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ABSTRACT
The performance of more and more cloud-based applications
critically depends on the performance of the interconnect-
ing datacenter network. Emerging reconfigurable datacen-
ter networks have the potential to provide an unprecedented
throughput by dynamically reconfiguring their topology in a
demand-aware manner. This paper studies the algorithmic
problem of how to design low-degree and hence scalable dat-
acenter networks optimized toward the current traffic they
serve. Our main contribution is a novel network design
which provides asymptotically minimal route lengths and
congestion. In comparison to prior work, we reduce the de-
gree requirements by a factor of four for sparse demand ma-
trices. We further show the problem to be already NP-hard
for tree-shaped demands, but permits a 2-approximation on
the route lengths and a 6-approximation for congestion. We
further report on a small empirical study on Facebook traces.
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1. INTRODUCTION
As the performance of many data-centric and cloud-based

applications increasingly depends on the underlying net-
works, datacenter networks have become a critical infras-
tructure of our digital society. Indeed, current application
trends introduce stringent performance requirements and a
demand for datacenter networks providing ultra-low latency
and high bandwidth. For example, emerging distributed ma-
chine learning applications which use highspeed computa-
tional devices, periodically require large data transfers dur-
ing which the network can become the bottleneck.

Another example is today’s trend of resource disaggre-
gation in datacenters, which introduces a need for very fast
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access to remote resources (GPU, memory, disk) [23]. Traces
of jobs from a Facebook cluster reveal that network transfers
on average account for a third of the execution time [26].

Demand-aware networks are particularly motivated by
empirical studies showing that communication patterns fea-
ture much structure. Indeed, traffic matrices (a.k.a. de-
mand matrices) are often sparse and skewed in datacen-
ters [5, 17, 21]. This introduces optimization opportuni-
ties, which stands in stark contrast to traditional, demand-
oblivious datacenter network designs [18,22,29].

Emerging reconfigurable datacenter topologies, enabled
by novel optical technologies, introduce new opportunities
to significantly improve datacenter performance [16, 19]. In
particular, by dynamically establishing topological short-
cuts, reconfigurable datacenter networks allow to overcome
the cost (or “tax” [24]) of multihop routing [9,25], or to im-
prove the flow completion time of elephant flows by directly
connecting frequently communicating racks, in a demand-
aware manner [4, 8, 9, 11,12,17,20,30].

This paper studies a fundamental algorithmic problem
underlying such reconfigurable networks: how to design a
demand-aware topology which, given a demand matrix, pro-
vides short topological routes between frequently communi-
cating nodes (e.g., top-of-rack switches [6]), also minimiz-
ing congestion. For scalability reasons and as reconfigurable
hardware consumes space and power, the interconnecting
network should be of low degree, ideally a small constant.

The prior research to this problem is by Avin et al.
[2, 4] who investigate demand-aware network designs of
bounded degree, providing several interesting approxima-
tion algorithms, in particular a constant-approximation for
the weighted route length objective for sparse demands. The
paper already had several followups, e.g., a robust demand-
aware network has been proposed in [7], and a version which
also minimizes congestion in [3].

2. OUR CONTRIBUTION
Our contributions revolve around the design of demand-

aware networks (BNDs) under a degree restriction, which
asymptotically minimize communication cost and conges-
tion, especially when the demand matrix induces a sparse
graph or tree. In particular, we present an algorithm to de-



Figure 1: Boxplots showing % of traffic covered by differ-
ent avg. degrees for Facebook’s database (left) and hadoop
(right) cluster at the pod level, with 110 and 109 nodes.

sign a network of maximum degree 3∆avg + 8 with asymp-
totically optimal route lengths and congestion, when the de-
mand matrix is induced by a sparse graph of an average de-
gree ∆avg. This reduces the required maximum degree of the
network by a factor of 4× compared to previous work [2,3].

We also show that the demand-aware network design
problem is NP-hard, already when ignoring congestion and
if both the demand itself and the network topology are re-
stricted to be trees; prior work only established the hardness
for general demands [1], respectively in hybrid [13,14,15] or
geometric [10] settings. We moreover prove that optimizing
for congestion, independent of route lengths, is NP-hard as
well. On the positive side, we show that for tree-demands,
one can jointly 2-approximate the optimal route lengths and
6-approximate the minimum congestion. Our results sig-
nificantly improve the approximation ratio of route length
from log2(∆max + 1) to 2, where ∆max is the maximum de-
gree of the designed network [3]. Comparing to similar ap-
proaches [2, 3, 4], which proposed ego-trees to reduce the
degree while preserving distances, we present a tree called
Round Robin Tree that is particularly well suited to jointly
minimize weighted route length and congestion, and which
we can interconnect with other trees in a low-degree manner.

Finally, we provide empirical insights into the practical-
ity of our approach, considering traffic traces from Face-
book [28]. As shown in, e.g., Fig. 1, nearly all traffic can be
covered by sparse demand graphs of low average degree.

The full version of this paper has been published in Per-
formance Evaluation (PEVA) [27].
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