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a b s t r a c t

The performance of more and more cloud-based applications critically depends on
the performance of the interconnecting datacenter network. Emerging reconfigurable
datacenter networks have the potential to provide an unprecedented throughput by
dynamically reconfiguring their topology in a demand-aware manner. This paper studies
the algorithmic problem of how to design low-degree and hence scalable datacenter
networks that are optimized toward the current traffic they serve. Our main contribution
is a novel network design which provides asymptotically minimal route lengths and
congestion. In comparison to prior work, our design reduces the degree requirements
by a factor of four for sparse demand matrices. We further show that the problem is
already NP-hard for tree-shaped demands, but permits a 2-approximation on the route
lengths and a 6-approximation for congestion. We further report on a small empirical
study on Facebook traces.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As the performance of many data-centric and cloud-based applications increasingly depends on the underlying net-
orks, datacenter networks have become a critical infrastructure of our digital society. Indeed, current application trends

ntroduce stringent performance requirements and a demand for datacenter networks providing ultra-low latency and
igh bandwidth. For example, emerging distributed machine learning applications which use highspeed computational
evices, periodically require large data transfers during which the network can become the bottleneck. Another example
s today’s trend of resource disaggregation in datacenters, which introduces a need for very fast access to remote resources
GPU, memory and disk) [1]. Traces of jobs from a Facebook cluster reveal that network transfers on average account for
third of the execution time [2].
Emerging reconfigurable datacenter topologies, enabled by novel optical technologies, introduce new opportunities

o significantly improve datacenter performance. In particular, by dynamically establishing topological shortcuts, recon-
igurable datacenter networks allow to overcome the cost (or ‘‘tax’’ [3]) of multihop routing [4,5], or to improve the
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low completion time of elephant flows by directly connecting frequently communicating racks, in a demand-aware
anner [5–12].
Demand-aware networks are particularly motivated by empirical studies showing that communication patterns feature

uch structure. Indeed, traffic matrices (a.k.a. demand matrices) are often sparse and skewed in datacenters [10,13,14].
his introduces optimization opportunities, which stands in stark contrast to traditional, demand-oblivious datacenter
etwork designs [15–17].
This paper studies a fundamental algorithmic problem underlying such reconfigurable networks: how to design a

emand-aware topology which, given a demand matrix, provides short topological routes between frequently commu-
icating nodes (e.g., top-of-rack switches [18]), also minimizing congestion. In particular, for scalability reasons and as
econfigurable hardware consumes space and power, the interconnecting network should be of low degree, ideally a small
onstant.

.1. Our contributions

Our contributions revolve around the design of demand-aware networks (BNDs) under a degree restriction, which
symptotically minimize communication cost and congestion, especially when the demand matrix induces a sparse graph
r tree. In particular, we present an algorithm to design a network of maximum degree 3∆avg + 8 with asymptotically

optimal route lengths and congestion, when the demand matrix is induced by a sparse graph of an average degree ∆avg.
his reduces the required maximum degree of the network by a factor of 4× compared to the previous work, which is
ignificantly more scalable.
We also show that the demand-aware network design problem is NP-hard, already when ignoring congestion and if

oth the demand itself and the network topology are restricted to be trees; prior work already established the hardness
or general demands [19]. We moreover prove that optimizing for congestion, independent of route lengths, is NP-hard
s well. On the positive side, we show that for tree-demands, one can jointly 2-approximate the optimal route lengths
nd 6-approximate the minimum congestion.
Finally, we provide empirical insights into our approach, considering traffic traces from Facebook.

.2. Technical novelty

Our network design algorithm builds upon the ego-tree technique introduced by Avin et al. in [12,20]. In this approach,
he network is designed by first constructing an optimal constant-degree tree for each source node v: v is placed at the
oot of the tree and its destinations are placed such that more frequent communication partners are closer to the root.
s these trees are optimized for a single node, they are called ego-trees. The network is then a union of all the ego-trees
f individual nodes, postprocessed by an algorithm which reduces the degree while preserving distances [20]. The design
s flexible in that it allows for various flavors of ego-trees (e.g., Huffman trees, Mehlhorn trees, etc.).

In this paper we propose a tree called Round Robin Tree that is particularly well suited to jointly minimize weighted
oute length and congestion, and which we can interconnect with other trees in a low-degree manner. Comparing to
imilar approach [21], our construction significantly improves the approximation ratio of route length from log2(∆max+1)
o 2, where ∆max is the maximum degree of the designed network.

.3. Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the bounded network design (BND)
roblems. For demands restricted to trees, we study the BND problem for optimizing the communication cost in Section 3,
nd then extend the objective to optimize both communication cost and congestion in Section 4. We design the networks
or the sparse demand graphs achieving near-optimal routing lengths in Section 5, additionally achieving near-optimal
ongestion. We then discuss the applicability of the proposed solutions under real-world traffic traces in Section 6. After
eviewing related work in Section 7, we conclude and sketch future research directions in Section 8.

. Model

We consider the following general model. Given a set of n nodes V = {v1, . . . , vn} (e.g., ToRs, servers, peers, etc.), the
ommunication requests over V ×V form a communication pattern, which can be modeled by an n×n matrix D :=

(
dij
)
n×n.

n entry dij ∈ R≥0 of D indicates the communication quantity from the source vi ∈ V to the destination vj ∈ V . If the
atrix D is normalized, each entry dij of D represents the communication demand from vi to vj. While demands can be
symmetric, the physical communication links of the network are bi-directed, and we hence represent the communication
atrix D as an undirected demand graph GD on the same set of nodes V : a weighted (undirected) graph, where each edge

vi, vj} ∈ E (GD) has a weight w
(
vi, vj

)
= dij+dji. In this paper, we are especially interested in fundamental specific graphs

for GD, in particular trees and sparse graphs, i.e., graphs where the number of edges is linear in terms of the number of
vertices. Hence, the average degree in sparse graphs is constant. To serve GD, we need to design a network N(D) over the
et of nodes V , s.t., for each edge {vi, vj} ∈ E (GD), there must be a (bi-directed) path between vi and vj in the designed
network N(D). When D is clear from the context, we often abbreviate N(D) by N , and we also refer to the designed network
as the host graph. We consider two fundamental objectives when optimizing the network topology toward the demand.
We next discuss them in turn.
2
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.1. Objective #1: Route length

The first objective considered in this paper is related to the achieved route lengths, weighted by the amount of traffic.
eighted route lengths correspond to the total communication distance in the network. Given a demand graph GD and
host graph N , for each demand {vi, vj} ∈ E (GD), let distN

(
vi, vj

)
be the length of the shortest path between vi and vj in

N . Then, the cost to serve GD by a host graph N is defined as:

cost (GD,N) =

∑
{vi,vj}∈E(GD)

w
(
vi, vj

)
· distN

(
vi, vj

)
.

Given a demand graph GD over V , let N denote a collection of host graphs N over V , where each N ∈ N can serve GD.
Usually, we are only interested in some host graphs of N which satisfy specific desired properties. In particular, we are
interested in scalable topologies of low degree, and henceforth, let N∆ ⊆ N , where ∆ ∈ N+, denote all host graphs
N ∈ N that have their maximum degree bounded by ∆. Meanwhile, our design objective is to find a host graph N ∈ N∆

of bounded degree to minimize the communication cost of serving GD.

Definition 1 (Bounded Network Design (BND)). Given a communication matrix D, i.e., a demand graph GD, and a degree
bound ∆, find a host graph N ∈ N∆ that minimizes the communication cost of serving D:

BND (GD, ∆) = min
N∈N∆

cost (GD,N) .

2.2. Objective #2: Congestion

We are further interested in the congestion experienced in the network, which can negatively affect network
performance. When only considering distances, the routing itself is easy to optimize on a given host graph, by considering
the shortest paths. In the context of congestion, it can be advantageous to define different routing paths via a routing
scheme Γ (N) for a network N .

In the following, we consider the practically important model of unsplittable flows, i.e., each demand is routed along
a single path. In more detail, a routing scheme Γ (N) for N is defined by a set of simple paths Γvivj , one for each pair of
nodes vi, vj. Herein, a demand between vi, vj imposes a load of w(vi, vj) on each edge e ∈ Γvivj it is routed on, where the
congestion cong is defined by the most loaded edge:

cong (GD, Γ (N)) = max
e∈Γ (N)

∑
e∈Γvivj

Γvivj∈Γ (N)

w(vi, vj).

Ideally, we want to find a host graph and routing scheme that minimizes the congestion in the network:

Definition 2 (Congested Bounded Network Design (cong-BND)). Given a demand graph GD, and a degree bound ∆, find a
host graph N ∈ N∆ and routing scheme Γ (N) that minimizes the congestion of serving D:

cong-BND (GD, ∆) = min
N∈N∆,Γ (N)

cong (GD, Γ (N)) .

2.3. Joint optimization

Next, we define a problem of optimizing both communication distances (in terms of route length) and congestion
at the same time. To this end, we first analogously specify the communication cost incurred by routing along Γ (N),
i.e., cost (GD, Γ (N)):

cost (GD, Γ (N)) =

∑
{vi,vj}∈E(GD)

w
(
vi, vj

)
· distΓ (N)

(
vi, vj

)
.

Given a demand graph GD and a network N , we use cost-BND∗ (GD, ∆) and cong-BND∗ (GD, Γ (N)) to denote the optimal
route lengths and congestion respectively. While some networks and demands permit solutions that are optimal both in
route lengths and congestion, most commonly this is not the case. We hence define the joint design problem as proposed
by Avin et al. [21]:

Definition 3 ((c, d)-Bounded Network Design ((c, d)-BND)). Given a demand graph GD, and a degree bound ∆, the (c, d)-
BND problem is to find a host graph N ∈ N∆ and routing scheme Γ (N) s.t. both communication cost and congestion are
bounded w.r.t. individual objective function optimization, i.e.:

∗ ′
cong (GD, Γ (N)) ≤ c · cong-BND (GD, ∆) + c ,

3



M. Pacut, W. Dai, A. Labbe et al. Performance Evaluation 152 (2021) 102238

w

3

W
c

f
r

d

3

l

cost (GD, Γ (N)) ≤ d · cost-BND∗ (GD, ∆) + d′,

ith constants c ′, d′ being problem-independent parameters.

. Route lengths in trees

In this section, we study the scenario where the demand graph is a tree, and the goal is to minimize the route lengths.
e start with notations and preliminaries in Section 3.1. Then, in Section 3.2 we study optimal topologies for the special

ase of 2-level trees (i.e., stars) and we provide lower bounds and optimal constructions.
We then show in Section 3.3 how to efficiently compose solutions for the general tree case from the optimal solutions

or 2-level trees using the ego-tree design (cf. Section 1.2). Lastly, we illustrate the intractability of the BND problem when
estricting the demand graphs to be a tree in Section 3.4.

For simplicity of presentation, we consider undirected tree demands, and we note that the results can be extended to
irected tree demands. We defer the discussion about congestion to the next section (Section 4).

.1. Preliminaries

For a tree T rooted at r , we define a level of T as all nodes with equal distance to r . Let the root r constitute the first
evel of T , then the set of nodes having a distance i to the root r , where i ∈ N and i ≥ 1, defines the (i + 1)-th level of T .
A tree containing k different levels, where k ∈ N and k ≥ 1, is called a k-level tree, e.g., a tree consisting of a root and its
children is a 2-level tree. We note that each tree has a unique partition into levels. In principle, then the root r can be
thought as the most common node of intensive traffic among the nodes of T .

For integers α, β ≥ 2 we define a (α, β)-ary tree as a tree where the maximum degree of the root is α, and the
maximum degree of every non-root node is β .

Let TD denote the demand tree on the set of n nodes V , rooted at r ∈ V . Given a 2-level demand tree TD on nodes V , let
V⃗ be a sequence of nodes from V sorted in non-increasing order according to their edge weights to the root V⃗ [1] = r (the
first element). Let TD (v) be a subtree of TD induced by an inner-node v ∈ V and its children in TD, then TD (v) is a 2-level
tree. Our algorithm produces a tree network, thus we refer to the network as a host tree, and to the part constructed for
TD(v) a local host tree for node v.

3.2. Locally optimal trees

We present a gadget1(α, β)-LocalTree (TD) for constructing a local host tree for a given 2-level tree TD and integers
α, β ≥ 2. We define LocalOpt(TD, ∆) = (∆, ∆−1)-LocalTree (TD), and in Lemma 1 we show it is optimal in terms of route
lengths.

The (α, β)-LocalTree (TD) is constructed as follows. Let TD be a 2-level demand tree on n nodes V , rooted at r . The
(α, β)-LocalTree (TD) constructs an (α, β)-ary tree containing the nodes V . Let the sequence V⃗ of nodes V consist of
V⃗ [1] = r and followed by sorted children of r in a non-increasing order of their edge weights in TD. To construct the
(α, β)-LocalTree (TD), we start with an empty tree, and we insert the nodes of V⃗ sequentially. To insert a node V⃗ [i], we
attach it at an arbitrary place closest to the root, without violating the degree constraints of (α, β)-ary tree. Note that the
constructed network is a balanced tree.

Lemma 1. If a demand tree TD on V is a 2-level tree, then LocalOpt (TD, ∆) is an optimal solution to BND (TD, ∆).

Proof. Let T = LocalOpt (TD, ∆) and let T ∗ denote an optimal host tree of BND (TD, ∆), rooted at r .
For each level of T , the tree T ∗ cannot contain more nodes at the same level than T , except for the last level (otherwise,

the degree bound ∆ cannot be satisfied in T ∗). If T ∗ would contain less nodes on a (non-last) level, then the solution can
be improved, a contradiction. Thus, the corresponding levels of T and T ∗ contain the same number of nodes.

Assume that the cost of T ∗ is strictly smaller than the cost of T . Let mi (resp. m∗

i ) denote the sum of demands to r of
nodes at the level i of T (resp. T ∗). Let j be the first level where mj ̸= m∗

j . Since T assigns the largest weights closest to
the root, the value mj is maximal. Thus, m∗

j < mj, and since j is the first such level, there exists a node uj′ in a level j′ > j
with higher demand to r than a node uj. Swapping them reduces the cost of T ∗, thus it is not optimal, a contradiction.

Finally, T is a feasible solution. It is a (∆, ∆ − 1)-ary tree and the degree bound is ∆. □

Note that it is impossible to construct a feasible solution from these locally optimal topologies, as we cannot combine
them without violating the degree constraints. However, although the union of LocalOpt gadgets is not a feasible topology,
sum of costs of routing demands in them constitutes a valid lower bound on the cost of optimal solution. We use this
lower bound in the proof of Lemma 2.

1 Here and in the following, the term gadget refers to an auxiliary graph construction.
4
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.3. Approximation algorithm

We now investigate the general scenario where the height of the demand tree is arbitrary. To this end, we first provide
he details of an approximation algorithm, and then in Theorem 1 we show that the algorithm is a 2-approximation for
very ∆ ≥ 5. The algorithm is an efficient version of ego-tree design (cf. Section 1.2), accounting for the tree structure
f the input.
The algorithm for general demand trees is defined as follows. We are given a demand tree TD on n nodes V , with

he root r ∈ V and a degree bound ∆. For each inner-node v∗
∈ V , the subtree TD (v∗) of TD (a subtree induced by

v∗ and its children), is a 2-level tree rooted at v∗. For each subtree TD (v∗), ALG (TD, ∆) constructs a local host tree Tv∗

rooted at v∗ for BND (TD (v∗) , ∆) using (α∗, β∗)-LocalTree (TD (v∗)). Throughout this section, we use α∗
= ⌊(∆ − 1) /2⌋

and β∗
= ⌈(∆ − 1) /2⌉. The tree Tv∗ is (α∗, β∗)-ary.

For each child u of the node v∗, ALG (TD, ∆) preserves the degree of α∗ for u since there could be another local host
tree Tu rooted at u to serve requests defined by TD (u). And the local host tree Tu must be connected with Tv∗ by joining
two identical nodes u. After joining two local host trees, the node u would have α∗

+ β∗
≤ ∆ − 1 children, and the final

degree of u does not exceed ∆. The algorithm ALG (TD, ∆) terminates after all inner-nodes are processed and returns the
tree Tout as the host tree for the problem BND (TD, ∆).

We next show that the above procedure achieves 2-approximation: using the local host tree (α∗, β∗)-LocalTree (TD (v∗))
the distance from an inner-node v∗

∈ V to a child of v∗ is at most twice its distance in the local optimal host tree
LocalOpt (TD (v∗) , ∆).

Lemma 2. For a 2-level tree TD, the network (α∗, β∗)-LocalTree (TD (v∗)) is a 2-approximation for BND (TD, ∆) for every
∆ ≥ 5.

Proof. Given a 2-level demand tree TD rooted at r , and a degree bound ∆, let T1 be an optimal host tree of BND (TD, ∆),
then we claim that the host tree T2 = ALG (TD, ∆) has cost (TD, T2) ≤ 2 · cost (TD, T1) for ∆ ≥ 5.

Consider an optimal host T1 computed by LocalOpt (TD, ∆) (see Lemma 1). Then, the claim of the lemma is equivalent
to the claim: for any node v ∈ V \ {r}, if v has distT1 (v, r) = k, where k ≥ 1, then distT2 (v, r) ≤ 2k.

Let v ∈ V \ {r} be an arbitrary node having the distance k to the root r on T1, where k ≥ 1, then v is on the (k + 1)-th
level of T1. Let j′ denote the total number of nodes contained on the first k+1 levels of T1, where j′ ≤ n. LocalTree assigns
nodes to levels in an order of non-increasing demands, thus v ∈ {V⃗ [1], . . . , V⃗ [j′]}. Let j denote the total number of nodes
placed on the first 2k+1 levels of T2, where j ≤ n. If v is also contained in {V⃗ [1], . . . , V⃗ [j]}, then it implies distT2 (v, r) ≤ 2k
directly. It remains to show j′ ≤ j. We assume j′ < n and j < n, otherwise j′ ≤ j is established by j′ = n = j. First, by the
definition of j′, we bound j′ by the following inequality:

j′ ≤ 1 + ∆ ·
(∆ − 1)k − 1

∆ − 2
.

When ∆ = 5, it holds that j′ ≤ 1 +
5
3 ·
(
4k

− 1
)
.

If ∆ ≥ 6, an upper bound of j′ is derived as follows:

j′ ≤ 1 + ∆ ·
(∆ − 1)k − 1

∆ − 2
≤ 1 + 1.5 ·

(
(∆ − 1)k − 1

)
≤ 1.5 · (∆ − 1)k .

he formula for j is the following:

j = 1 +

⌊
∆ − 1

2

⌋
·

⌈
∆ − 1

2

⌉2k

− 1(⌈
∆ − 1

2

⌉
− 1

) .

When ∆ = 5, we have j = 1 + 2 ·
(
22k

− 1
)
. Moreover, for ∆ ≥ 6, we note that the following inequality holds.⌊

∆ − 1
2

⌋
≥

⌈
∆ − 1

2

⌉
− 1, if ∆ ≥ 6 .

We derive a lower bound for j under conditions ∆ ≥ 6 and 1.5k
· (∆ − 1)k.

j = 1 +

⌊
∆ − 1

2

⌋
·

⌈
∆ − 1

2

⌉2k

− 1(⌈
∆ − 1

2

⌉
− 1

) ≥ 1 +

(⌈
∆ − 1

2

⌉2k

− 1

)

≥ 1 +

((
∆ − 1

2

)k

·

⌈
∆ − 1

2

⌉k

− 1

)
≥

(
∆ − 1

2

)k

· 2k
·

(
3
2

)k
5
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By above inequalities, we have j ≥ j′ for ∆ ≥ 5. This implies distT2 (v, r) ≤ 2 · distT1 (v, r). □

Finally, we combine bounds for local host trees to show a 2-approximation for arbitrary tree demands.

Theorem 1. For a demand tree TD, the ALG (TD, ∆) is a 2-BND(TD, ∆) for every ∆ ≥ 5.

roof. First, we show that the solution Tout = ALG (TD, ∆) is feasible, i.e., it respects the degree bound ∆. Each node
∈ V participates in its own LocalTree and the LocalTree of its parent in TD. Its degree in its own LocalTree is bounded
y α∗, since it v is the root. Its degree in its parent’s LocalTree is bounded by β∗, the number of its children (v is an inner
ode) plus at most one edge towards its parent. Thus, the total degree is α∗

+ β∗
+ 1 ≤ ∆.

Now, we prove the approximation ratio. For each subtree TD (v∗) of TD, the algorithm ALG (TD, ∆) computes a local
ost tree Tv∗ . Joining a local host tree Tv∗ into Tout cannot increase the communication cost for Tv∗ . Thus, for the set of all
nner nodes V ∗, we have∑

v∗∈V∗

cost
(
TD
(
v∗
)
, T ′

v∗

)
≤ cost

(
TD, Topt

)
,

nd by Lemma 2, the solution is a 2-approximation for BND (TD, ∆) for ∆ ≥ 5. □

We note that the running time of our algorithm ALG is dominated by sorting and can hence be bounded by O (n log n).

.4. Computational complexity

We next investigate the computational complexity of minimizing the communication cost when the demand-aware
etwork must be a tree. Prior work showed this problem to be NP-hard for general demand graphs [19]. We go beyond and
how the NP-hardness of the BND problem even if both the given demand graphs and the returned host graph required
o be trees. To this end we perform a reduction from the 3-Partition problem [22], namely:

efinition 4 (3-Partition[22]). Given a finite set A of 3m elements, a bound B ∈ Z+, and a size function: s(a) ∈ Z+ for
ach a ∈ A such that each s(a) satisfies K/4 < s(a) < K/2 and such that

∑
a∈A s(a) = mK , can we partition A into m

isjoint sets A1, . . . , Am, such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = K , where |Ai| = 3?

heorem 2. The BND problem is strongly NP-hard even if both demand graph GD and host graph N∆ are restricted to be trees.

roof. We prove the claim by reducing from the 3-Partition problem (Definition 4 [22]). Given an instance I = (A, s,m, K )

f 3-Partition problem, we construct an instance I ′ = (GD, ∆) of the BND problem, where the demand graph GD and the
ost graph N∆ are required to be trees respectively and ∆ denotes the degree-bound on N∆. For the demand graph GD,

we construct a tree TD = (V , ED) rooted at a node r ∈ V s.t., if an edge {u, v} ∈ ED then we have a demand D(u, v) > 0.
Let the given degree-bound ∆ be m. We define two large constants: α and γ , s.t.,

α > 3m · γ + m ·
(
(m − 1)2 − K

)
γ > m ·

(
(m − 1)2 − K

)
> 1 .

The root r has m children: R = {ri : i ∈ {1, . . . ,m}} in TD, where there is a demand D(r, ri) = α for each child ri ∈ R. For
each element ai ∈ A, the root r also has a child bi ∈ B with a demand D(r, bi) = γ in TD, meanwhile each node bi has s (ai)
children Bi =

{
bi,1, . . . , bi,s(ai)

}
, s.t., each bi,j ∈ Bi has a demand D

(
bi, bi,j

)
= α for each j ∈ {1, . . . , s(ai)}. Moreover, each

node ri ∈ R has m−4 children Ri = {ri,1, . . . , ri,m−4} in TD, where each child ri,j ∈ Ri has a demand D
(
ri, ri,j

)
= α, and also

m − 1)2 − K children R′

i =

{
r ′

i,1, . . . , r
′

i,(m−1)2−K

}
. We complete the construction of TD by giving a demand D

(
ri, r ′

i,j

)
= 1

for each node r ′

i,j ∈ R′

i in TD.
Let β denote the communication cost of the given demand tree TD. Moreover, we define another constant β2 as follows:

β2 = 3m · γ + m ·
(
(m − 1)2 − K

)
.

We claim that the instance I has a valid 3-Partition solution A∗

1, . . . , A
∗
m iff the BND instance I ′ can be mapped into a host

tree T ∗
= (V , E∗), s.t., its communication cost satisfies

cost
(
TD, T ∗

)
− β ≤ β2 .

By observing this construction, it is easy to note that if an edge {u, v} ∈ ED has D(u, v) = α in TD, then it must have
u, v} ∈ E∗, otherwise cost (TD, T ∗)−β ≥ α > β2 since distT∗ (u, v) ≥ 2. Since ∆ = m and ∀ri ∈ R : D(r, ri) = α, then these
nodes in R must stay on the second layer of the host tree T ∗, where the root r is the first layer of T ∗. Moreover, for each

ode ri ∈ R, since each child ri,j ∈ Ri of ri has D(ri, ri,j) = α, then {ri, ri,j} ∈ E∗. Since R are already placed on the second
∗ ∗

∗

( )

ayer of T , then each node ri,j ∈ Ri has to stay on the third layer of T as a child of ri ∈ R, which has distT ri,j, r = 2.

6
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ince each node bi ∈ B has D (r, bi) = γ , then we know distT∗ (r, bi) ≤ 2 for each bi ∈ B, where |B| = 3m, otherwise it
ust imply

cost
(
TD, T ∗

)
− β ≥ 3m · γ + γ > β2 .

hus, all nodes of B should be on the third layer of T ∗. Due to ∆ = m, there are at most m (m − 1) nodes on the third
ayer of T ∗. Since

⋃
ri∈R

Ri contains m (m − 4) nodes, then 3m nodes in B can be placed on the third layer T ∗. Now, we
onsider how to partition B into m sets s.t. every three distinct nodes from B become the children of a node ri ∈ R.
If I has a valid 3-Partition solution A∗

1, . . . , A
∗
m, then for each {aj, ak, al} = A∗

i , we will place the corresponding nodes
bj, bk, bl} as the children of the node ri. By the definition of the 3-Partition problem, we have s(aj) + s(ak) + s(al) = K ;
hus, after placing nodes of Bi exactly under their parent bi on the fourth layer of T ∗, where i ∈ {j, k, l}, we can still place
m − 1)2 − K nodes of R′

i under the subtree of ri on the fourth layer of T ∗. Therefore, for each node r ′

i,j in R′

i , we know
istT∗ (r ′

i,j, ri) ≤ 2 · distTD (r
′

i,j, ri), which implies the communication cost on T ∗ is increased by at most (m − 1)2 − K . It
urther implies cost(TD, T ∗) − β ≤ β2.

Conversely, if the instance I does not have a valid 3-Partition solution, then there must exist a set

A∗

i = {aj, ak, al}, s.t.,
∑

i∈{j,k,l}

s (ai) > K .

n the instance I ′, for any node ri ∈ R, if we put the nodes bj, bk, and bl, which correspond to the elements {aj, ak, al} of
, as children of ri in T ∗, then there must be at least one node r ′

i,f ∈ R′

i that has to be placed two hops far from ri in T ∗,
hich directly implies cost (TD, T ∗) − β ≥ β2 + 1. □

. Routing and congestion in trees

We next modify the algorithm for tree demands (Section 3.3) to jointly minimize the route lengths and congestion. We
how a 6-approximation algorithm for congestion (Section 4.2), while maintaining a 2-approximation for route lengths.
We improve over the approach in [21], that designed an ego-tree with the objective of minimizing the congestion.

heir work shows an interesting connection between congestion and scheduling for identical machines, and we refine
his approach by improving guarantees for route lengths.

We propose a construction called Round Robin Trees, a novel gadget for connecting a node to its neighbors. It allows
o design a network for tree demands that is a 2-approximation for route lengths and a 6-approximation for congestion
a (6, 2)-BND). To this end, first we show an algorithm Sorted Round Robin, a 2-approximation for scheduling for identical
achines (Section 4.1) with desired properties for this application. Next, we use this scheduling algorithm internally in

he construction of Round Robin Trees (Section 4.2).

.1. A connection to scheduling

The scheduling on identical machines problem is defined as follows. We are given a set of n jobs J and m identical
achines M1,M2, . . . ,Mm. The goal is to minimize the makespan of the schedule (the total processing time of the most

oaded machine).
For scheduling on identical machines, a simple 4/3-approximation algorithm was proposed by Graham in his classic

ork on scheduling [23]. The algorithm called Longest Processing Time First (LPTF) examines the jobs in non-increasing
uration order, and assigns each job to the currently least loaded machine.
LPTF aims at balancing the load between machines, without considering the number of jobs assigned to machines.

PTF may assign a large number of jobs to a single machine. This property is undesirable, as using such an algorithm in
etwork design results in increased route lengths [21].
To preserve the 2-approximation for route lengths (proved in Section 3), we devise a different constant approximation

lgorithm for scheduling on identical machines, which balances both the load and the number of jobs assigned to
achines.

lgorithm Sorted Round Robin. Sort the set of jobs in non-increasing duration order. Assign job i to machine M(i mod n)+1.

heorem 3. Sorted Round Robin is a 2-approximation for scheduling on identical machines.

roof. Let ALG denote the Sorted Round Robin algorithm. Let j1, j2, . . . , jn be the set of jobs sorted in non-increasing
uration order. For i ∈ {1, 2, . . . ,m}, let ℓi denote the total duration of jobs assigned by ALG to the machine Mi.
First, we upper bound the cost of ALG. ALG assigns the jobs evenly among machines in order of non-increasing duration,

tarting from the machine M1. Thus, ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm, and additionally the makespan of the algorithm is ALG = ℓ1.
In ALG’s machine M1, there exists a job of duration j1 (ALG starts by assigning the longest job to the machine M1).

hus, ALG assigns to M1 a set of jobs (possibly empty) b1, b2, . . . , bp of total load B so that B = ℓ1 − j1.
The crucial observation is that assigning each item bi to M1 entails assigning one item no smaller than bi to each of
2,M3, . . . ,Mm. This holds as n−1 jobs assigned just before bi were assigned to the machines M2,M3, . . . ,Mm, and each

7
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o
f these jobs was no shorter than bi. Let C be the total duration of jobs assigned by ALG to machines M2,M3, . . . ,Mm.
Than, C ≥

∑p
i=1 bi(m − 1) = B(m − 1).

To bound the approximation ratio, we consider two cases.

1. Consider the case B < j1. Then ALG = j1 + B < 2j1. The makespan of OPT is lower-bounded by j1, the duration of
the longest job. Thus, in this case ALG/OPT < 2.

2. Consider the case B ≥ j1. OPT is lower-bounded by 1
m

∑m
i=1 ji (this can be seen as a lower bound that allows splitting

the jobs between machines). This lower bound can be expressed as OPT ≥
1
m (j1 + B + C) > 1

m (B + C). Thus,

ALG
OPT

≤
j1 + B

1
m (B + C)

≤
mj1 + mB

B + (m − 1)B
≤ 2,

where the last inequality follows by case assumption B ≥ j1. □

4.2. Our gadget: Round robin trees

For any integer α, β , an (α, β)-Round Robin Tree for a given 2-level tree rooted at r is constructed as follows. First,
construct an (α, β)-ary tree. To assign nodes, we construct a scheduling instance with α identical machines. For each edge
(r, u) with demand d, we construct a job ju with duration d. Then, we run the Sorted Round Robin scheduling algorithm
from Section 4.1. We observe the job assignment, and for each machine Mi with jobs Ji = {ju1 , ju2 , . . . , juw }, we assign the
nodes {u1, u2, . . . , uw} to the ith subtree of the Round Robin Tree. Precisely, to decide on the placement of nodes within
a subtree, we consider the nodes in non-increasing demand weight order; we place each node at an arbitrary unoccupied
place closest to the root of the subtree.

We emphasize similarities of Round Robin Trees to LocalTree (Section 3.2). For α∗
= ⌊(∆ − 1) /2⌋ and β∗

=

⌈(∆ − 1) /2⌉, an (α∗, β∗)-Round Robin Trees is a variant of LocalTree, where we concretize the arbitrary order of assigning
nodes to levels during the construction of LocalTree. To decide on the ordering, we run the scheduling algorithm from
Section 4.1.

An (α∗, β∗)-Round Robin Trees achieve a 2-approximation for route length, which is a significant improvement in
comparison to previously proposed ego-tree variants [21] with the route length approximation of log2(∆max + 1), where
∆max is the maximum degree of the designed network. The tradeoff is that the congestion approximation ratio for 2-
level trees grows: the previous ego-tree variants were proved to be 4/3-approximation, and a Round Robin Tree is
a 2-approximation. This is due to using different scheduling algorithms: previous ego-tree variants uses LPTF algorithm,
and Round Robin Trees uses Sorted Round Robin (Section 4.1).

4.3. A 6-approximation algorithm

We now present a variant of the algorithm from Section 3, and prove that it guarantees a 6-approximation for
congestion, while maintaining 2-approximation for route lengths for tree-induced demands.

Lemma 3. Let D be a tree. Then, there exists a (6, 2)-BND(D).

Proof. Let α∗
= ⌊(∆ − 1) /2⌋ and β∗

= ⌈(∆ − 1) /2⌉. To achieve the bound on congestion, we use the algorithm from
Section 3, where we use (α∗, β∗)-Round Robin Trees instead of LocalTree.

The (α∗, β∗)-Round Robin Tree is equivalent to LocalTree from Section 3 in terms of route lengths: the analysis in
Lemma 2 holds for (α∗, β∗)-Round Robin Trees.

Following the arguments of [21], for 2-level demand tree the highest congestion is on the links adjacent to the root.
Precisely, the congestion on the link to ith subtree is equal to the load of the machine Mi. The optimal congestion for
general trees is lower-bounded by the solution to a scheduling problem with ∆ identical machines [21]. Our solution uses
α∗ machines, thus its approximation ratio is 2 · ∆/α∗

≤ 6 in comparison to the scheduling instance with ∆ machines.
The produced network is a tree, thus routes are unique. Moreover, the links within each LocalTree are used only for

routing demands between one node and its children, thus the congestion of the network is the maximum congestion
among LocalTree gadgets. Thus, we obtain a 6-approximation for congestion. □

5. Network design for sparse demands

In this section, we present an algorithm that designs a network of maximum degree 3∆avg+8 with near-optimal route
lengths for sparse traffic patterns of average degree ∆avg.2 This improves upon previous results of Avin et al. [20] that
required a maximum degree of 12∆avg to achieve the same bound on route lengths.

The idea behind the algorithm of Avin et al. is the following. First, the algorithm identifies high degree nodes (defined
as at least 2∆avg degree). To reduce their degree, the algorithm replaces edges between high degree nodes with 2-hop

2 Recall that the sparseness implies that ∆ is a constant.
avg
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Fig. 1. In this example, ∆avg = 1, thus the limit of the number of times a node can help is ⌈∆avg/2⌉ = 1. Nodes 1 and 3 help the edges (4, 2) and
2, 1), respectively. For each node i, a Mehlhorn tree is built on the set of nodes that helped an edge connected to i. The initial degree of 3 is 0,
hus there is no Mehlhorn tree from it. The Nodes 1 and 3 help the only edge of 4 and 1, respectively. Finally, 2 is connected to an outgoing and
n incoming edge, thus two Mehlhorn trees including the nodes 1 and 3, will be built from 2.

outes through an intermediate vertex. The intermediate vertex is called a helper node, and for each replaced edge the
lgorithm chooses the helper node arbitrarily among low degree nodes (defined as non-high degree nodes). The algorithm
ssigns each low degree node as a helper for at most 2∆avg edges.
Second, the algorithm replaces the edges incident with each high degree node with just one edge that connects the

igh degree node to a Mehlhorn tree [24] that contains all its neighbors. The Mehlhorn tree is a near-optimal binary
earch tree with respect to any tree topology (not necessarily a search tree), and using it guarantees near-optimal route
engths [24].

The Mehlhorn tree is a binary tree, thus each node contained in a Mehlhorn tree increases its degree by at most 3. A
elping node participates in Mehlhorn trees of high degree node’s neighbors instead of the high degree node itself.

.1. Improved algorithm for sparse demands

We design an algorithm with improved bound for the maximum degree from 12∆avg to 3∆avg + 8. The route lengths
ound remain are equal to the bounds of Avin et al. The result provided in [12] shows that using Mehlhorn trees gives
symptotically optimal route lengths when ∆avg is constant.
We modify the algorithm of Avin et al. in the following way. Instead of splitting nodes into high and low degree nodes,

ur algorithm may choose an arbitrary node as a helper for an edge, including the incident node itself. (Helping its own
dge is a special case in the algorithm.)

heorem 4. Let D be a sparse demand traffic graph with average degree of ∆avg. Then there exists a O(1)-BND(D, ∆max) with
aximum degree ∆max = 3∆avg + 8.

roof. We design the network in two stages. First construct an auxiliary graph G′ that is initially equal to the demand
istribution graph D, and we modify certain edges in G′. Then, we construct the network N based on G′ by organizing
eighbors in a tree (similarly to the LocalTree from Section 3). Finally, we argue that N has the claimed properties.
The algorithm arbitrarily assigns a node to help each edge in the demand graph. While doing so, it ensures that each

ode helps at most β = ⌈∆avg/2⌉ edges. We construct the auxiliary graph G′ based upon the helper nodes assignment.
onsider an edge (i, j) and an arbitrary helping node k. If k is chosen as either i or j, then we do not modify any edges of
′. Otherwise, if k is neither i nor j, we replace the edge (i, j) in G′ with 2-hop path through k:

p(i, j) = 0
p(i, k) = p(i, k) + p(i, j)
p(k, j) = p(k, j) + p(i, j)

e say that the edges (i, k) and (k, j) added to (and from) intermediate nodes are intermediate edges.
Next, we construct the network N based upon the auxiliary graph G′. We start with an empty network N . In G′, a node i

has two types of new neighbors: the set Gi of intermediate nodes that replaced initial edges of i, and the set Hi of nodes
in whose edges i is helping. Among Gi we distinguish the set G−

i (resp. G+

i ) of nodes that are connected with i with an
incoming (resp. outgoing) edges. For each node i, the algorithm constructs two Mehlhorn trees in N , one for G−

i and
another for G+

i , and connects its roots to i. An example of the construction is depicted in Fig. 1.
Note that we skip the set Hi while building the Mehlhorn trees of neighbors of i. However, the connection (possibly

indirect) between i and a node j ∈ Hi appears while building the Mehlhorn tree of j.
We claim that the algorithm has a sufficient number of nodes available as helpers. The total number of available helpers

times the number they can help is n ·β =
n∆avg

2 = m. Thus we have sufficient helpers to help all m edges, and we conclude
that the algorithm is well-defined.
9
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Now we upper-bound the maximum final degree of the nodes. A node i is involved in one Mehlhorn tree for each node
it helped, in total at most 2β trees. Furthermore, the node i is connected with one edge to Mehlhorn trees G+

i and G−

i .
Note that the node i is not involved in the Mehlhorn trees of the intermediate nodes that replaced a node between i and
another node. Participation in each Mehlhorn tree adds at most 3 edges to a node, thus its final degree γi is

γi ≤ 6β + 2 ≤ 6
(

∆avg

2
+ 1

)
+ 2 = 3∆avg + 8.

We conclude that the algorithm produces a network with maximum degree of 3∆avg + 8.
The improved choice of helper nodes does not influence the route lengths. The optimality of route lengths follows by

arguments from [21], and the analysis of near-optimality of Mehlhorn trees follows for our algorithm. □

Finally, we elaborate on the choice of helper nodes. When a node is assigned to help one of its incident edges, we
produce the least number of edges in the network. Thus, the best strategy for resource-efficient network design is to
assign a node itself to help its own edges first. Still, the analysis holds for arbitrary assignments.

5.2. Round Robin trees for sparse demands

Using Round Robin Trees as ego-trees in the algorithm from Section 5.1 provides approximation guarantees for both
route length and congestion.

As we argued in Section 4.2, the congestion in Round Robin Trees is at most twice the optimal. By the construction of
the network for sparse demands, any single node may be present in at most β = ⌈∆avg/2⌉ ego-trees (it helps at most β
edges). The node may carry the load of all roots of ego-trees, and its load may increase at most β times. This concludes
that in the designed network, the congestion is at most 2 · ⌈∆avg/2⌉ ≤ ∆avg the optimum congestion.

In comparison, in the algorithm from [21], the guarantee for congestion in the ego-tree built with scheduling via
ongest Processing Time First is 4/3. While this is a better guarantee for congestion, this comes at a cost of increased
oute length: approximation ratio is 4 · log(12∆avg ), where using Round Robin Trees, the approximation ratio is 2. We
ote that our improved construction for sparse graphs Section 4.2 itself improves the congestion guarantees in comparison
o [21], regardless of the ego-tree used — in our construction, each node may be present in ∆avg/2 ego-trees instead of
∆avg , which improves the congestion guarantees by a factor of 4.

.3. Computational complexity

We next investigate the computational complexity of minimizing congestion. To this end we perform a reduction from
he k-Vertex Cover problem [22], namely:

efinition 5 (k-Vertex Cover [22]). Given an undirected graph G = (V , E) and a parameter k ∈ N+, find a subset V ′
⊆ V

ith |V ′
| = k, s.t. each edge e ∈ E is incident to least one node v ∈ V ′.

heorem 5. The cong-BND (Definition 2) problem is NP-hard.

roof. We prove the claim by a reduction from k-Vertex Cover, which remains NP-complete on 3-regular graphs [22].
.l.o.g., we can assume that k ∈ N+ is an even number.
Given an instance I = (GU = (U, EU ), k) of the k-Vertex Cover problem, where GU is a 3-regular graph with |U | = n

nd |EU | = m, we construct an instance I ′ = (GD = (V , E),D, ∆ = k) of the cong-BND problem as follows.
For each node ui ∈ U , there is a node vi ∈ V in I ′, and for each edge {ui, uj} ∈ EU , there are a node vij and two edges

vi, vij} ∈ E and {vi, vij} ∈ E, where D(vi, vij) = α and D(vij, vj) = α for a large constant α > 0.
Moreover, there is a node v0 ∈ V , which has a demand of D

(
v0, vij

)
= 1 for each edge {ui, uj} ∈ EU .

Additionally, we introduce a gadget Ai, which is a graph of k + 1 nodes, where V (Ai) = VAi = {ai,0, ai,1, . . . , ai,k},
.t. every two distinct nodes ai,l ∈ VAi and ai,j ∈ VAi , where l, j ∈ {1, . . . , k}, have demands: D

(
ai,j, ai,l

)
= (α + 1) /2

nd D
(
ai,l, ai,j

)
= (α + 1) /2. Moreover, for each node ai,l ∈ VAi , where l ∈ {1, . . . , k − 1}, we have demands:

D
(
ai,0, ai,l

)
= (α + 1) /2 and D

(
ai,l, ai,0

)
= (α + 1) /2.

Now, for each node vi ∈ V , we construct (k − 4)/2 gadgets, denoted by Ai = {Ai
1, . . . , A

i
(k−4)/2}, s.t., in each gadget

i
j ∈ Ai, these two nodes aij,0 ∈ V

(
Ai
j

)
and aij,k ∈ V

(
Ai
j

)
have two demands: D

(
aij,0, vi

)
= (α + 1) and D

(
aij,k, vi

)
= (α + 1).

Similarly, for each node vij ∈ V , we construct (k− 2)/2 gadgets Aij = {Aij
1, . . . , A

ij
(k−2)/2}, s.t., in each gadget Aij

l ∈ Aij, these

two nodes aijl,0 ∈ V
(
Aij
l

)
and aijl,k ∈ V

(
Aij
l

)
have two demands: D

(
aijl,0, vij

)
= (α + 1) and D

(
aijl,k, vij

)
= (α + 1).

We claim that I ′ has a host network GH to serve D with maximum load of ≤ α + 1 iff the graph GU has a size k vertex
cover.

First, we note that if two arbitrary nodes u, v ∈ V have demands D(u, v) + D(v, u) ≥ α + 1, then {u, v} ∈ E (GH),
otherwise the maximum load cannot satisfy α + 1. Thus, each gadget in GD must be preserved in GH , s.t., each demand

D(u, v), where u, v ∈ V in the gadget implies an edge {u, v} in GH . Thus, to construct the remaining parts of GH , we can

10
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t

{

hink that each node vi ∈ V (resp., vij ∈ V ) has a degree bound ∆ (vi) = 4 (resp., ∆
(
vij ∈ V

)
= 2), while the node v0 has

a degree bound of ∆ (v0) = k.
If GU has a vertex cover C ⊆ VU of size k, then, for each edge {ui, uj} ∈ EU , we have {vi, vij} ∈ E (GH) and

vi, vij} ∈ E (GH), and for each node ui ∈ C , we have {vi, v0} ∈ E (GH). It is easy to note that the maximum load is
α + 1.

Conversely, we assume that GU cannot have a vertex cover of size ≤ k. Let C ⊆ VU be a set of k arbitrary nodes
in VU . First, in GH , we can always have {vi, vij} ∈ E (GH) and {vi, vij} ∈ E (GH) for each edge {ui, uj} ∈ EU since it has
∆
(
vij
)

= 2 and ∆ (vi) = 4, while GU is a 3-regular graph. For each node ui ∈ C , we can have an edge {vi, v0} ∈ E (GH).
Let {ui∗ , uj∗} ∈ EU be an edge not covered by C , then we know {ui∗ , v0} /∈ E (GH) and {uj∗ , v0} /∈ E (GH). However, to
serve demand D

(
v0, vi∗j∗

)
, there must be a path from v0 to vi∗j∗ in GH , which must pass through at least an edge between

{vii∗ , vi∗} and {vjj∗ , vj}, where {ui, ui∗} ∈ EU and {uj, uj∗} ∈ EU . Since {vii∗ , vi∗} (resp., {vj∗ i∗ , vj}) already has a load of α + 1
before serving D

(
v0, vi∗j∗

)
, then the maximum load in GH must be > α + 1. □

6. Exact degree bounds discussion

In this section, we discuss the applicability of our algorithms for real-world deployments in, e.g., data center settings.
Recall that so far, we proposed network design algorithms for sparse networks, where the node degree depends on the
average node degree of the demand graph. Our sparse network designs are a good fit for data center networks, as they
commonly have uniform constant node degrees for practical reasons: deploying the same hardware across the board
makes management and repair easy, and also saves on purchasing costs. Hence, if the average node degree of the demand
graph is expected to remain stable, our algorithms implicitly also propose the connectivity of each node w.r.t. hardware
deployment.

On the other hand, we might face a situation where (1) the hardware is already deployed, or where (2) the demand
matrix is relatively unstable, shifting between low and high connectivity. In both cases, it could be that (a) the deployed
hardware cannot realize our network designs, or that (b) our algorithms underutilize the network’s potential, by deploying
fewer links than the network could realize. We next briefly discuss how to take advantage of both situations (Sections 6.1
and 6.2) and then perform a small case study for traffic traces from Facebook’s data centers in Section 6.3. Lastly, we
discuss some take-aways of our case study in Section 6.4.

6.1. Heavy traffic: High degree

In case the deployed hardware cannot support the required node degrees from our algorithms, we can no longer
guarantee the specified performance bounds on route length and congestion. However, as data center traffic is often
skewed [14], we can simply pick the largest demands from the demand graph, until we reach the maximum degree
bounds. In this fashion, we retain guarantees for the majority of traffic, but still need to serve the remaining demands.

Here we can take inspiration from hybrid designs [25], which defer some part of the demands to a static topology. For
example, by borrowing three reconfigurable ports at each node, we can build a network structure of logarithmic depth,
e.g., a balanced binary tree or even better, an expander [26,27]. In particular for expanders, one could study heuristics
that borrow a larger number of reconfigurable ports [4]. However, we are interested in network design with provable
performance guarantees and hence leave such investigations to future work.

Even more so, this static network would not need to be reconfigurable, and we propose to hence fall back to well-
understood demand-oblivious data center network designs, such as tried and tested (folded) Clos networks [28,29] or
even recent static expander designs [30–32]. In this fashion, the large majority of demands enjoys the full flexibility of
the reconfigurable topology design, whereas the small remainder is routed on a small static topology.

6.2. Light traffic: Low degree

When the network’s nodes are over-provisioned, we are in a comfortable situation, as we can guarantee all our
algorithms’ performance bounds. Additionally, if the over-provision is significant, we can utilize additional links to
decrease route lengths or decrease congestion. We can scale up to additional degrees by utilizing (α, β)-Round Robin
Trees for larger values of α or β . We note that improvements in route lengths and congestion are independent, and we
can trade additional links for improvements for either of them.

6.3. Case study: Facebook’s data center traffic

We investigate Facebook’s data center traffic data [33–35], using their database and Hadoop clusters at the pod level.
Their data set covers a sample of traffic traces over 24 h. Fig. 2 shows boxplots for 100 samples taken uniformly spaced
over the course of the day, for interval sizes of 1, 10, and 100 s. For each of these samples, we take all the traffic at the
pod level and investigate what level of average degree can cover how much of the total traffic.

As can be seen and as expected, the average degree goes up over longer interval sizes, very slightly from 7 to 8 for the

database cluster, and from 10 to 18 for the hadoop cluster. On the other hand, with longer interval sizes, the amount of
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Fig. 2. Boxplots showing the % of traffic covered by different average degrees for Facebook’s database (left) and hadoop (right) cluster at the pod
level, with 110 and 109 nodes, respectively.

traffic covered by small average degrees increases: from a median of ≈ 65% to ≈ 68% for the database cluster, and even
rom ≈ 59% to ≈ 76% for the hadoop cluster. While the following average degree sizes remain relatively stable in their
raffic coverage for the database cluster, the trend continues for the hadoop cluster: for example, for an average demand
egree of 2, from ≈ 88% to ≈ 98%.
In terms of hardware feasibility, we consider both free-space optics architectures similar to ProjecToR [10] and emerging

ptical circuit switches. First, ProjecToR proposes to use 16 lasers and receivers for 128 nodes in their simulations. For
ur spare network designs with maximum degree ∆max = 3∆avg + 8, we can hence utilize an average demand degree
f 2, due to 3 · 2 + 6 = 14 < 16, covering a median of between ≈ 84% to ≈ 98% of the traffic, but at least about 80%.
12
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econd, e.g., already Alistarh et al. [36] demonstrate the feasibility of efficient optical switches in the order of 1000 ports,
.e., our designs could cover about two thirds of the traffic. Very recent work [5] moreover showcases how to connect
5,600 ports by means of optical switching. As such, our designs scale to over 2300 nodes for an average demand degree
f 1, over 1800 for ∆avg = 2, over 1500 for ∆avg = 3, over 1200 for ∆avg = 4 etc.

6.4. Discussion

The purpose of our evaluation in Section 6.3 was to investigate the applicability of our designs to a common data set
for data center traffic traces, namely by investigating the average (traffic) degree.

The average degree of the traffic influences the maximum degree of the constructed network, which influences the
viability of the proposed solution, i.e., how it can be deployed in practice.

Our case study showed that a majority of all traffic in the Facebook traffic traces can be covered with a relatively small
average degree.

Hence, they fit well for our proposed network designs, as our algorithms can in turn construct graph structures with
good stretch and congestion guarantees, only requiring small constant degree nodes, as prevalent in data center hardware.

In contrast, for traffic with high average degree (e.g., in all-to-all communication patterns), our algorithms would not
provide solutions with strict guarantees, respectively only for very small parts of the traffic.

Hence, we believe it would be of interest and promising to perform further evaluations w.r.t. to the actual deployment
of our algorithms in a data center context, e.g., by comparison to other network design methods and to moreover
investigate how our methods can be best adapted to a dynamic context, where network reconfiguration comes at a cost
and upcoming traffic might not able to be predicted perfectly.

7. Related work

Reconfigurable datacenter networks have received much attention recently [5–10,12], and we refer the reader to recent
surveys [37,38] for a detailed overview. The focus of our paper is on the underlying network design problem. While there
exist results on non-polynomial time exact algorithms and heuristics, e.g., [39,40], we are interested in polynomial-time
algorithms which come with provable (approximation) guarantees.

The optimization problem considered in this paper is related to classic graph-theoretical problems such as the
Minimum Cost Communication Spanning Tree problem. On the one hand, our problem is a subproblem of these problems
as we restrict the host topology to have a bounded degree ∆; on the other hand our problem is more general in
that the designed graph does not have to be a tree. The Minimum Communication Spanning Tree admits an O(log2 n)-
pproximation, where n is the number of nodes in the network [41]. For unit demands among all pairs of vertices, the
roblem is called the Minimum Routing Cost Spanning tree, and it admits a PTAS [42].
Our problem also features interesting connections to arrangement and virtual network embedding problems. If we

estrict the maximum degree of the designed network to 2, the studied problem is a subproblem of Minimum Circular
rrangement (a variant of Minimum Linear Arrangement). The problem is solvable in polynomial time [43], with recent
orrections to the technical details of the algorithm [44]. More generally, a natural approach to designing demand-aware
etworks of bounded degree ∆ could be to proceed in two stages: first, choose any ‘‘good’’ graph of degree ∆, e.g., a regular
raph of small diameter; and then, simply map the nodes of the demand matrix to this graph. The latter problem is known
s the Virtual Network Embedding Problem (VNEP), which is known to be NP-hard [45] but for which there also exist
pproximation algorithms [46]. The problem is related to VLSI layout problems [47,48].
Prior algorithmic work on demand-aware network designs often focuses on scenarios where there is only one optical

ink per node [25,49,50], augmenting a demand-oblivious network by means of a disconnected matching. In the context
f b>1 optical links per node, prior work explores a solution generating b-matchings [51,52] as a means of topology
ugmentation. While Chen et al. [9] propose to connect the b-matching designs via edge-exchanges, their algorithms
ave no route length or congestion guarantees. However in a geometric context (e.g., in sensor networks), demand-aware
panner constructions can be designed which obtain route length guarantees [53].
The work closest to ours is by Avin et al. [12,20] who investigate demand-aware network designs of bounded degree,

roviding several interesting approximation algorithms, in particular a constant-approximation for the weighted route
ength objective for sparse demands. The paper already had several followups, e.g., a robust demand-aware network has
een proposed in [54], and a version which also minimizes congestion in [21]. In this paper, we improve upon these
esults by presenting network designs with significantly lower degree requirements, hence reducing infrastructure costs
nd improving scalability; in fact the results in [21] do not apply to demand graphs with average degree larger than 1/12
f the maximum degree available in the data center.

. Conclusions

This paper revisited the design of demand-aware networks minimizing route lengths and congestion based on the
raffic pattern. In particular, we presented improved network topologies of significantly lower degrees, making our
pproach more practical: our designs reduce required infrastructure costs and improve scalability.
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We regard our work as a first step and believe that it opens several interesting avenues for future research. In
particular, some of our bounds are still not tight and it would be interesting to further explore lower bounds on the
achievable approximation ratio for different given degrees. Furthermore, it would be interesting to explore the power of
randomized algorithms in this context, as well to investigate additional objective functions, e.g., related to throughput
or flow completion times. Moreover, in future work we would like to further investigate our demand-aware network
designs in hybrid architectures, combining demand-oblivious and reconfigurable topologies (similarly to ReNet [55]), and
to explore designs which come with guarantees over time (like SplayNets [56] or ProjecToR [57]).
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