelling of 𝑇 , and

– if (𝑢, 𝑣) ∉ ⋃
F, then 𝐿(𝑢, 𝑣) = ∞,

(3) 𝑟 : 𝑉 → 𝑉 is a mapping such that for each 𝑇 ∈ F and node 𝑣 ∈ 𝑉 (𝑇), we have that 𝑟 (𝑣) is the
root of the Eulerian tour labelling 𝐿 ↾𝑇 of 𝑇 ,

(4) 𝑠 : 𝑉 → {0, . . . |𝐸 |} is a mapping satisfying 𝑠 (𝑣) = |𝑇 | for each 𝑇 ∈ F and a node 𝑣 ∈ 𝑉 (𝑇),
(5) 𝑎 : 𝑉 → {0, . . . |𝐸 | − 1} is a mapping satisfying for each𝑇 ∈ F and node 𝑣 ∈ 𝑉 (𝑇) the following

conditions:

– if 𝑇 contains at least one edge, then 𝑎(𝑣) = min{𝐿(𝑒) : 𝑒 is an outgoing edge from 𝑣},
– if 𝑇 consists of only node 𝑣 , then 𝑎(𝑣) = 0.

We define distributed operations which allow us to merge any two trees or cut a single tree into

two trees, given that all nodes know which edges the operations are applied to. This data structure

is then used to efficiently maintain a minimum spanning tree of 𝐺 under edge weight changes.

Eulerian tour forest operations. Let L be an Eulerian tour forest of 𝐺 . For any L = (𝐿, 𝑟, 𝑠, 𝑎) and
𝐸 ′ ⊆ 𝐸, we define the restricted labelling L ↾𝐸′= (𝐿 ↾𝐸′, 𝑟 ↾𝑈 , 𝑠 ↾𝑈 , 𝑎 ↾𝑈), where 𝑈 =

⋃
𝐸 ′ is the

set of nodes incident to edges in 𝐸 ′. We implement two operations for manipulating L (illustrated

by Figure 2): a join operation that merges two trees and a cut operation that removes an edge from

a tree and creates two new disjoint trees. To implement the two basic operations join and cut, we
also use an auxiliary operation root that is used to reroot a tree.

For brevity, let 𝑇 (𝑢) to denote the tree node 𝑢 belongs to in the Eulerian tour forest. We use |𝑇 |
to denote the number of directed edges in 𝑇 . The three operations are as follows:

– root(L, 𝑢): Node 𝑢 becomes the root of the tree 𝑇 (𝑢).
Implementation: Set

𝐿(𝑤, 𝑣) ← 𝐿(𝑤, 𝑣) − 𝑎(𝑢) mod 𝑠 (𝑢)
for each (𝑤, 𝑣) ∈ 𝑇 (𝑢), and

𝑎(𝑣) ← 𝑎(𝑣) − 𝑎(𝑢) mod 𝑠 (𝑢)
for each 𝑣 ∈ 𝑉 (𝑇 (𝑢)).

Otherwise, 𝐿 and 𝑎 remain unchanged. Moreover, 𝑟 (𝑣) ← 𝑢 if 𝑟 (𝑢) = 𝑟 (𝑣) and otherwise 𝑟

remains unchanged. All tree sizes remain unchanged.

– join(L, 𝑒): If 𝑒 = {𝑣𝑖 , 𝑣 𝑗 }, where 𝑣𝑖 ∈ 𝑉 (𝑇𝑖) and 𝑣 𝑗 ∈ 𝑉 (𝑇𝑗) for 𝑖 ≠ 𝑗 , then merge 𝑇𝑖 and 𝑇𝑗 and

create an Eulerian tour labelling of 𝑇 ′ = 𝑇𝑖 ∪𝑇𝑗 ∪ {𝑒}. The root of 𝑇 ′ will be the endpoint of 𝑒
with the smaller identifier.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:17

Implementation: Let 𝑒 = {𝑣𝑖 , 𝑣 𝑗 }, where 𝑣𝑖 ∈ 𝑉 (𝑇𝑖) and 𝑣 𝑗 ∈ 𝑉 (𝑇𝑗) for 𝑖 ≠ 𝑗 . Without loss of

generality, suppose 𝑣𝑖 < 𝑣 𝑗 . The operation is implemented by the following steps:

(1) Run root(𝑣𝑖) and root(𝑣 𝑗).
(2) Set 𝐿(𝑣𝑖 , 𝑣 𝑗) ← 𝑠 (𝑣𝑖) and 𝐿(𝑣 𝑗 , 𝑣𝑖) ← 𝑠 (𝑣𝑖) + 𝑠 (𝑣 𝑗) + 1.

For each (𝑢, 𝑣) ∈ 𝑇𝑗 , set 𝐿(𝑢, 𝑣) ← 𝐿(𝑢, 𝑣) + 𝑠 (𝑣𝑖) + 1.
(3) For each 𝑢 ∈ 𝑉 (𝑇𝑗), set 𝑎(𝑢) ← 𝑎(𝑢) + 𝑠 (𝑣𝑖) + 1.
(4) For each 𝑢 ∈ 𝑇 ′, set 𝑠 (𝑢) ← 𝑠 (𝑣𝑖) + 𝑠 (𝑣 𝑗) + 2 and 𝑟 (𝑢) ← 𝑣𝑖 .

– cut(L, 𝑒): For an edge 𝑒 = {𝑣1, 𝑣2} in some tree 𝑇 , create two new disjoint trees 𝑇1 and 𝑇2 with

Eulerian tour labellings rooted at 𝑣1 and 𝑣2 such that 𝑇1 ∪𝑇2 = 𝑇 \ {𝑒}.
Implementation: Let 𝑒 = {𝑣1, 𝑣2}. Without loss of generality, assume that 𝑎(𝑣1) < 𝑎(𝑣2). Let
𝑧1 = 𝐿(𝑣1, 𝑣2), 𝑧2 = 𝐿(𝑣2, 𝑣1), and 𝑥 = 𝑧2 − 𝑧1. The edge labels are updated as follows:

(1) Set 𝐿(𝑣1, 𝑣2) ← ∞ and 𝐿(𝑣2, 𝑣1) ← ∞.
(2) If 𝑎(𝑣) ∈ [0, . . . , 𝑧1], then set 𝑠 (𝑣) ← 𝑠 (𝑣) − 𝑥 − 1 and 𝑎(𝑣) ← 𝑎(𝑣).

If 𝑎(𝑣) ∈ (𝑧1, . . . , 𝑧2], then set 𝑠 (𝑣) ← 𝑥 − 1 and 𝑎(𝑣) ← 𝑎(𝑣) − 𝑧1 − 1.
Otherwise, set 𝑠 (𝑣) ← 𝑠 (𝑣) − 𝑥 − 1 and 𝑎(𝑣) ← 𝑎(𝑣) − 𝑥 − 1.

(3) If 𝐿(𝑢, 𝑣) ∈ [0, . . . , 𝑧1), then set 𝐿(𝑢, 𝑣) ← 𝐿(𝑢, 𝑣).
If 𝐿(𝑢, 𝑣) ∈ (𝑧1, . . . , 𝑧2), then set 𝐿(𝑢, 𝑣) ← 𝐿(𝑢, 𝑣) − 𝑧1 − 1.
Otherwise, set 𝐿(𝑢, 𝑣) ← 𝐿(𝑢, 𝑣) − 𝑥 − 1.

(4) Run root(𝑣1) and root(𝑣2).
The next lemma shows that the above operations result in a new Eulerian tour forest, i.e., the

operations are correct.

Lemma 7.1. Given an Eulerian tour forest L, each of the above three operations produce a new
Eulerian tour forest L′.

Proof. For the root(𝑢) operation, observe that only labels in the subtree 𝑇 (𝑢) change by being

shifted by 𝑎(𝑢) modulo |𝑇 (𝑢) |. Hence, the updated labelling of 𝑇 (𝑢) remains an Eulerian tour

labelling. Since the smallest outgoing edge of 𝑢 will have label 𝑎(𝑢) − 𝑎(𝑢) mod |𝑇 (𝑢) | = 0, node

𝑢 will be the root of 𝑇 (𝑢) in the new Eulerian tour labelling of 𝑇 (𝑢).
For the join(𝑒) operation, we observe that after the first step, 𝑣𝑖 and 𝑣 𝑗 are the roots of their

respective trees. In particular, after the root operations, the largest incoming edge of 𝑣𝑖 will have

label |𝑇𝑖 | − 1 and the smallest outgoing edge of 𝑣𝑖 will have label 0. Hence 𝑣𝑖 becomes the root of𝑇 ′.
Moreover, in the new Eulerian labelling any edge in 𝑇 (𝑣𝑖) will have a valid Eulerian tour labelling,

as the labels for 𝑇𝑖 remain unchanged. In 𝑇𝑗 the labels are a valid Eulerian tour labelling shifted by

|𝑇𝑖 | + 1. As, in the new labeling the the edge (𝑣𝑖 , 𝑣 𝑗) will have label |𝑇𝑖 | and the smallest outgoing

label of 𝑣 𝑗 will be |𝑇𝑖 | + 1, and the largest incoming label will of 𝑣 𝑗 will be |𝑇𝑖 | + |𝑇𝑗 |. The label of
(𝑣 𝑗 , 𝑣𝑖) will therefore be |𝑇𝑖 | + |𝑇𝑗 | + 1 = |𝑇𝑖 ∪𝑇𝑗 ∪ {𝑒}| − 1 and this is the largest label of the new

Eulerian tour labelling. Hence, the new labelling is an Eulerian tour forest.

Finally, consider the cut(𝑒) operation. Let 𝑇1 and 𝑇2 be the trees created by removing the edge 𝑒

from𝑇 . Note that 𝑥 = 𝑧2 −𝑧1 = |𝑇2 | + 1 and |𝑇 | = |𝑇1 | + |𝑇2 | + 2, since we are counting directed edges.
Clearly, after cutting the edge 𝑒 from𝑇 , the a node 𝑣 belongs to subtree𝑇2 if 𝑎(𝑣) ∈ [𝑧1, . . . , 𝑧2) and
otherwise to 𝑇1. Thus, in the latter case 𝑠 (𝑣) is set to |𝑇 | − 𝑥 − 1 = |𝑇 | − |𝑇2 | − 2 = |𝑇1 |, and in the

former, 𝑠 (𝑣) is set to 𝑥 − 1 = |𝑇2 |.
Suppose an edge 𝐿(𝑢, 𝑣) < 𝑧1. Then the edge (𝑢, 𝑣) belongs to 𝑇1 and its label will remain

unchanged. Now suppose 𝐿(𝑢, 𝑣) > 𝑧2. Then (𝑢, 𝑣) will be part of 𝑇1 and its new label will be

𝐿(𝑢, 𝑣) − 𝑥 − 1 = 𝐿(𝑢, 𝑣) − |𝑇2 | − 1. In particular, the edge of 𝑢1 with the smallest outgoing label

𝑧2 + 1 will have the label 𝑧1 in the new labeling. Thus, 𝐿 restricted to 𝑇1 will be a valid Eulerian

tree tour labelling of 𝑇1. It remains to consider the case that 𝐿(𝑢, 𝑣) ∈ (𝑧1, 𝑧2). However, it is easy
to check that now the root of 𝑇2 will be 𝑣2 and the new labelling restricted to 𝑇2 will be a valid

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:18 Klaus-Tycho Foerster et al.

Eulerian tree tour labelling of𝑇2. Finally, the root operations ensure that the endpoints of 𝑒 become

the respective roots of the two trees, updating the variables 𝑟 (·). □

A key property of the Eulerian tour forest structure is that any node that knows the labels of a

set 𝐸 ′ ⊆ 𝐸 can locally deduce the new labels of all edges in 𝐸 ′ after either join or cut operation is

applied to a given edge in 𝐸 ′.

Lemma 7.2. Let L be an Eulerian tour forest and 𝑒, 𝑓 ∈ 𝐸 be edges. Suppose L′ is obtained by
applying either the join(L, 𝑒) or the cut(L, 𝑒) operation. ThenL′ ↾{𝑒,𝑓 } can be computed fromL ↾{𝑒,𝑓 } .

Proof. Let 𝑒 = {𝑢1, 𝑢2} and 𝑓 = {𝑣1, 𝑣2}. Let 𝑓 ≠ 𝑒 be an edge whose labels we need to compute

after an operation on 𝑒 . We show that after applying any one of the three operations on L, the

labels L′ ↾𝑓 can be computed from L ↾{𝑒∪𝑓 } . There are three cases to consider:

(1) L′ = root(L, 𝑢): If 𝑓 ∉ 𝑇 (𝑢), then L ↾𝑓 = L′ ↾𝑓 , as the labels of 𝑓 do not change. If 𝑓 ∈ 𝑇 (𝑢),
then L′ ↾𝑓 depends only on 𝑎(𝑢) and 𝑠 (𝑢).

(2) L′ = join(L, 𝑒): If 𝑓 ∉ 𝑇1 ∪ 𝑇2, then L ↾𝑓 = L′ ↾𝑓 , as the labels of 𝑓 do not change after the

joining these two trees. Hence suppose 𝑓 ∈ 𝑇1 ∪ 𝑇2. From the previous case, we know that

the two root operations depend on 𝑎(𝑢𝑖) and 𝑠 (𝑢𝑖) for 𝑖 ∈ {1, 2}. The latter two steps depend

only on 𝑠 (𝑢𝑖). As these values are contained in L ↾{𝑒,𝑓 } , the restriction L′ ↾𝑓 is a function of

L ↾{𝑒,𝑓 } .
(3) L′ = cut(L, 𝑒): If 𝑓 ∉ 𝑇 , then the labels of 𝑓 do not change. Hence, suppose 𝑓 ∈ 𝑇 . One readily

checks that the update operations in Steps 1-3 depend on 𝑧1 = 𝐿(𝑢1, 𝑢2), 𝑧2 = 𝐿(𝑢2, 𝑢1), 𝑎(𝑣𝑖)
and 𝑠 (𝑣𝑖) for 𝑖 ∈ {1, 2}. Therefore, L′ ↾𝑓 is a function of L ↾{𝑒,𝑓 } .

Thus, in all cases L′ ↾𝑓 is a function of L ↾{𝑒,𝑓 } , and the claim follows. □

Storing the Eulerian tour tree of a minimum-weight spanning tree. Suppose L is an Eulerian tour

forest on the minimum-weight spanning tree of𝐺 . Later, our algorithm will in fact always maintain

such a Eulerian tour forest after a batch of updates.

The auxiliary state 𝑥 is defined as follows. For each node 𝑣 ∈ 𝑉 , the auxiliary state 𝑥 (𝑣) consists
of the tuple (𝑟 (𝑣), 𝑝 (𝑣), 𝜆(𝑣)), where
– 𝑟 (𝑣) is the identifier of the root of the spanning tree,

– 𝑝 (𝑣) points to the parent of 𝑣 in the spanning tree,

– 𝜆(𝑣) =
(
𝐿(𝑝 (𝑣), 𝑣), 𝐿(𝑣, 𝑝 (𝑣))

)
, respectively.

These variables can be encoded in 𝑂 (log𝑛) bits. Moreover, each node 𝑣 can reconstruct L ↾𝐸 (𝑣)
from the auxiliary state 𝑥 in 𝑂 (1) rounds.
Lemma 7.3. Given the auxiliary state 𝑥1 (𝑣) that encodes L on a spanning tree of 𝐺 , each node 𝑣

can learn in 𝑂 (1) communication rounds L ↾𝐸 (𝑣) . Likewise, given L ↾𝐸 (𝑣) , node 𝑣 can compute the
corresponding auxiliary state 𝑥1 (𝑣) locally.
Proof. SinceL is an Eulerian tour forest on a spanning tree, every node 𝑣 knows 𝑠 (the size of the

spanning tree) and 𝑟 (the root of the tree), as both are constant functions. As 𝜆(𝑣) can be encoded

using 𝑂 (log𝑛) bits, each node 𝑣 can send 𝜆(𝑣) to all of its neighbours in 𝑂 (1) communication

rounds. Thus, after 𝑂 (1) rounds node 𝑣 knows 𝐿 ↾𝐸 (𝑣) . The second part follows directly from the

definition of 𝑥1 (𝑣). □

7.2 Maximum matroid basis algorithm
We use an algorithm of Peleg [66] as a subroutine for finding minimum and maximum weight

matroid bases in distributed manner. We first recall the definition of matroids.

Definition 7.4. A matroid is a pairM = (𝐴, I), where 𝐴 is a set and I ⊆ 2
𝐴
satisfies the following:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:19

(1) The family I is non-empty and closed under taking subsets.

(2) For any 𝐼1, 𝐼2 ∈ I, if |𝐼1 | > |𝐼2 |, then there is an element 𝑥 ∈ 𝐼1 \ 𝐼2 such that 𝐼2 ∪ {𝑥} ∈ I. This is
called the augmentation property of a matroid.

We say that a set 𝐼 ⊆ 𝐴 is independent if 𝐼 ∈ I. A maximal independent set is called a basis.

In themaximummatroid basis problem, we are given a matroidM = (𝐴, I) with a weight function
𝑤 : 𝐴→ {−𝑛𝐶 , . . . , 𝑛𝐶 } giving unique weights for all elements, and the task is to a find a basis 𝐵 of

M with maximum weight𝑤 (𝐵) = ∑
𝑥 ∈𝐵𝑤 (𝑥). In more detail, the input is specified as follows:

– Each node receives a set 𝐴𝑣 ⊆ 𝐴 as input, along with the associated weights. We have a

guarantee that

⋃
𝑣∈𝑉 𝐴𝑣 = 𝐴, and the sets 𝐴𝑣 may overlap.

– Each element 𝑥 ∈ 𝐴 is decorated with additional data𝑀 (𝑥) of 𝑂 (log𝑛) bits, and given𝑀 (𝐴′)
for 𝐴′ ⊆ 𝐴, a node 𝑣 can locally compute if 𝐴′ is independent in M.

As output, all nodes should learn the maximum-weight basis 𝐵. Note that since negative weights are

allowed and all bases have the same size, this is equivalent to finding a minimum-weight matroid

basis.

Theorem 7.5 ([66]). The distributed maximum matroid basis problem over M can be solved in
𝑂 (𝛼 + 𝐷) rounds, where 𝛼 is the size of bases ofM.

7.3 Cycle and cut properties
We make use of the following well-known cycle and cut properties of spanning trees.

Lemma 7.6. Suppose the weights of the graph 𝐺 are unique. Then the following hold:
– Cycle property: For any cycle 𝐶 , the heaviest edge of 𝐶 is not in minimum-weight spanning
tree of 𝐺 .

– Cut property: For any set 𝑋 ⊆ 𝑉 , the lightest edge between 𝑋 and𝑉 \𝑋 is in the minimum-weight
spanning tree of 𝐺 .

7.4 Maintaining a minimum spanning tree
Let 𝐺1 = (𝑉 , 𝐸,𝑤1) and 𝐺2 = (𝑉 , 𝐸,𝑤2) be the graph before and after the 𝛼 edge weight changes.

Since each edge is uniquely labelled with the identifiers of the end points, we can define a global

total order on all the edge weights, where edges are ordered by weight and any equal-weight edges

are ordered by the edge identifiers. Let 𝑇 ∗
1
and 𝑇 ∗

2
be the unique minimum-weight spanning trees

of 𝐺1 and 𝐺2, respectively.

Communicated messages. We now assume that each communicated edge 𝑒 is decorated with the

tuple𝑀 (𝑒) =
(
L ↾{𝑒 },𝑤1 (𝑒),𝑤2 (𝑒)

)
. For a set 𝐸, we write𝑀 (𝐸) = {𝑀 (𝑒) : 𝑒 ∈ 𝐸}. Note that for any

edges 𝑒, 𝑒 ′ ∈ 𝐸, the information𝑀 (𝑒) and𝑀 (𝑒 ′) suffice to computeL′ ↾𝑒′ after either a join(L, 𝑒) or
cut(L, 𝑒) operation on L, by Lemma 7.2. Since𝑀 (𝑒) can be encoded in 𝑂 (log𝑛) bits, the message

encoding𝑀 (𝑒) can be communicated via an edge in 𝑂 (1) rounds.

Overview of the algorithm. The algorithm heavily relies on using a BFS treeB of the communication

graph 𝐺 as a broadcast tree, given by Lemma 5.1. Without loss of generality, observe that we can

first process at most 𝛼 weight increments and then up to 𝛼 weight decrements afterwards. On a

high-level, the algorithm is as follows:

(1) Let 𝐸+ = {𝑒 : 𝑤2 (𝑒) > 𝑤1 (𝑒)} and 𝐸− = {𝑒 : 𝑤2 (𝑒) < 𝑤1 (𝑒)}.
(2) Solve the problem on the graph 𝐺 ′

1
obtained from 𝐺1 by changing only the weights in 𝐸+.

(3) Solve the problem on the graph 𝐺2 obtained from 𝐺 ′
1
by changing the weights in 𝐸−.

We show that Steps (2)–(3) can be done in 𝑂 (𝛼 + 𝐷) rounds, which yields the following result.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:20 Klaus-Tycho Foerster et al.

Theorem 7.7. There is an algorithm for minimum-weight spanning trees in the batch dynamic
CONGEST model that runs in 𝑂 (𝛼 + 𝐷) rounds and uses 𝑂 (log𝑛) bits per node to store the auxiliary
state.

7.5 Handling weight increments
We now design an algorithm that works in the case |𝐸+ | ≤ 𝛼 and 𝐸− = ∅. That is, the new input

graph 𝐺2 differs from 𝐺1 by having only the weights of edges in 𝐸+ incremented. Let 𝑇 ∗
1
and 𝑇 ∗

2

be the minimum spanning trees of 𝐺1 and 𝐺2, respectively. Note that 𝐹 = 𝑇 ∗
1
\ 𝐸+ is a forest on 𝐺1

and 𝐺2 and𝑤1 (𝐹) = 𝑤2 (𝐹), splitting the graph into connected components. Let 𝐴∗ ⊆ 𝐸 \ 𝐹 be the

lightest set of edges connecting the components of 𝐹 under weights𝑤2.

Lemma 7.8. The spanning tree 𝐹 ∪𝐴∗ is the minimum-weight spanning tree of 𝐺2.

Proof. Suppose there exists some edge 𝑒 ∈ 𝐹 \𝑇 ∗
2
. Let 𝑢 be a node incident to 𝑒 and let 𝑆 ⊆ 𝑉 be

the set of nodes in the connected component of 𝑢 in 𝐹 \ {𝑒}. By the cut property given in Lemma 7.6,

the lightest edge 𝑓 (with respect to𝑤2) in the cut between 𝑆 and 𝑉 \ 𝑆 is in the minimum spanning

tree 𝑇 ∗
2
. Since 𝑒 ∉ 𝑇 ∗

2
and 𝑓 ∈ 𝑇 ∗

2
, we have that 𝑤2 (𝑓) < 𝑤2 (𝑒). By definition, 𝑒 ∈ 𝐹 implies that

𝑒 ∉ 𝐸+, and hence,

𝑤1 (𝑓) ≤ 𝑤2 (𝑓) < 𝑤2 (𝑒) = 𝑤1 (𝑒).
Thus, there exists a spanning tree𝑇 ′ = (𝑇 ∗

1
\{𝑒})∪{𝑓 } such that𝑤1 (𝑇 ′) < 𝑤1 (𝑇 ∗1). But by definition

of 𝐹 , we have 𝑒 ∈ 𝐹 ⊆ 𝑇 ∗
1
, which is a contradiction. Hence, 𝐹 ⊆ 𝑇 ∗

2
. Since 𝐹 ⊆ 𝑇 ∗

2
is a forest and 𝐴∗

is the lightest set of edges that connects the components of 𝐹 , the claim follows. □

We show that the set 𝐴∗ can be obtained as a solution to a minimum matroid basis problem, and

thus can be computed in 𝑂 (𝛼 + 𝐷) communication rounds. In the following, we assume that the

auxiliary state encodes an Eulerian tour forest L on𝑇 ∗
1
. We first show that𝐴∗ is a minimum-weight

basis of an appropriately chosen matroid. Let 𝐴 be the set of all edges that connect components of

𝐹 in 𝐺2.

Lemma 7.9. Let I = {𝐼 ⊆ 𝐴 : 𝐹 ∪ 𝐼 is acyclic on 𝐺2}. Then M = (𝐴, I) is a matroid and the
minimum-weight basis of M is 𝐴∗.

Proof. We note that M is matroid, as it’s the contraction of the graphical matroid on 𝐺 (see

e.g. [73, Part IV: Matroids and Submodular Functions]). Moreover, for any basis 𝐵 ∈ I, the set

𝐹 ∪ 𝐵 is a spanning tree on 𝐺2 with weight𝑤2 (𝐹) +𝑤2 (𝐵). Since 𝐴∗ ∈ I and 𝐹 ∪𝐴∗ is the unique
minimum spanning tree on 𝐺2, it follows that 𝐴

∗
is the minimum-weight basis for M. □

To apply the minimum matroid basis algorithm of Theorem 7.7, we next show that nodes can

locally compute whether a set is independent in the matroid I, given appropriate information.

Lemma 7.10. Assume a node 𝑣 knows 𝑀 (𝐸+) and 𝑀 (𝑋) for a set 𝑋 ⊆ 𝐴. Then 𝑣 can locally
determine if 𝑋 is independent in M.

Proof. Recall that L is the fixed Eulerian tour forest on 𝑇 ∗
1
encoded by the auxiliary data of the

nodes and messages 𝑀 (𝑒). By definition, node 𝑣 can obtain L ↾𝐸+∪𝑋 from 𝑀 (𝐸+) and 𝑀 (𝑋). Let
𝑋 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 }. To check that 𝑋 is independent, i.e. 𝐹 ∪𝑋 is a forest, node 𝑣 uses the following

procedure:

(1) Let L0 ↾𝐸+∪𝑋 be the Eulerian tour forest on 𝐹 obtained from L ↾𝐸+∪𝑋 by applying the cut
operation for each 𝑒 ∈ 𝐸+ in sequence.

(2) For 𝑖 ∈ {1, . . . , 𝑘} do the following:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:21

(a) Determine fromL𝑖−1 ↾𝑒𝑖 if the endpoints𝑢 and𝑤 of 𝑒𝑖 have the same root, i.e. 𝑟 (𝑢) = 𝑟 (𝑤).
If this is the case, then 𝐹 ∪ {𝑒1, 𝑒2, . . . , 𝑒𝑖 } has a cycle, and node 𝑣 outputs that 𝑋 is not

independent and halts.

(b) Compute L𝑖 ↾𝑋= join(L𝑖−1 ↾𝑋 , 𝑒𝑖).
(3) Output that 𝑋 is independent.

If 𝑋 is not independent, then 𝐹 ∪𝑋 has a cycle and algorithm will terminate in Step 2(a). Otherwise,

𝐹 ∪ 𝑋 is a forest, and the algorithm will output that 𝑋 is independent. □

Algorithm for handling weight increments. The algorithm for maintaining minimum spanning

trees under weight increments is now as follows:

(1) Each node 𝑣 computes its local Euler tour forest labelling L ↾𝐸 (𝑣) from the auxiliary state 𝑥1 (𝑣).
(2) Broadcast𝑀 (𝑒) for each 𝑒 ∈ 𝐸+ using the broadcast tree B given by Lemma 5.1.

(3) Use the minimum matroid basis algorithm over M to compute 𝐴∗.
(4) Each node 𝑣 locally computes L1 ↾𝐸 (𝑣) by applying the cut operation on each edge in 𝐸+ \𝐴∗

in lexicographical order, starting from L ↾𝐸 (𝑣) .
(5) Each node 𝑣 locally computes L2 ↾𝐸 (𝑣) by applying the join operation on each edge in 𝐴∗ \ 𝐸+

in lexicographical order, starting from L1 ↾𝐸 (𝑣) .
(6) Each node 𝑣 outputs local auxiliary state 𝑥2 (𝑣) corresponding to L2.

Lemma 7.11. The above algorithm solves batch dynamic minimum-weight spanning trees under
edge weight increments in 𝑂 (𝛼 + 𝐷) rounds.

Proof. By Lemma 7.3, Step (1) of the algorithm can be done in 𝑂 (1) rounds, and by Lemma 5.1,

Step (2) can be done in 𝑂 (𝛼 + 𝐷) rounds. Step (3) can be implemented in 𝑂 (𝛼 + 𝐷) rounds by
Theorem 7.5 and Lemma 7.9, and after Step (3) all nodes have learned the set 𝐴∗. Since all nodes
apply the same operations to the Eulerian tour forest in the same order in Steps (4) and (5), all

nodes produce compatible auxiliary states in Step (6). □

7.6 Handling weight decrements
We now consider the dual case, where |𝐸− | ≤ 𝛼 and 𝐸+ = ∅. Let 𝐵 = 𝑇 ∗

1
∪ 𝐸− and C be the set of

cycles in 𝐵. Let 𝐵∗ ⊆ 𝐵 be the heaviest edge set such that 𝐵 \ 𝐵∗ is a spanning tree.

Lemma 7.12. The spanning tree 𝐵 \ 𝐵∗ is the minimum spanning tree of 𝐺2.

Proof. Let 𝑒 ∈ 𝑇 ∗
2
and suppose 𝑒 ∉ 𝐵 = 𝑇 ∗

1
∪ 𝐸−. Since 𝑒 ∉ 𝑇 ∗

1
the edge 𝑒 creates a unique cycle𝐶

in𝑇 ∗
1
. The edge 𝑒 is the heaviest edge on cycle𝐶 under weights𝑤1, as otherwise we would obtain a

spanning tree lighter than 𝑇 ∗
1
by replacing the heaviest edge on 𝐶 by 𝑒 . Since we assume no weight

increments and 𝑒 ∉ 𝐸−, edge 𝑒 remains the heaviest edge on the cycle 𝐶 also under the new edge

weights𝑤2. Hence, 𝑒 ∉ 𝑇
∗
2
by the cycle property, which contradicts our initial assumption. Thus,

𝑇 ∗
2
⊆ 𝐵.

Now consider any spanning tree 𝑇 ⊆ 𝐵. All spanning trees have the same number of edges, and

we have𝑤2 (𝑇) = 𝑤2 (𝐵) −𝑤2 (𝐵 \𝑇). Thus, for the minimum spanning tree𝑇 the weight𝑤2 (𝐵 \𝑇) is
maximised. Since the complement of any spanning tree cuts all cycles in 𝐵, we have𝑇 ∗

2
= 𝐵 \𝐵∗. □

Lemma 7.13. Let
J = {𝐽 ⊆ 𝐵 : 𝐵 \ 𝐽 contains a spanning tree of 𝐵} .

Then N = (𝐵, J) is a matroid and the maximum-weight basis of N is 𝐵∗.

Proof. We have that N is the dual of the graphical matroid on (𝑉 , 𝐵), and thus a matroid (see

e.g. [73, Part IV: Matroids and Submodular Functions]). Moreover, 𝐵∗ is the complement of the

minimum spanning tree and thus maximum-weight basis of N. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:22 Klaus-Tycho Foerster et al.

Lemma 7.14. Assume a node 𝑣 knows 𝑀 (𝐸−) and 𝑀 (𝑋) for a set 𝑋 ⊆ 𝐵. Then 𝑣 can locally
determine if 𝑋 is independent in N.

Proof. We observe that 𝑋 is independent in N if and only if the edge set 𝐵 \ 𝑋 spans the graph

𝐺2, directly by definitions. Thus, we implement the independence check by using local Eulerian

tour forest operations to check if we can obtain a spanning tree𝑇 ⊆ 𝐵 \𝑋 , by starting from the old

minimum spanning tree 𝑇 ∗
1
, deleting all edges from 𝑋 , and then adding edges from 𝐸− to complete

the tree if possible.

In more detail, the algorithm works as follows. Recall that by definition, node 𝑣 can compute

L ↾𝐸−∪𝑋 from𝑀 (𝐸−) and𝑀 (𝑋). Let 𝐸− \ 𝑋 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 }.
(1) Let L0 ↾𝐸−∪𝑋 be the Eulerian tour forest on 𝐵 obtained from L ↾𝐸−∪𝑋 by applying the cut

operation for each 𝑒 ∈ 𝑋 ∩𝑇 ∗
1
in sequence. Note that node can check directly from L ↾𝐸−∪𝑋

which edges in 𝑋 are in the minimum spanning tree 𝑇 ∗
1
.

(2) For 𝑖 ∈ {1, . . . , 𝑘} do the following:

(a) Determine from L𝑖−1 ↾𝑒𝑖 if the endpoints 𝑢 and 𝑣 of 𝑒𝑖 have the same root, i.e. 𝑟 (𝑣) = 𝑟 (𝑢).
(b) If they have the same root, skip this edge and set L𝑖 ↾𝐸−∪𝑋= L𝑖−1 ↾𝐸−∪𝑋 .
(c) If they have different roots, compute L𝑖 ↾𝐸−∪𝑋= join(L𝑖−1 ↾𝐸−∪𝑋 , 𝑒𝑖).

(3) Check from labels how many connected components L𝑘 ↾𝐸−∪𝑋 has. If the number of roots is

one, output that 𝑋 is independent, otherwise output that 𝑋 is not independent.

Note that since𝑇 ∗
1
is connected, the final edge set𝐵\𝑋 can only havemultiple connected components

due to removal of edges in 𝑋 . Thus, the node 𝑣 will locally see all connected components of 𝐵 \ 𝑋
from L𝑘 ↾𝐸−∪𝑋 . □

Algorithm for handling weight decrements. The algorithm for batch dynamic minimum spanning

tree under weight decrements is as follows:

(1) Each node 𝑣 computes L ↾𝐸 (𝑣) from the auxiliary state.

(2) Broadcast𝑀 (𝑒) for each 𝑒 ∈ 𝐸− using the broadcast tree B.

(3) Use the maximum matroid basis algorithm over N to compute 𝐵∗.
(4) Each node 𝑣 locally computes L1 ↾𝐸 (𝑣) by applying the cut operation on each edge in 𝐵∗ ∩𝑇 ∗

1

in lexicographical order, starting from L ↾𝐸 (𝑣) .
(5) Each node 𝑣 locally computes L2 ↾𝐸 (𝑣) by applying the join operation on each edge in 𝐸− ∩ 𝐵∗

in lexicographical order, starting from L1 ↾𝐸 (𝑣) .
(6) Each node 𝑣 outputs local auxiliary state 𝑥2 (𝑣) corresponding to L2.

Lemma 7.15. There is an algorithm that solves batch dynamic minimum-weight spanning trees
under edge weight decrements in 𝑂 (𝛼 + 𝐷) rounds.

Proof. By Lemma 7.3, Step (1) of the algorithm can be done in 𝑂 (1) rounds, and by Lemma 5.1,

Step (2) can be done in 𝑂 (𝛼 + 𝐷) rounds. Step (3) can be implemented in 𝑂 (𝛼 + 𝐷) rounds by
Theorem 7.5 and Lemma 7.14, and after Step (3) all nodes have learned the set 𝐵∗. Since all nodes
apply the same operations to the Eulerian tour forest in the same order in Steps (4) and (5), all

nodes will produce compatible auxiliary states in Step (6). □

8 LOWER BOUNDS
In this section, we investigate lower bounds for the batch dynamic CONGESTmodel. We start with

some necessary preliminaries in Section 8.1 on two-party communication complexity [56], followed

by our lower bound framework in Section 8.2, which we instantiate in Section 8.3. Finally, we give

a lower bound for the minimum spanning tree problem in Section 8.4 by adapting arguments from

Das Sarma et al. [26].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:23

8.1 Two-party communication complexity
Let 𝑓 : {0, 1}𝑘 × {0, 1}𝑘 → {0, 1} be a Boolean function. In the two-party communication game

on 𝑓 , there are two players who receive a private 𝑘-bit strings 𝑥0 and 𝑥1 as inputs, and their task is

to have at least one of the players compute 𝑓 (𝑥0, 𝑥1). The players follow a predefined protocol, and

the complexity of a protocol is the maximum, over all 𝑘-bit inputs, of number of bits the parties

exchange when executing the protocol on the input. The deterministic communication complexity
CC(𝑓) of a function 𝑓 is the minimal complexity of a protocol for computing 𝑓 . Similarly, the

randomised communication complexity RCC(𝑓) is the worst-case complexity of protocols, which

compute 𝑓 with probability at least 2/3 on all inputs, even if the players have access to a source of

shared randomness.

While our framework is generic, all the reductions we use are based on set disjointness lower
bounds. In set disjointness over universe of size 𝑘 , denoted by DISJ𝑘 , both players inputs are

𝑥0, 𝑥1 ∈ {0, 1}𝑘 , and the task is to decide whether the inputs are disjoint, i.e. DISJ𝑘 (𝑥0, 𝑥1) = 1 if for

all 𝑖 ∈ {1, 2, . . . , 𝑘} either 𝑥0 (𝑖) = 0 or 𝑥1 (𝑖) = 0, andDISJ𝑘 (𝑥0, 𝑥1) = 0 otherwise. It is known [56, 71]

that

CC(DISJ𝑘) = Ω(𝑘) and RCC(DISJ𝑘) = Ω(𝑘) .

8.2 Lower bound framework
For proving lower bounds for batch dynamic algorithms, we use the standard CONGEST lower

bound framework of lower bound families (e.g. [1, 30]). This allows us to translate existingCONGEST
lower bound constructions to batch dynamic CONGEST; however, we need a slightly different

definition of lower bound families to account for our setting.

Definition 8.1. For 𝛼 ∈ N, let 𝑓𝛼 : {0, 1}2𝑘 (𝛼) → {0, 1} and 𝑠,𝐶 : N → N be functions and Π
a predicate on labelled graphs. Suppose that there exists a constant 𝛼0 such that for all 𝛼 > 𝛼0
and 𝑥0, 𝑥1 ∈ {0, 1}𝑘 (𝛼) there exists a labelled graph (𝐺 (𝛼), ℓ (𝛼, 𝑥0, 𝑥1)) satisfying the following

properties:

(1) (𝐺 (𝛼), ℓ (𝛼, 𝑥0, 𝑥1)) satisfies Π iff 𝑓 (𝑥0, 𝑥1) = 1,

(2) 𝐺 (𝛼) = (𝑉0 ∪𝑉1, 𝐸), where
(a) 𝑉0 and 𝑉1 are disjoint and |𝑉0 ∪𝑉1 | = 𝑠 (𝛼),
(b) the cut between 𝑉0 and 𝑉1 has size at most 𝐶 (𝛼),

(3) ℓ (𝛼, 𝑥0, 𝑥1) : 𝐸 → Σ is an edge labelling such that

(a) there are at most 𝛼 edges whose labels depend on 𝑥0 and 𝑥1,

(b) for 𝑖 ∈ {0, 1}, all edges whose label depend on 𝑥𝑖 are in 𝐸 ∩𝑉𝑖 ×𝑉𝑖 , and
(c) labels on all other edges do not depend on 𝑥0 and 𝑥1.

We then say that F = (G(𝛼))𝛼>𝛼0
is a family of lower bound graphs for Π, where

G(𝛼) =
{
(𝐺 (𝛼), ℓ (𝛼, 𝑥0, 𝑥1)) : 𝑥0, 𝑥1 ∈ {0, 1}𝑘 (𝛼)

}
.

Extensions. Since our aim is to prove lower bounds that depend on number of input changes 𝛼

independently of the number of nodes 𝑛, we need to construct lower bounds where 𝛼 can be

arbitrarily small compared to 𝑛. We achieve this by embedding the lower bound graphs into a larger

graph; this requires that the problem we consider has the following property.

Definition 8.2. Let Π be a problem on labelled graphs. We say that Π has the extension property
with label 𝛾 if 𝛾 ∈ Γ is an input label such that for any labelled graph (𝐺, ℓ), attaching new nodes

and edges with label 𝛾 does not change the output of the original nodes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:24 Klaus-Tycho Foerster et al.

Lower bound theorems. We now present our lower bound framework, which we will instantiate in

the next Section 8.3. We first show the following general version of the lower bound result.

Theorem 8.3. Let Π be a problem, assume there is a family of lower bound graphs F for Π and
that Π has the extension property, and let 𝐿 : N→ N be a function satisfying 𝐿(𝛼) ≥ 𝑠 (𝛼). Let A be a
deterministic batch dynamic algorithm that solves Π in 𝑇 (𝛼, 𝑛) rounds for all 𝛼 satisfying 𝑛 ≥ 𝐿(𝛼)
on batch dynamic CONGEST with bandwidth 𝑏 (𝑛). Then we have

𝑇 (𝛼, 𝐿(𝛼)) = Ω

(
CC(𝑓𝛼)

𝐶 (𝛼)𝑏
(
𝐿(𝛼)

)) .

If A is a Monte Carlo algorithm with running time 𝑇 (𝛼, 𝑛) rounds and success probability at least 2/3,
or a Las Vegas algorithm with running time 𝑇 (𝛼, 𝑛) in either expectation or with probability at least
2/3, then we instead have

𝑇 (𝛼, 𝐿(𝛼)) = Ω

(
RCC(𝑓𝛼)

𝐶 (𝛼)𝑏
(
𝐿(𝛼)

)) .

Proof. First consider the case of deterministic A. We convert A into a two-player protocol

computing 𝑓𝛼 (𝑥0, 𝑥1). Given inputs 𝑥0, 𝑥1 ∈ {0, 1}𝑘 (𝛼) , the players perform the following steps:

(1) Both players construct the graph 𝐺 (𝛼) and a labelling ℓ such that ℓ agrees with ℓ (𝛼, 𝑥0, 𝑥1) on
all labels that do not depend on 𝑥0 and 𝑥1, and other labels are set to some default label agreed

to beforehand.

(2) Add new nodes connected to an arbitrary node with edges labelled with the extension label

𝛾 to (𝐺 (𝛼), ℓ) to obtain (𝐺∗, ℓ∗) where 𝐺∗ has 𝑛 = 𝐿(𝛼) nodes; since we assume 𝐿(𝛼) ≥ 𝑠 (𝛼),
this is possible.

(3) Simulate A on 𝐺∗, with player 0 simulating nodes in 𝑉0 and player 1 simulating nodes in 𝑉1:

(a) Both players construct a global auxiliary state 𝑥 ∈ 𝜉 (𝐺∗, ℓ∗); since both players know

(𝐺∗, ℓ∗), they can do this locally.

(b) Player 𝑖 constructs a new partial labelling by changing the labels on their subgraph to

match ℓ (𝛼, 𝑥0, 𝑥1). This defines a global labelling ℓ∗
1
, which differs from ℓ∗ by on at most

𝛼 edges. Players now simulate A(𝐺∗, ℓ∗, ℓ∗
1
, 𝑥) to obtain a new auxiliary state 𝑥1; players

locally simulate their owned nodes and messages between them, and send the messages

that would cross the cut between 𝑉0 and 𝑉1 to each other.

(4) Players infer from 𝑥1 whether Π is satisfied, and produce the output 𝑓𝛼 (𝑥0, 𝑥1) accordingly.
Each round, the algorithmA sends at most 2𝑏 (𝑛) = 2𝑏

(
𝐿(𝛼)

)
bits over each edge, so the total number

of bits players need to send to each other during the simulation is at most 2𝑏
(
𝐿(𝛼)

)
𝐶 (𝛼)𝑇

(
𝛼, 𝐿(𝛼)

)
.

Since the above protocol computes 𝑓𝛼 , we have for 𝛼 > 𝛼0 that 2𝑏
(
𝐿(𝛼)

)
𝐶 (𝛼)𝑇

(
𝛼, 𝐿(𝛼)

)
≥ CC(𝑓𝛼),

which implies

𝑇
(
𝛼, 𝐿(𝛼)

)
≥ CC(𝑓𝛼)

2𝐶 (𝛼)𝑏
(
𝐿(𝛼)

) .
For randomised algorithms, we can directly apply same argument. IfA is a Monte Carlo algorithm

with success probability at least 2/3, then the simulation gives correct result with probability at

least 2/3. If A is a Las Vegas algorithm that terminates in 𝑇 (𝛼, 𝑛) rounds with probability at least

2/3, we can simulate A for 𝑇 (𝛼, 𝑛) rounds and give a random output if it does not terminate by

that point; this succeeds in solving set disjointness with probability at least 2/3. Likewise, if A has

expected running time 𝑇 (𝛼, 𝑛), it suffices to simulate it for 3𝑇 (𝛼, 𝑛) rounds. In all cases, we get

𝑇
(
𝛼, 𝐿(𝛼)

)
≥ RCC(𝑓𝛼)

2𝐶 (𝛼)𝑏
(
𝐿(𝛼)

)
as desired. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:25

In practice, we use the following, simpler version of Theorem 8.3 for our lower bounds. Specifically,

we assume the standard Θ(log𝑛) bandwidth and no dependence on 𝑛 in the running time; however,

one can easily see that allowing e.g. poly log𝑛 factor in the running time will only weaker the

lower bound by poly log𝛼 factor.

Corollary 8.4. Let Π be a problem, assume there is a family of lower bound graphs F for Π and
that Π has the extension property, and let 𝜀 > 0 be a constant such that 𝑠 (𝛼) ≤ 𝛼1/𝜀 . Let A be a
deterministic batch dynamic algorithm that solves Π in 𝑇 (𝛼) rounds independent of 𝑛 for all 𝛼 ≤ 𝑛𝜀

on batch dynamic CONGEST. Then we have

𝑇 (𝛼) = Ω

(
CC(𝑓𝛼)

𝐶 (𝛼) log𝛼

)
.

If A is a Monte Carlo algorithm with running time 𝑇 (𝛼) rounds and success probability at least 2/3,
or a Las Vegas algorithm with running time𝑇 (𝛼) in either expectation or with probability at least 2/3,
then we instead have

𝑇 (𝛼) = Ω

(
RCC(𝑓𝛼)
𝐶 (𝛼) log𝛼

)
.

Note the role of 𝜀 and 𝑠 in the claim; the lower bounds in terms of 𝛼 only work in a regime

where 𝛼 is sufficiently small compared to 𝑛. The limit where the lower bound stops working usually

corresponds to the complexity of computing the solution from scratch, that is, if 𝛼 is sufficiently

large, then recomputing everything is cheap in terms of the parameter 𝛼 . On the other hand, we

can make 𝜀 arbitrarily small, so the lower bound holds even under a promise of small batch size,

e.g, 𝛼 ≤ 𝑛1/1000.

8.3 Instantiations
We now obtain concrete lower bounds by plugging in prior constructions for lower bound families

into our framework. These constructions, originally used for CONGEST lower bounds, are parame-

terised by the number of nodes 𝑛, but transforming them to the form used in Definition 8.1 is a

straightforward reparameterisation.

Clique detection. In 𝑘-clique detection for fixed 𝑘 , the input labelling ℓ : 𝑉 → {0, 1} defines a
subgraph 𝐻 of𝐺 , and each node has to output 1 if they are part of a 𝑘-clique in 𝐻 , and 0 otherwise.

The corresponding graph property is 𝑘-clique freeness, and 𝑘-clique detection has the extension

property with label 0.

– Lower bound family. For fixed 𝑘 ≥ 4, Czumaj and Konrad [25] give a family of lower bound

graphs with parameters

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = Θ(𝛼1/3), 𝐶 (𝛼) = Θ(𝛼3/4) .

The lower bound given by Corollary 8.4 is Ω(𝛼1/4/log𝛼) for any 𝛼 .

Cycle detection. Next we consider 𝑘-cycle detection for fixed 𝑘 : the input labelling ℓ : 𝑉 → {0, 1}
defines a subgraph 𝐻 of 𝐺 , and each node has to output 1 if they are part of a 𝑘-cycle in 𝐻 , and 0

otherwise. The corresponding graph property is 𝑘-cycle freeness, and 𝑘-cycle detection clearly has

the extension property with label 0. For different parameters 𝑘 , we obtain the lower bounds from

prior constructions as follows.

– For 4-cycle detection, Drucker et al. [30] give a family of lower bound graphs with parameters

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = Θ(𝛼2/3), 𝐶 (𝛼) = Θ(𝛼2/3) .

The lower bound given by Corollary 8.4 is Ω(𝛼1/3/log𝛼) for 𝛼 = 𝑂 (𝑛3/2).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:26 Klaus-Tycho Foerster et al.

– For (2𝑘 + 1)-cycle detection for 𝑘 ≥ 2, Drucker et al. [30] give a family of lower bound graphs

with

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = Θ(𝛼1/2), 𝐶 (𝛼) = Θ(𝛼1/2) .
The lower bound given by Corollary 8.4 is Ω(𝛼1/2/log𝛼) for 𝛼 = 𝑂 (𝑛2).

– For 2𝑘-cycle detection for 𝑘 ≥ 3, Korhonen and Rybicki [54] give a family of lower bound

graphs with

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = Θ(𝛼), 𝐶 (𝛼) = Θ(𝛼1/2) .
The lower bound given by Corollary 8.4 is Ω(𝛼1/2/log𝛼) for 𝛼 = 𝑂 (𝑛).

Diameter and all-pairs shortest paths. In diameter computation, the input labelling ℓ : 𝑉 → {0, 1}
defines a subgraph𝐻 of𝐺 , and each node has to output the diameter of their connected component in

𝐻 . Again, diameter computation has the extension property with label 0. For exact and approximate

diameter computation, we use the sparse lower bound constructions of Abboud et al. [1]:

– For distinguishing between graphs of diameter 4 and 5, there is a family of lower bound graphs

with parameters

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = Θ(𝛼), 𝐶 (𝛼) = Θ(log𝛼) .

The lower bound given by Corollary 8.4 is Ω(𝛼/log2 𝛼) for 𝛼 = 𝑂 (𝑛). This implies a lower

bound for exact diameter computation.

– For distinguishing between graphs of diameter 4𝑘 + 2 and 6𝑘 + 1, there is a family of lower

bound graphs with parameters

𝑓𝛼 = DISJΘ(𝛼) , 𝑠 (𝛼) = 𝑂 (𝛼1+𝛿), 𝐶 (𝛼) = Θ(log𝛼),

for any constant 𝛿 > 0. The lower bound given by Corollary 8.4 is Ω(𝛼/log2 𝛼) for 𝛼 =

𝑂 (𝑛1/(1+𝛿)) for any constant 𝛿 > 0. This implies a lower bound for (3/2 − 𝜀)-approximation of

diameter for any constant 𝜀 > 0.

A trivial Ω(𝐷) lower bound holds even for (3/2 − 𝜀)-approximation in the worst case (e.g. a cycle).

In all-pairs shortest paths problem, the input labelling gives aweight𝑤 (𝑒) ∈ {0, 1, 2, . . . , 𝑛𝐶 }∪{∞}
for each edge 𝑒 ∈ 𝐸, and each node node 𝑣 has to output the distance 𝑑 (𝑣,𝑢) for each other node

𝑢 ∈ 𝑉 \ {𝑣}. Exact or (3/2 − 𝜀)-approximate solution to all-pairs shortest paths can be used to

recover exact or (3/2 − 𝜀)-approximate solution to diameter computation, respectively, in 𝑂 (𝐷)
rounds, so the lower bounds also apply to batch dynamic all-pairs shortest paths.

8.4 Lower bound for minimum spanning tree
The CONGEST lower bound for minimum spanning tree does not fall under the family of lower

bound graphs construction used above; indeed, one can show that it is in fact impossible to prove

CONGEST lower bounds for minimum spanning tree using a fixed-cut simulation (see Bacrach

et al. [13]). However, we can adapt the more involved simulation argument of Das Sarma et al. [26]

to obtain a near-linear lower bound for batch dynamic MST; note that Ω(𝐷) lower bound holds

trivially for the problem.

Again, we first prove a general version of the lower bound theorem first.

Theorem 8.5. Let 𝐿 : N→ N be a function satisfying 𝐿(𝛼) ≥ 𝛼2. Let A be a deterministic batch
dynamic algorithm or a randomised batch dynamic algorithm as in Theorem 8.3 that solves MST in
𝑇 (𝛼, 𝑛) +𝑂 (𝐷) rounds for all 𝛼 satisfying 𝑛 ≥ 𝐿(𝛼) on batch dynamic CONGEST with bandwidth
𝑏 (𝑛). Then we have

𝑇 (𝛼, 𝐿(𝛼)) = Ω

(
𝛼

𝑏
(
𝐿(𝛼)

)
log𝛼

)
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:27

a b

Fig. 3. Instance of the graph𝐺𝛼 for 𝛼 = 8 used in the minimum spanning tree lower bound. Black edges have
weight 0, grey edges have weight 1 and blue edges are used to encode the set disjointness instance.

Proof. We follow the proof of Das Sarma et al. [26] with the same modifications to standard

CONGEST lower bounds as in Theorem 8.3. We construct labelled graphs (𝐺𝛼 , ℓ𝛼) as follows, with
ℓ𝛼 encoding the edge weights of the graph:

– We start with two terminal nodes 𝑎 and 𝑏.

– We add 𝛼/2 paths 𝑃1, 𝑃2, . . . , 𝑃𝛼/2 of length 𝛼 , with all edges having weight 0. Each path 𝑃𝑖
consists of nodes 𝑝𝑖,1, 𝑝𝑖,2, . . . , 𝑝𝑖,𝛼 , and we refer to the set {𝑝1, 𝑗 , 𝑝2, 𝑗 , . . . , 𝑝𝛼/2, 𝑗 } as column 𝑗 .

– We connect 𝑝𝑖,1 to 𝑎 and and 𝑝𝑖,𝛼 to 𝑏 for all 𝑖 . These edges have weight 0.

– We add a balanced binary tree with 𝛼 leaves, with all edges weight 0. We connect the first leaf

to 𝑎 with weight-0 edge, and the last leaf to 𝑏 with weight-0 edge.

– We connect 𝑖th leaf of the tree to 𝑖th edge on each path 𝑃 𝑗 with weight-1 edge.

– Finally, we add new nodes connected by weight-0 edges to 𝑎 to satisfy 𝑛 ≥ 𝐿(𝛼); since we
assume 𝐿(𝛼) ≥ 𝛼2

, this is always possible.

See Figure 3 for an example.

We now turn the algorithm A into a two-player protocol for solving DISJ𝛼/2. Given inputs

𝑥0, 𝑥1 ∈ {0, 1}𝛼/2, the players first construct (𝐺𝛼 , ℓ𝛼), and construct a global auxiliary state 𝑥 ∈
𝜉 (𝐺𝛼 , ℓ𝛼); since both players know the (𝐺𝛼 , ℓ𝛼), they can do this locally. The players then locally

change the labels according to the inputs 𝑥0 and 𝑥1:

– player 0 sets the weight on the edge from 𝑎 to 𝑝𝑖,1 to weight 𝑥0 (𝑖) for 𝑖 = 1, 2, . . . , 𝛼/2, and
– player 1 sets the weight of the edge from 𝑏 to 𝑝𝑖,𝛼 to 𝑥1 (𝑖) for 𝑖 = 1, 2, . . . , 𝛼/2.

This defines a new global labelling ℓ∗. The players now simulate the execution A(𝐺𝛼 , ℓ𝛼 , ℓ
∗, 𝑥) in a

distributed manner; note in particular that players do not know the whole labelling ℓ∗.
We assume that 𝑇 ≤ 𝛼/2, as otherwise we already 𝑇 > 𝛼/2 and we are happy. The simulation

proceeds in steps 𝑡 = 1, 2, . . . ,𝑇 , where 𝑇 is the running time of A on the instance.

(1) In step 𝑡 of the iteration, player 0 simulates node 𝑎, columns 1 to 𝛼 − 𝑡 , and the smallest subtree

of the binary tree that includes children from 1 to 𝛼 − 𝑡 . Dually, player 1 simulates node 𝑏,

columns 𝑖 + 𝑡 to 𝛼 , and the smallest subtree of the binary tree that includes children from 𝑡 + 1
to 𝛼 .

(2) At the start of the simulation, both players know the local inputs of all the nodes they are

simulating, since they are not simulating the nodes whose incident labels were changed by the

other player.

(3) At step 𝑡 + 1, players simulate one round of A. We describe how player 0 does the simulation;

player 1 acts in symmetrical way.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:28 Klaus-Tycho Foerster et al.

(a) Since the set of nodes player 0 simulates in round 𝑡 + 1 is a subset of nodes simulated in

step 𝑡 , player 0 knows the full state of all the nodes it is simulating.

(b) For path nodes simulated by player 0, their neighbours were simulated in the previous

round by player 0, so their incoming messages can be determined locally.

(c) For binary tree nodes, there can be neighbours that were not simulated in the previous

round by player 0. However, since 𝑇 ≤ 𝛼/2, these are simulated by player 1, and player 1

sends their outgoingmessages to player 0. Since the height of the binary tree is𝑂 (log𝛼) and
player 0 simulates a subtree of the binary tree, there are𝑂 (log𝛼) nodes that need to receive
their neighbours’ messages from player 1. Thus player 1 has to send𝑂 (𝑏 (𝐿(𝛼)) log𝛼) bits
to player 0 to complete one iteration of the simulation.

In total, the simulation of the execution of A(𝐺𝛼 , ℓ𝛼 , ℓ
∗, 𝑥) uses at most 𝐶𝑇𝑏 (𝐿(𝛼)) log𝛼 bits of

communication for constant 𝐶 . One can verify that the minimum spanning tree in (𝐺𝛼 , ℓ
∗) has

weight 0 if 𝑥0 and 𝑥1 are disjoint, and weight at least 1 if they are not disjoint, so the play-

ers can determine the disjointness from the output of A. For deterministic A, this implies that

𝐶𝑇𝑏 (𝐿(𝛼)) log𝛼 ≥ CC(DISJ𝛼/2), and thus

𝑇 ≥
CC(DISJ𝛼/2)
𝐶𝑏

(
𝐿(𝛼)

)
log𝛼

=
𝐶 ′𝛼

𝑏
(
𝐿(𝛼)

)
log𝛼

for a constant 𝐶 ′. For randomised A, we similarly get

𝑇 ≥
RCC(DISJ𝛼/2)
𝐶𝑏

(
𝐿(𝛼)

)
log𝛼

=
𝐶 ′𝛼

𝑏
(
𝐿(𝛼)

)
log𝛼

by the same argument as in the proof of Theorem 8.3. Finally, since the diameter of 𝐺𝛼 is 𝑂 (log𝑛),
we have that for sufficiently large 𝛼 , we have 𝑇 (𝛼, 𝐿(𝛼)) ≥ 𝑇 /2, and the claim follows. □

The general theorem implies the following simplified claim:

Corollary 8.6. Let A be a deterministic batch dynamic algorithm or a randomised batch dynamic
algorithm as in Corollary 8.4 that solves MST in 𝑇 (𝛼) + 𝐷 rounds independent of 𝑛 for all 𝛼 ≤ 𝑛𝜀

on batch dynamic CONGEST with bandwidth Θ(log𝑛), where 𝜀 ≤ 1/2 is a constant. Then we have
𝑇 (𝛼) = Ω(𝛼/log2 𝛼).

9 BATCH DYNAMIC CONGESTED CLIQUE
If we set the communication graph 𝐺 = (𝑉 , 𝐸) to be a clique, we obtain a batch dynamic version of

the congested clique [58] as a special case of our batch dynamic CONGEST model. This is in many

ways similar to the batch dynamic versions of the 𝑘-machine and MPC models [27, 43, 52, 63];

however, whereas the these usually consider setting where the number of nodes 𝑘 is much smaller

than 𝑛, the setting with 𝑘 = 𝑛 is qualitatively different. For example, a minimum spanning tree

can be computed from scratch in 𝑂 (1) rounds in the congested clique [62], so recomputing from

scratch is optimal also for input-dynamic algorithms.

In this section, we briefly discuss the batch dynamic congested clique, and in particular highlight

triangle counting (and hence triangle detection) as an example of problem admitting a non-trivial

batch dynamic algorithm in this setting.

9.1 Universal upper bound
First, we make the simple observation that the fully-connected communication topology gives

faster universal upper bound than Theorem 5.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

Input-Dynamic Distributed Algorithms for Communication Networks 6:29

Theorem 9.1. For any problem Π, there is a batch dynamic congested clique algorithm that runs in
𝑂 (⌈𝛼/𝑛⌉) rounds and uses 𝑂 (𝑚 log𝑛) bits of auxiliary state.

Proof. Use the same algorithm as in Theorem 5.2; the claim follows by observing that the

message set 𝑀 can be learned by all nodes in 𝑂 (⌈𝛼/𝑛⌉) rounds using standard congested clique

routing techniques [57]. □

9.2 Batch dynamic matrix multiplication and triangle detection
As an example of a problem that has non-trivial batch dynamic algorithms in congested clique,

we consider the following dynamic matrix multiplication task. As input, we are given two 𝑛 × 𝑛
matrices 𝑆 , 𝑇 so that each node 𝑣 receives row 𝑣 of 𝑆 and column 𝑣 of 𝑇 , and the task is to compute

the product matrix 𝑃 = 𝑆𝑇 so that node 𝑣 outputs row 𝑣 of 𝑃 . Concretely, we assume that the input

label on edge {𝑢, 𝑣} the matrix entries 𝑆 [𝑣,𝑢], 𝑆 [𝑢, 𝑣], 𝑇 [𝑣,𝑢] and 𝑇 [𝑢, 𝑣]. Note that in the dynamic

version of the problem, the parameter 𝛼 is an upper bound for changes to both matrices.

For matrix 𝑆 , let density 𝜌𝑆 of 𝑆 be the smallest integer 𝜌 such that the number of non-zero

elements in 𝑆 is less than 𝜌𝑛. We use the following result:

Theorem 9.2 ([21, 23]). There is a congested clique algorithm that computes the product 𝑃 = 𝑆𝑇 in
𝑂
(
(𝜌𝑆𝜌𝑇)1/3/𝑛1/3 + 1

)
rounds.

We use Theorem 9.2 to obtain a non-trivial dynamic batch algorithm for matrix multiplication.

This in turn implies an upper bound for triangle counting by a standard reduction.

Theorem 9.3. There is a batch dynamic algorithm for matrix multiplication in congested clique
that runs in 𝑂

(
(𝛼/𝑛)1/3 + 1

)
rounds and uses 𝑂 (𝑛 log𝑛) bits of auxiliary state.

Proof. Consider input matrices 𝑆1 and 𝑇1 and updated input matrices 𝑆2 and 𝑇2. As auxiliary

data 𝑥 (𝑣), each node 𝑣 keeps the row 𝑣 of the matrix 𝑃1 = 𝑆1𝑇1.

We can write

𝑆2 = 𝑆1 + Δ𝑆 , 𝑇2 = 𝑇1 + Δ𝑇 ,

where Δ𝑆 and Δ𝑇 are matrices with at most 𝛼 non-zero elements, which implies their density is at

most ⌈𝛼/𝑛⌉. Thus, we can write the product 𝑃2 = 𝑆2𝑇2 as

𝑃2 = (𝑆1 + Δ𝑆) (𝑇1 + Δ𝑇)
= 𝑆1𝑇1 + Δ𝑆𝑇1 + 𝑆1Δ𝑇 + Δ𝑆Δ𝑇

= 𝑃1 + Δ𝑆𝑇1 + 𝑆1Δ𝑇 + Δ𝑆Δ𝑇 .

That is, it suffices to compute the products Δ𝑆𝑇1, 𝑆1Δ𝑇 and Δ𝑆Δ𝑇 to obtain 𝑃2; by Theorem 9.2, this

can be done in 𝑂
(
(𝛼/𝑛)1/3 + 1

)
rounds. □

Corollary 9.4. There is a batch dynamic algorithm for triangle counting in congested clique that
runs in 𝑂

(
(𝛼/𝑛)1/3 + 1

)
rounds and uses 𝑂 (𝑛 log𝑛) bits of auxiliary state.

ACKNOWLEDGMENTS
We thank Jukka Suomela for discussions. We also thank our shepherd Mohammad Hajiesmaili and

the reviewers for their time and suggestions on how to improve the paper. This project has received

funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 805223 ScaleML), from the European

Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie

grant agreement No. 840605, from the Vienna Science and Technology Fund (WWTF) project

WHATIF, ICT19-045, 2020-2024, and from the Austrian Science Fund (FWF) and netIDEE SCIENCE

project P 33775-N.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

6:30 Klaus-Tycho Foerster et al.

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. 2016. Near-linear lower bounds for distributed distance computa-

tions, even in sparse networks. In Proc. 30th International Symposium on Distributed Computing (DISC 2016). Springer,
29–42. https://doi.org/10.1007/978-3-662-53426-7_3

[2] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply Strong Lower Bounds for Dynamic

Problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS. 434–443. https://doi.org/10.

1109/FOCS.2014.53

[3] Umut A. Acar, Vitaly Aksenov, and Sam Westrick. 2017. Brief Announcement: Parallel Dynamic Tree Contraction via

Self-Adjusting Computation. In Proc. 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017).
Association for Computing Machinery, New York, NY, USA, 275–277. https://doi.org/10.1145/3087556.3087595

[4] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019. Parallel Batch-Dynamic Graph

Connectivity. In Proc. 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2019). 381–392.
https://doi.org/10.1145/3323165.3323196

[5] Umut A Acar, Andrew Cotter, Benoit Hudson, and Duru Türkoglu. 2011. Parallelism in dynamic well-spaced point

sets. In Proc. 23rd annual ACM symposium on Parallelism in algorithms and architectures (SPAA 2011). 33–42. https:

//doi.org/10.1145/1989493.1989498

[6] Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole Wein. 2019. Algorithms and

Hardness for Diameter in Dynamic Graphs. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP. 13:1–13:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.13

[7] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2018. Fully dynamic maximal independent set

with sublinear update time. In Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC). 815–826.
https://doi.org/10.1145/3188745.3188922

[8] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2019. Fully Dynamic Maximal Independent

Set with Sublinear in 𝑛 Update Time. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
1919–1936. https://doi.org/10.1137/1.9781611975482.116

[9] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and

Implications. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 1 (2020), 20:1–20:29.

https://doi.org/10.1145/3379486

[10] Daniel Awduche, Angela Chiu, Anwar Elwalid, Indra Widjaja, and XiPeng Xiao. 2002. Overview and principles of
Internet traffic engineering. Technical Report. RFC 3272.

[11] Baruch Awerbuch, Israel Cidon, and Shay Kutten. 2008. Optimal Maintenance of a Spanning Tree. J. ACM 55, 4 (Sept.

2008). https://doi.org/10.1145/1391289.1391292

[12] BaruchAwerbuch, Boaz Patt-Shamir, David Peleg, andMichael Saks. 1992. Adapting to asynchronous dynamic networks.

In Proc. 24th annual ACM symposium on Theory of computing. 557–570. https://doi.org/10.1145/129712.129767

[13] Nir Bacrach, Keren Censor-Hillel, Michal Dory, Yuval Efron, Dean Leitersdorf, and Ami Paz. 2019. Hardness of

distributed optimization. In Proc. of the 2019 ACM Symposium on Principles of Distributed Computing (PODC 2019).
238–247. https://doi.org/10.1145/3293611.3331597

[14] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. 2019. Local Distributed Algorithms in Highly Dynamic Networks.

In Proc. 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2019). https://doi.org/10.1109/

IPDPS.2019.00015

[15] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS algorithm for sparse graphs using

Nash-Williams decomposition. Distributed Computing 22, 5-6 (2010), 363–379.

[16] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. 2018. Locally-Iterative Distributed (Δ + 1)-Coloring below
Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to Restricted-Bandwidth Models. In Proc.
ACM Symposium on Principles of Distributed Computing (PODC 2018). 437–446. https://doi.org/10.1145/3212734.3212769

[17] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A Deamortization Approach for Dynamic Spanner

and Dynamic Maximal Matching. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 1899–1918.
https://doi.org/10.1137/1.9781611975482.115

[18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Dynamic algorithms via the primal-dual

method. Inf. Comput. 261, Part (2018), 219–239. https://doi.org/10.1016/j.ic.2018.02.005

[19] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. 2012. Time-varying graphs and dynamic

networks. IJPEDS 27, 5 (2012), 387–408. https://doi.org/10.1080/17445760.2012.668546

[20] Keren Censor-Hillel, Neta Dafni, Victor I. Kolobov, Ami Paz, and Gregory Schwartzman. 2020. Fast Deterministic

Algorithms for Highly-Dynamic Networks. CoRR abs/1901.04008 (2020). http://arxiv.org/abs/1901.04008

[21] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. 2019. Fast Approximate Shortest Paths

in the Congested Clique. In Proc. 38nd ACM Symposium on Principles of Distributed Computing (PODC 2019). 74–83.
https://doi.org/10.1145/3293611.3331633

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/3087556.3087595
https://doi.org/10.1145/3323165.3323196
https://doi.org/10.1145/1989493.1989498
https://doi.org/10.1145/1989493.1989498
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1145/3188745.3188922
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1145/3379486
https://doi.org/10.1145/1391289.1391292
https://doi.org/10.1145/129712.129767
https://doi.org/10.1145/3293611.3331597
https://doi.org/10.1109/IPDPS.2019.00015
https://doi.org/10.1109/IPDPS.2019.00015
https://doi.org/10.1145/3212734.3212769
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1080/17445760.2012.668546
http://arxiv.org/abs/1901.04008
https://doi.org/10.1145/3293611.3331633

Input-Dynamic Distributed Algorithms for Communication Networks 6:31

[22] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. 2016. Optimal Dynamic Distributed MIS. In Proc. 2016 ACM
Symposium on Principles of Distributed Computing (PODC 2016). 217–226. https://doi.org/10.1145/2933057.2933083

[23] Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. 2020. Sparse matrix multiplication and triangle listing in the

Congested Clique model. Theoretical Computer Science 809 (2020), 45–60. https://doi.org/10.1016/j.tcs.2019.11.006

[24] Serafino Cicerone, Gabriele Di Stefano, Daniele Frigioni, and Umberto Nanni. 2003. A fully dynamic algorithm

for distributed shortest paths. Theoretical Computer Science 297, 1 (2003), 83–102. https://doi.org/10.1016/S0304-

3975(02)00619-9

[25] Artur Czumaj and Christian Konrad. 2019. Detecting cliques in CONGEST networks. Distributed Computing (2019).

https://doi.org/10.1007/s00446-019-00368-w

[26] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg,

and Roger Wattenhofer. 2012. Distributed Verification and Hardness of Distributed Approximation. SIAM J. Comput.
41 (2012), 1235–1265. https://doi.org/10.1137/11085178X

[27] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and Xiaorui Sun. 2020. Parallel

Batch-Dynamic Graphs: Algorithms and Lower Bounds. In Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA. 1300–1319. https://doi.org/10.1137/1.9781611975994.79

[28] Edsger W. Dijkstra. 1974. Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 11 (1974), 643–644.

https://doi.org/10.1145/361179.361202

[29] Shlomi Dolev. 2000. Self-Stabilization. Cambridge, MA.

[30] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the Congested Clique Model. In Proc. 33rd
ACM Symposium on Principles of Distributed Computing (PODC 2014). 367–376. https://doi.org/10.1145/2611462.2611493

[31] Yuhao Du and Hengjie Zhang. 2018. Improved Algorithms for Fully Dynamic Maximal Independent Set. CoRR
abs/1804.08908 (2018). http://arxiv.org/abs/1804.08908

[32] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. 2019. Fully dynamic spectral vertex sparsifiers and

applications. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC. 914–925. https://doi.org/

10.1145/3313276.3316379

[33] Michael Elkin. 2007. A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners. In Proc. 26th
Annual ACM Symposium on Principles of Distributed Computing (PODC). 185–194. https://doi.org/10.1145/1281100.

1281128

[34] Nick Feamster and Jennifer Rexford. 2017. Why (and how) networks should run themselves. arXiv preprint
arXiv:1710.11583 (2017).

[35] Nick Feamster, Jennifer Rexford, and Walter Willinger (Eds.). 2018. Proceedings of the Afternoon Workshop on Self-
Driving Networks, SelfDN@SIGCOMM 2018, Budapest, Hungary, August 24, 2018. ACM. http://dl.acm.org/citation.cfm?

id=3229584

[36] Klaus-Tycho Foerster, Juho Hirvonen, Jukka Suomela, and Stefan Schmid. 2019. On the Power of Preprocessing

in Decentralized Network Optimization. In Proc. IEEE Conference on Computer Communications (INFOCOM 2019).
https://doi.org/10.1109/INFOCOM.2019.8737382

[37] Klaus-Tycho Foerster, Janne H. Korhonen, Joel Rybicki, and Stefan Schmid. 2019. Does Preprocessing Help under

Congestion?. In Proc. 38nd ACM Symposium on Principles of Distributed Computing, (PODC 2019). 259–261. https:

//doi.org/10.1145/3293611.3331581

[38] Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer. 2018. Local checkability, no strings

attached: (A)cyclicity, reachability, loop free updates in SDNs. Theoretical Computer Science 709 (2018), 48–63. https:

//doi.org/10.1016/j.tcs.2016.11.018

[39] Klaus-Tycho Foerster, Oliver Richter, Jochen Seidel, and Roger Wattenhofer. 2017. Local Checkability in Dynamic

Networks. In Proc. of the 18th International Conference on Distributed Computing and Networking (ICDCN). ACM, 4:1–10.

https://doi.org/10.1145/3007748.3007779

[40] Klaus-Tycho Foerster and Stefan Schmid. 2019. Distributed Consistent Network Updates in SDNs: Local Verification

for Global Guarantees. In 18th IEEE International Symposium on Network Computing and Applications NCA. IEEE, 1–4.
https://doi.org/10.1109/NCA.2019.8935035

[41] Bernard Fortz and Mikkel Thorup. 2000. Internet traffic engineering by optimizing OSPF weights. In Proc. IEEE
INFOCOM, Vol. 2. IEEE, 519–528. https://doi.org/10.1109/INFCOM.2000.832225

[42] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja Feldmann, Bruce Maggs, Jannis Rake, Steve Uhlig,

and Rick Weber. 2013. Pushing CDN-ISP collaboration to the limit. ACM SIGCOMM Computer Communication Review
43, 3 (2013), 34–44. https://doi.org/10.1145/2500098.2500103

[43] Seth Gilbert and Lawrence Li. 2020. How Fast Can You Update Your MST?. In Proc. 32nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 531—533. https://doi.org/10.1145/3350755.3400240

[44] Gramoz Goranci, Monika Henzinger, and Pan Peng. 2017. The Power of Vertex Sparsifiers in Dynamic Graph Algorithms.

In 25th Annual European Symposium on Algorithms, ESA. 45:1–45:14. https://doi.org/10.4230/LIPIcs.ESA.2017.45

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

https://doi.org/10.1145/2933057.2933083
https://doi.org/10.1016/j.tcs.2019.11.006
https://doi.org/10.1016/S0304-3975(02)00619-9
https://doi.org/10.1016/S0304-3975(02)00619-9
https://doi.org/10.1007/s00446-019-00368-w
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/1.9781611975994.79
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/2611462.2611493
http://arxiv.org/abs/1804.08908
https://doi.org/10.1145/3313276.3316379
https://doi.org/10.1145/3313276.3316379
https://doi.org/10.1145/1281100.1281128
https://doi.org/10.1145/1281100.1281128
http://dl.acm.org/citation.cfm?id=3229584
http://dl.acm.org/citation.cfm?id=3229584
https://doi.org/10.1109/INFOCOM.2019.8737382
https://doi.org/10.1145/3293611.3331581
https://doi.org/10.1145/3293611.3331581
https://doi.org/10.1016/j.tcs.2016.11.018
https://doi.org/10.1016/j.tcs.2016.11.018
https://doi.org/10.1145/3007748.3007779
https://doi.org/10.1109/NCA.2019.8935035
https://doi.org/10.1109/INFCOM.2000.832225
https://doi.org/10.1145/2500098.2500103
https://doi.org/10.1145/3350755.3400240
https://doi.org/10.4230/LIPIcs.ESA.2017.45

6:32 Klaus-Tycho Foerster et al.

[45] Manoj Gupta and Shahbaz Khan. 2018. Simple dynamic algorithms for Maximal Independent Set and other problems.

CoRR abs/1804.01823 (2018). http://arxiv.org/abs/1804.01823

[46] Monika Henzinger. 2018. The State of the Art in Dynamic Graph Algorithms. In SOFSEM 2018: Theory and Practice of
Computer Science - 44th International Conference on Current Trends in Theory and Practice of Computer Science. 40–44.
https://doi.org/10.1007/978-3-319-73117-9_3

[47] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. Dynamic Approximate All-Pairs Shortest

Paths: Breaking the𝑂 (𝑚𝑛) Barrier and Derandomization. SIAM J. Comput. 45, 3 (2016), 947–1006. https://doi.org/10.

1137/140957299

[48] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and

Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In Proc. 47th
Annual ACM on Symposium on Theory of Computing, STOC. 21–30. https://doi.org/10.1145/2746539.2746609

[49] Monika Rauch Henzinger and Valerie King. 1999. Randomized Fully Dynamic Graph Algorithms with Polylogarithmic

Time per Operation. J. ACM 46, 4 (1999), 502–516. https://doi.org/10.1145/320211.320215

[50] JacobHolm, Kristian de Lichtenberg, andMikkel Thorup. 2001. Poly-logarithmic deterministic fully-dynamic algorithms

for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723–760. https://doi.org/10.

1145/502090.502095

[51] Giuseppe F. Italiano. 1991. Distributed Algorithms for Updating Shortest Paths. In Proc. 5th International Workshop on
Distributed Algorithms (WDAG). 200–211. https://doi.org/10.1007/BFb0022448

[52] Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. 2019. Dynamic Algorithms for the

Massively Parallel Computation Model. In Proc. 31st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2019). Association for Computing Machinery, New York, NY, USA, 49–58. https://doi.org/10.1145/3323165.

3323202

[53] Michael König and Roger Wattenhofer. 2013. On Local Fixing. In Proc. 17th International Conference on Principles of
Distributed Systems (OPODIS 2013). 191–205. https://doi.org/10.1007/978-3-319-03850-6_14

[54] Janne H. Korhonen and Joel Rybicki. 2017. Deterministic Subgraph Detection in Broadcast CONGEST. In Proc. 21st
International Conference on Principles of Distributed Systems (OPODIS 2017). https://doi.org/10.4230/LIPIcs.OPODIS.

2017.4

[55] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. 2010. Distributed computation in dynamic networks. In Proc. 42nd
ACM Symposium on Theory of Computing, STOC. 513–522. https://doi.org/10.1145/1806689.1806760

[56] Eyal Kushilevitz and Noam Nisan. 1997. Communication complexity. Cambridge University Press.

[57] Christoph Lenzen. 2013. Optimal deterministic routing and sorting on the congested clique. In Proc. 2013 ACM
symposium on Principles of distributed computing (PODC 2013). 42–50. https://doi.org/10.1145/2484239.2501983

[58] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-Weight Spanning Tree Construc-

tion in 𝑂 (log log𝑛) Communication Rounds. SIAM J. Comput. 35, 1 (2005), 120–131. https://doi.org/10.1137/

S0097539704441848

[59] Oliver Michel and Eric Keller. 2017. SDN in wide-area networks: A survey. In Proc. 4th International Conference on
Software Defined Systems, (SDS 2017). IEEE, 37–42. https://doi.org/10.1109/SDS.2017.7939138

[60] Ofer Neiman and Shay Solomon. 2016. Simple Deterministic Algorithms for Fully Dynamic Maximal Matching. ACM
Trans. Algorithms 12, 1 (2016), 7:1–7:15. https://doi.org/10.1145/2700206

[61] Juniper Networks. 2020. Expel complexity with a Self-Driving Network. https://www.juniper.net/us/en/dm/the-self-

driving-network/

[62] Krzysztof Nowicki. 2019. A Deterministic Algorithm for the MST Problem in Constant Rounds of Congested Clique.

http://arxiv.org/abs/1912.04239 arXiv:1912.04239 [cs.DS].

[63] Krzysztof Nowicki and Krzysztof Onak. 2020. Dynamic Graph Algorithms with Batch Updates in the Massively Parallel

Computation Model. CoRR abs/2002.07800 (2020). https://arxiv.org/abs/2002.07800

[64] Regina O’Dell and Roger Wattenhofer. 2005. Information dissemination in highly dynamic graphs. In Proc. DIALM-
POMC Joint Workshop on Foundations of Mobile Computing, Suman Banerjee and Samrat Ganguly (Eds.). 104–110.

https://doi.org/10.1145/1080810.1080828

[65] Merav Parter, David Peleg, and Shay Solomon. 2016. Local-on-Average Distributed Tasks. In Proc. 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 220–239. https://doi.org/10.1137/1.9781611974331.ch17

[66] David Peleg. 1998. Distributed matroid basis completion via elimination upcast and distributed correction of minimum-

weight spanning trees. In Proc. International Colloquium on Automata, Languages, and Programming (ICALP 1998).
Springer, 164–175. https://doi.org/10.1007/BFb0055050

[67] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathemat-

ics.

[68] Radia J. Perlman. 1985. An algorithm for distributed computation of a spanning tree in an extended LAN. In Proc.
9th Symposium on Data Communications (SIGCOMM), William Lidinsky and Bart W. Stuck (Eds.). ACM, 44–53.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

http://arxiv.org/abs/1804.01823
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1137/140957299
https://doi.org/10.1137/140957299
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/BFb0022448
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.4230/LIPIcs.OPODIS.2017.4
https://doi.org/10.4230/LIPIcs.OPODIS.2017.4
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1109/SDS.2017.7939138
https://doi.org/10.1145/2700206
https://www.juniper.net/us/en/dm/the-self-driving-network/
https://www.juniper.net/us/en/dm/the-self-driving-network/
http://arxiv.org/abs/1912.04239
https://arxiv.org/abs/2002.07800
https://doi.org/10.1145/1080810.1080828
https://doi.org/10.1137/1.9781611974331.ch17
https://doi.org/10.1007/BFb0055050

Input-Dynamic Distributed Algorithms for Communication Networks 6:33

https://doi.org/10.1145/319056.319004

[69] Larry L. Peterson and Bruce S. Davie. 2011. Computer Networks, Fifth Edition: A Systems Approach (5th ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[70] Monika Rauch Henzinger and Mikkel Thorup. 1996. Improved sampling with applications to dynamic graph algorithms.

In Proc. International Colloquium on Automata, Languages, and Programming (ICALP 1998). Springer, 290–299.
[71] Alexander A. Razborov. 1992. On the Distributional Complexity of Disjointness. Theor. Comput. Sci. 106, 2 (1992),

385–390. https://doi.org/10.1016/0304-3975(92)90260-M

[72] Stefan Schmid and Jukka Suomela. 2013. Exploiting locality in distributed SDN control. In Proc. 2nd ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN 2013). ACM Press, 121–126. https://doi.org/10.1145/

2491185.2491198

[73] A. Schrijver. 2003. Combinatorial Optimization - Polyhedra and Efficiency. Springer.
[74] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2016. Work-efficient parallel union-find

with applications to incremental graph connectivity. In European Conference on Parallel Processing. Springer, 561–573.
https://doi.org/10.1007/978-3-319-43659-3_41

[75] Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. 2019. Batch-Parallel Euler Tour Trees. In Proc. 21st Meeting on
Algorithm Engineering and Experiments (ALENEX 2019). 92–106. https://doi.org/10.1137/1.9781611975499.8

[76] David Wang. 2020. Moving towards autonomous driving networks. https://www.huawei.com/en/publications/

communicate/87/moving-towards-autonomous-driving-networks

[77] S. Wang, C. Wu, and C. Chou. 2015. Constructing an optimal spanning tree over a hybrid network with SDN and

legacy switches. In 2015 IEEE Symposium on Computers and Communication (ISCC). 502–507. https://doi.org/10.1109/

ISCC.2015.7405564

Received October 2020; revised December 2020; accepted January 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: March 2021.

https://doi.org/10.1145/319056.319004
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1145/2491185.2491198
https://doi.org/10.1145/2491185.2491198
https://doi.org/10.1007/978-3-319-43659-3_41
https://doi.org/10.1137/1.9781611975499.8
https://www.huawei.com/en/publications/communicate/87/moving-towards-autonomous-driving-networks
https://www.huawei.com/en/publications/communicate/87/moving-towards-autonomous-driving-networks
https://doi.org/10.1109/ISCC.2015.7405564
https://doi.org/10.1109/ISCC.2015.7405564

	Abstract
	1 Introduction
	1.1 Input-dynamic distributed algorithms
	1.2 Motivation: towards dynamic network management
	1.3 Batch dynamic CONGEST model

	2 Contributions
	2.1 Universal upper bounds
	2.2 Intermediate complexity: clique enumeration
	2.3 Saving space: minimum-weight spanning trees
	2.4 A general framework for lower bounds
	2.5 Dynamic congested clique
	2.6 Summary and open questions
	2.7 Technical overview and methodological advancements

	3 Related work
	3.1 Centralised dynamic graph algorithms
	3.2 Distributed algorithms in changing communication networks
	3.3 Input-dynamic parallel and distributed algorithms
	3.4 Self-stabilisation
	3.5 Supported models

	4 Batch dynamic CONGEST model
	4.1 Communication graph and computation
	4.2 Graph problems
	4.3 Batch dynamic algorithms
	4.4 Notation

	5 Universal upper bounds
	6 Batch dynamic clique enumeration
	6.1 Acyclic orientations
	6.2 Algorithm for clique enumeration

	7 Minimum-weight spanning trees
	7.1 Distributed Eulerian tour trees
	7.2 Maximum matroid basis algorithm
	7.3 Cycle and cut properties
	7.4 Maintaining a minimum spanning tree
	7.5 Handling weight increments
	7.6 Handling weight decrements

	8 Lower bounds
	8.1 Two-party communication complexity
	8.2 Lower bound framework
	8.3 Instantiations
	8.4 Lower bound for minimum spanning tree

	9 Batch dynamic congested clique
	9.1 Universal upper bound
	9.2 Batch dynamic matrix multiplication and triangle detection

	Acknowledgments
	References

