
Node Classification and Geographical Analysis
of the Lightning Cryptocurrency Network
Philipp Zabka

Faculty of Computer Science, University of Vienna, Austria
Klaus-T. Foerster

Faculty of Computer Science, University of Vienna, Austria

Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria

Christian Decker
Blockstream, Zurich, Switzerland

ABSTRACT
Off-chain networks provide an attractive solution to the scalability
challenges faced by cryptocurrencies such as Bitcoin. While first
interesting networks are emerging, we currently have relatively
limited insights into the structure and distribution of these net-
works. Such knowledge, however is useful, when reasoning about
possible performance improvements or the security of the network.
For example, information about the different node types and imple-
mentations in the network can help when planning the distribution
of critical software updates.

This paper reports on a large measurement study of Lightning, a
leading off-chain network, considering recorded network messages
over a period of more than two years. In particular, we present an
approach and classification of the node types (LND, C-Lightning
and Eclair) in the network, and find that we can determine the
implementation of 99.9% of nodes in our data set. We also report on
geographical aspects of the Lightning network, showing that prox-
imity is less relevant, and that the Lightning network is particularly
predominant in metropolitan areas.

As a contribution to the research community, we will release our
experimental data together with this paper.

CCS CONCEPTS
• Networks → Peer-to-peer networks; • Social and profes-
sional topics→ Geographic characteristics.

KEYWORDS
Lightning Network, Classification, Geographical Analysis
ACM Reference Format:
Philipp Zabka, Klaus-T. Foerster, Stefan Schmid, and Christian Decker. 2021.
Node Classification and Geographical Analysis of the Lightning Cryptocur-
rency Network. In International Conference on Distributed Computing and
Networking 2021 (ICDCN ’21), January 5–8, 2021, Nara, Japan. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3427796.3427837

Research supported by the Vienna Science and Technology Fund (WWTF) project
ICT19-045.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’21, January 5–8, 2021, Nara, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8933-4/21/01. . . $15.00
https://doi.org/10.1145/3427796.3427837

1 INTRODUCTION
Blockchain technology enables mistrusting entities to cooperate in
the absence of a trusted third party. The technology also forms the
basis of cryptocurrencies such as Bitcoin or Ethereum. A main chal-
lenge faced by blockchains however regards their scalability: the
usual literature example is that while custodian payment systems
easily support thousands of transactions per second, blockchains
currently merely support tens of transactions per second.

By allowing users to make payments directly, without global
consensus protocols and withing having to commit transactions on
the blockchain, emerging off-chain networks (also known as pay-
ment channel networks or second-layer blockchain networks) [12]
can greatly improve the scalability of cryptocurrency payment sys-
tems. Indeed, over the last years, off-chain networks such as Bitcoin
Lightning [15], Ethereum Raiden [21], and XRP Ripple [11], to just
name a few, have received great interest.

As off-chain networks become more popular, the requirements
on their performance and dependability increase as well. However,
how to efficiently meet these requirements is still subject to ongoing
research, and more critically, researchers often lack empirical in-
sights into the currently deployed networks: the publicly available
data on these networks is severely limited.

This paper reports on a major measurement study of Lightning, a
most popular cryptocurrency network today. In a nutshell, in Light-
ning, nodes typically represent users (running different Lightning
clients, e.g., LND, C-Lightning or Eclair) and edges represent funds
that can be transacted between the endpoints of the edge. In order
to improve scalability, Lightning supports multi-hop routing of
transactions, and in incentivizes the intermediaries to contribute to
the transaction routing through fee-based mechanism. To this end,
Lightning relies on source routing and in order to support nodes
in finding “cheap” routes, i.e., routes with minimal fees, Lightning
provides route discovery and gossiping mechanisms.

We recorded network messages (e.g., generated by the gossiping
mechanism) in Lightning over a period of almost two years. Based
on this data, we contribute insights to twomain areas, one related to
the security of these networks, and one related to the performance:
(1) Node classification: It can be very useful to know the frequency

and distribution of the different clients in an off-chain network.
Such knowledge can also be relevant for security considerations,
e.g., when planning the deployment of security patches.

(2) Geographic distribution: It is generally interesting to know the
topological structure of geographically distributed off-chain net-
works. In addition to general considerations (e.g., related to
economic or sociological aspects), the geographic distribution
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may also be relevant for the performance and dependability
of these networks: network topologies with local biases may
improve performance, but may be less robust.

1.1 Our Contributions
This paper presents an empirical evaluation of a large data set that
we collected about the communication (and gossiping) occurring in
Lightning. In particular, we present an approach and classification of
the node types in the Lightning network and also provide empirical
insights into the geographical distribution of the nodes.We find that
many users stick with the default settings of nodes and channels
of the respective implementation. Our method allows to infer the
implementation of 99.9% of nodes in our data set we can hence
observe that one implementation is particularly predominant in
the network. Furthermore we try to elaborate on reasons why
this is the case. We also find that payment channels only come
with moderate geographic bias and that the Lightning network is
particularly predominant inmetropolitan areas.We can also see that
the implementations are similarly distributed across most countries.
Moreover we can observe that there might be a correlation between
channel connections and countries which share a common trait.
Lastly, as a contribution to the community and in order to facilitate
reproducibility and future research in the area, we will make our
dataset public with the published version of this article.

1.2 Organization
The remainder of this paper is organized as follows. Section 2
introduces some preliminaries and Section 3 describes the node
classification, followed by the geographical analysis in Section 4.
We review related work in Section 5 and conclude in Section 6.

2 PRELIMINARIES
We now introduce some of the basics of the Lightning Network and
specific preliminaries for the remainder of this paper.
Clients. The Lightning Network can be accessed via three main
implementations or clients: C-Lightning [2], written in C++, LND
[6], written in Go, and Eclair [3], written in Scala. These clients
have various features, but their fundamental purpose is to create
nodes and channels with other participants and act as a ledger.
The Lightning Network. The Lightning Network consists of a
collection of nodes and channels. Nodes can create bidirectional
connections, called channels, with other nodes which can be then
used to send payments almost instantly back and forth between
the two participants. The network operates on the blockchain, but
unlike Bitcoin, not each payment has to be published onto the
blockchain itself, but only the first transaction, known as funding
transaction, to fund a channel, and the last transaction, known
as closing transaction, to close a channel and end the connection.
Between these two transactions users can send an unlimited amount
of transactions to each other, as long as they have enough liquidity.
Although only a pair of nodes can create a channel, payments can
be routed via multiple hops through the network to a receiver node,
which is not necessarily directly connected with the sending node.
Nodes helping in forwarding payments trough their channels will
usually collect a small fee for this service.

Gossip Messages. To utilize a path of more than one channel as
payment route, nodes have to be aware of the network topology, in
order to know which channels can be used to route the payment to
the final receiver. For this purpose gossip messages are propagated
from one node to another, to either announce a newly created node,
channel or an update of both. In the following section we introduce
the three most important gossip messages for our work and some
of their contained information, which are specified in the Basics of
the Lightning Technology (BOLT) [15]:

• node_announcement message: This message is prop-
agated either when a node has been created and is now
ready or it updates its information. The message contains
important parameters which enable other participants in
the network to start channels with the specific node. For
example, when a node wants to connect to another node,
the node_id is needed for identification. Other for us rel-
evant parameters contained in this message are alias, a
nickname for a node encoded in UTF-8, color encoded
in hexadecimal and the addresses parameter, which can
contain IPv4 or IPv6 addresses as well as Onion v2 or Onion
v3 service addresses.

• channel_announcement message: Always when a
new channel between two nodes is created a channel_

-announcement message is sent. This gossip message
contains information regarding the newly created channel
and is propagated exactly once in the network. Similar to the
node_id each channel has an unique short_channel_

-id for identification. Furthermore, the message contains
amongst other parameters the node_id of the two nodes
nodes connected by the channel.

• channel_update message: A channel is not practi-
cally usable until at least one side has announced its fees and
expiry for the HTLC of the payment. A Hashed Time Locked
Contract (HTLC) is a security measure to ensure that nodes
along the routed path do not steal the payment. This gossip
message is propagated at least once from each of the partici-
pating nodes, since the initial routing fee may differ depend-
ing on the direction the payment comes from i.e. from node
A to node B or from B to A. Also every time a side decides to
change its channel parameters a channel_update mes-
sage needs to be propagated again through the network.
Further relevant parameters are short_chan-nel_id,
the channel_flag indicating the direction the channel
update is coming from and then four parameters describ-
ing important channel settings, namely cltv _expiry
_delta, htlc_minimum_msat, fee_base
and fee_proportional_millionths.

2.1 Data Set
Our unique data set is comprised of the three gossip messages in-
troduced in the previous section, which were propagated through
the network from March 2018 to January 2020. In this time span
we recorded more than 400,000 node_announcement mes-
sages, more than 1,000,000 channel_announcement mes-
sages, and over 6.4 million channel_update messages. A
first analysis shows that the real growth of the Lightning Network
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started in 2018, which is also the year where LND and C-Lightning
released their first major update for their clients.

3 NODE CLASSIFICATION
This section reports our main results from the node classification.
The Lightning Network is currently comprised of three implemen-
tations: LND, C-Lightning and Eclair, each written in a different
programming language and each using slightly different values for
its parameters. Some of these values are public and can be obtained
through message inspection of the gossip messages, others in turn
are kept private for network security reasons.

One of these private parameters is max_concurrent_htlcs,
which denotes the maximum capacity of HTLCS for a channel
and which can play an important role in attacks on the networks
topology: an attacker may want to determine how many HTLCS
will be necessary to overload a channel, and hencemake the channel
unusable until the HTLCS resolve. These attacks can be targeted
on the whole network or just affect a single node. For this reason
precisely inferring a node’s implementation to deduce the values
for these parameters is key. Furthermore we want to analyze how
the implementations are distributed in the network.

3.1 Analyzing Default Parameters
We now take a closer look at the parameters of interest. Table 1
shows the default values for the three available implementations of
the Lightning Network:

Default Parameters
Parameter name LND C-Lightning Eclair

alias - Predefined -

color #3399ff Derived from
node_id #49daaa

cltv_expiry_delta 40 (144) 14 144
htlc_minimum_msat 1000 1000 1
fee_proportional-

_millionths 1 10 100

fee_base_msat 1000 1000 1000
Table 1: Default parameters table

Alias. The alias parameter for LND and Eclair does not have a
default value and has to be manually configured when a new node
is created. C-Lightning uses NSA-Style names, which are created
from an adjective and a noun, both originating from predefined lists
in the C-Lightning source code [1]. The BOLT [14] documentation
gives us two example names: ’IRATEMONK’ and ’WISTFULTOLL’.
Color. Both LND and Eclair have a predefined color parame-
ter, which is automatically set up with each node creation. For
C-Lightning the node’s color is automatically derived from the
three first bytes of its node_id. Hence, older LND nodes will
probably still use 144.

Next, we analyze the distribution of the introduced parameters
in the network. Other works such as [29], [28], [20] and [18] have
already performed some analysis via snapshots taken with the help
of LND’s describe graph command. However, as our data set
covers gossip messages of almost two years, going vastly beyond

single snapshots, we are able to obtain fairly precise insights on
the parameter distributions.
ctlv_expiry_delta.We now examine the parameters in the chan-
nel_update message and start with the examination of the
ctlv_expiry_delta parameter, which denotes the minimum
difference in HTLC timeouts a node that is forwarding a payment
will accept. Figure 1 shows us that 144, the old LND and current
Eclair value, is represented in the data by 53.8%. The new value
for LND, 40, is represented by a share of 21.3%. The value of 14
corresponding to the C-Lightning implementation takes a share
of 7.3% in the overall data. Since LND and Eclair used to have the
same value, we can only estimate the share of Eclair’s default value
to be under 32.5%. Overall 82.4% of the cltv_expiry_delta
parameters use a default value.

We have also taken a closer look on how the distribution of 144
and 40 has developed over time, as LND changed itscltv_expiry
_delta parameter from 144 to 40 in March 2019 [5], to get an first
impression of how long it roughly takes for an update to be adapted
by the majority of the nodes. Figure 2 shows us that roughly two
months after the change only 0.44% of the cltv_expiry_delta
parameters in the network used the value of 40 until May 2019.
However we observe that after the initial stagnation, usage of this
value started to continuously increase, whereas the value of 144
started to continuously decrease. The new value of 40 surpassed
the old value of 144 approximately mid December, from which we

Figure 1: cltv_expiry_delta distribution

Figure 2: Parameter distribution timeline
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deduce that it took around 9 months for the update to reach the
majority of LND nodes in the network.
htlc_minimum_msat. Figure 3 depicts the value distribution for
the htlc_minimum_msat parameter, which denotes the mini-
mum value in millisatoshi for a payment to be transferred of the
channel. LND’s and C-Lightning’s default value of 1000msat has
a share of 67.4% and Eclair’s value 1 has a share 15.1% in the data
set. Interestingly, in 10.8% of the updates the value 0 has been used,
indicating no minimum value for payment transportation.
fee_proportional_millionths. Next, we studied the distribution
of the fee_proportional _millionths parameter, which
is the amount nodes will charge for each transferred satoshi over
their channel. The value 1 for LND can be found in 63.7% of the
data, the value 10 used by C-Lightning is represented in 6.9% of the
updates. Lastly, Eclair’s value of 100 can be found in 2.4% of the data.

Since this is the first parameter, which is different in all of the
three implementations, Figure 4 gives us a first insight in a possible
distribution of the implementations in the network.
fee_base_msat.Thefee_base_msat parameter depicted in Fig-
ure 5, denotes the constant fee a node will charge for a transfer. As
the parameter is the same in all three implementations, it does not
provide much insight in the distribution of the individual imple-
mentations, but interestingly it has the smallest overall share in
the network, when summing up all the default values for the other
parameters.

cltv_expiry_delta and htlc_minimum_msat have a
share of over 82% (82.4% and 82.5%) and fee_proportional

Figure 3: htlc_minimum_msat distribution

Figure 4: fee_proportional_millionths distribution

_millionths has a share of 73%. Further we can observe that
there is a discrepancy between the individual parameters of some
of the implementations. For example, for Eclair’s default parameter:
15.1% of the channel_update messages use 1 as an value for
htlc_minimum_msat, but only 2.4% of the nodes use 100 the
default parameter for fee_proportional_millionths.

C-Lightning on the other hand shows more consistency, cltv
_expiry_delta andfee_proportional_millionths are
with 7.3% respectively with 6.9% more similarly distributed.

3.2 Data Preparation
In a time span of over two years a node can update itself and the
values of its channels multiple times. Some of them even flood
the network with over 1000 channel_update messages a
day. Our data set is comprised of over 6.4 million of these chan-
nel_update messages and over 40000node_announcement
messages. In order to obtain the most accurate results from the
classification of the nodes we have to process our data accordingly.
For this purpose we select two methods to process our data, a
pre-processing and a post-processing one. We next introduce both
methods:

• Most Frequent Values (Pre-processing): From all the val-
ues a node has used in the recorded time, we analyzed which
values were used themost in eachmessage to obtain themost
representative data for our classification. Figure 6 shows the
classified nodes after using the pre-processing method. The
parameters were normalized for plotting purposes only.

• Most Frequent Classification (Post-processing): Other
than in the previous method, where we first sum up all mes-
sages from a single node and then choose themost frequently
used values, here we treat every message as a virtual node
and classify every single message on its own. After all vir-
tual nodes have been classified, we choose the classification
with the highest confidence for a node. Figure 7 depicts the
classification results of every virtual node from which the
post-processing then determines the implementation with
the highest confidence for each real node.

Both methods exclude each other, which means that only one can
be applied at a time. The first method produces one single input and
consequently one single labeled output for a node, whereas the in
second method produces a list of inputs and the classification out-
puts the same amount of labeled data, from which the classification
with the highest probability is taken as the final result.

3.3 Implementation
Our analysis shows that because of how the data is structured, it is
of little avail to classify the nodes with either a machine learning
algorithm or a clustering approach.

Our classification algorithm can be seen as an extension from
[18]. The algorithm takes six parameters as input, namely the
node_id, alias, color, cltv_expiry_delta, htlc

-_minimum_msat and fee_proportional_millionths.
We chose not to include the fee_base_msat parameter, as it is
the same for all three implementations; however one could use it
as an additional check, as it was done in [20]. The node_id is,
as mentioned earlier, needed for the derivation of the C-Lightning
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Figure 5: fee_base_msat distribution

Figure 6: Labeled nodes after pre-processing: -1: unclassified,
0: LND, 1: C-Lightning, 2: Eclair. Darker points indicate a
higher node density

color parameter. Each parameter is inspected individually to infer
its implementation based on the default values. The result of each
classification operation of each parameter is a vector with a "1" en-
try at a certain index. A vector consists of three indices, each index
representing a certain implementation. The result of this process
is a 5x3 matrix, where each result vector represents a matrix row.
We then sum up each column creating a 1x3 matrix, where again
each index represents a implementation. Afterwards, the matrix
is normalized to get the confidence of each implementation and
finally determine the final implementation.

Figure 7: Labeled virtual nodes: -1: unclassified, 0: LND,
1: C-Lightning, 2: Eclair. Darker points indicate a higher
node density

3.4 Results and Evaluation
Figures 8 and 9 show that we have been able to classify almost all
nodes in our data set, as 99.9% of the nodes have been classified
successfully. Both data processingmethods have classified the nodes
very similarly. We can see that our analysis resulted in labeling
approximately about 87% of the nodes as LND nodes, about 11% of
the nodes as C-Lightning and about 2% of the remaining nodes as
Eclair, making it the least used implementation in the network.

Figure 8: Labeling results: Pre-processing
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Figure 9: Labeling results: Post-processing

As far as the accuracy of the classification is concerned, the next
graphs give usmore insights. For all nodes labeled as a certain imple-
mentation, we considered the parameters based on which the clas-
sification algorithm made its decision. Figure 10 shows the parame-
ter distribution for cltv_expiry_delta, htlc_min_msat
and fee_proportional_millionths for all nodes inferred
as LND. The left plot from Figure 10 shows us that in fact the two
most used values for the parameter cltv_expiry_delta 144
and 40, yielding 97.13% are default values for LND. Interestingly,
1.31% of the nodes labeled as LND use 30 as a parameter, this value
is often used by a certain node provider known as “LNBIG.com”. For
the next parameter htlc_minimum_msat, 91.58% of the nodes
use the value 1000, also a default value. Some individual nodes also
use a value of 0 or 1. For the last parameter fee_proportional

-_millionths, also very few nodes use a value other than the
default value of 1. 500 is used by “LNBIG.com” and 100 is again
used by some individual nodes. We have evaluated labeling preci-
sion of C-Lightning and Eclair as well, showing a similarly high
distribution of the default values. We can deduce from these results
that the nodes have been classified precisely.

3.5 Discussion
We have demonstrated, that with enough data, it is possible to pre-
cisely infer the implementations of almost all nodes. The problem
with node classification in the Lightning Network is that a user
in fact can easily change these parameters we based our classifi-
cation upon. Once all of these parameters have other values than
the default ones, a classification with these parameters is no longer
possible and new methods have to be explored. However, in Section
3.1 we have shown that the usage of default values for parameters
is very common, from which we can deduce that most users stick
with the default settings. Also, our data set covers messages of
almost two years. In this time span we have gathered numerous
data points for the individual nodes in the network, which increases
the chance to discover default values for nodes, even if their users
changed these values at some point in the past.

Another possibility of performing a classification could be by
incorporating somemeasurements concerning node performance in
the network, since all implementations use a different programming
language which could affect its efficiency. This method can be
especially interesting when the implementation of a certain node is
of interest and previous channel or node setting data is not available

or the user has changed these parameters. However, further testing,
data gathering and research will be necessary.

Lastly we want to address the implementation distribution. From
our results and also the results of [18] we can observe that LND is
by far the most popular client for the Lightning Network. Though
we can’t precisely substantiate, why this is the case, we can make
some assumptions based on facts. Firstly, C-Lightning has already
released first versions of its clients by 2016. These releases where
only provided as source code and had to be compiled manually
by the user using Linux or possibly other UNIX based operating
systems. LND released its first major version in 2017. However, in
contrast to C-Lightning or Eclair, LND offered already precompiled
versions of the client for the various CPU architectures and oper-
ating systems, including Windows. Especially, making the client
available for Windows could have made a huge impact on LND’s
popularity.

4 GEOGRAPHICAL ANALYSIS OF THE
LIGHTNING NETWORK

In this section we present our findings with regard to the geograph-
ical conditions of the Lightning Network. Similar studies have been
carried out in the past, mainly concerning cryptocurrency networks
for example Bitcoin. In this paper, we go beyond previous work
as we perform this kind of analysis on a novel payment channel
network, in particular on the Lightning Network. Our analysis in-
cludes 81 countries, in which the Lightning Network is present.
Our focus lies especially on North America, Europe and Asia, since
these are the continents with 94% of the overall node population.

4.1 Implementation Distribution in Countries
After obtaining the labels for each node, we now look at the imple-
mentation distribution in the individual countries. In the previous
section, we have seen how the labels are distributed in general. We
observed that LND is with about 87% by far the most frequently
used implementation, followed by C-Lightning and Eclair, with 11%,
respectively 2%.

By considering the IP-address for each classified node, if avail-
able, we can approximately determine its location, using an API [4].
We analyze the implementation distribution in each country, to see
if the results on a country level mirror our previous results.

Figures 11 shows the distribution in 40 individual countries.
The results show that the implementations within a country are
similarly distributed as in our general labeling results. For all the
countries, that we could determine through a node’s IP-address,
we observed that LND is predominant in 78 out of all 81 countries.
Only Turkey, Iran, and the Isle of Man shows a higher C-Lightning
usage. With respect to Eclair, there is no country where it has a
higher share than LND. However, in seven countries C-Lightning
has an equal distribution, and in Poland, Belgium, Lichtenstein and
the Philippines, Eclair holds a higher distribution. Further analysis
(Figure 11) shows that countries, where a single implementation is
represented by 100% of the nodes or where one of the other two
implementations holds a higher share than LND, only have a few
or just one single node. For example, in India there is a total of four
nodes, from which all use the LND implementation.
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Figure 10: LND: cltv_expiry_delta (left), htlc_minimum_msat (middle) and fee_proportional_millionths (right)

Figure 11: Client distribution in individual countries

4.2 Channel Connection Behavior Analysis
We next analyze if there is a geographical preference in the con-
nection behavior of nodes. For example, do nodes connect to more
geographically closer nodes for network latency benefits, or does

the location not matter at all and are there other reasons for es-
tablishing a connection Seres et al. [26] state, that nodes, because
of the way they are implemented, tend to create channels with al-
ready large hubs rather than smaller nodes; this makes the network
prone to topological attacks, since the removal of only one hub can
already heavily impact the network’s connectivity.

Our empirical analysis shows that nodes indeed tend to connect
to large hubs, even if there is a large distance between them. Almost
every node from all 81 considered countries connects to the same
six countries: the United States, Germany, Canada, the Netherlands,
United Kingdom, France, and maybe interestingly, Switzerland.
In almost all cases the USA is the leading country to connect to,
followed by Germany. A significant portion of the nodes in the
Lightning Network are located in these countries, but also the most
connected nodes, with the United States having more than 280 000
channels, Germany having more than 3000, and Canada and the
Netherlands having more than 3000 and 2000 channels. In Figure
12, depicting the channel connections in India and Japan, we can
observe this pattern as well. Interestingly, a lot of countries, i.e.,
Japan, Poland, or China, also show a high node connectivity within
the country, depicted in Figures 12 and 13. This pattern could be due
to country specific node providers, whose nodes are interconnected
within a country.

4.3 Analyzing Node Location
A large share of the nodes in the Lightning Network are located in
North America with 44.8% and Europe with 43.1%. The remaining
nodes are located in Asia with 6.2%, Oceania with 2.2% and lastly
South America and Africa with each having 0.8% and 0.6% of the
nodes in the Lightning Network. For 2.3% of the nodes we couldn’t
determine a location because of missing IP-addresses. In Figure 14
we can observe the node location distribution on three continents:
Europe, North America and Asia. By plotting the node latitude and
longitude coordinates, we can clearly identify Europe and North
America, due to the high node density in these continents. Looking
at Figure 15 (left) we can see that most of the nodes are located
in Central Europe. Figure 15 (middle) shows a very high node
distribution on both the West Coast and the East Coast, as well as
occasionally inside the country. In Asia, depicted in 15 (right), most
of the nodes are located on the coasts of South Korea, China and
Japan.
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Figure 12: Channel Connections: India (top), Japan (bottom)

From Figure 14 we can also observe that locations, where the
node density is higher, tend to have a better infrastructure, e.g.,
Central Europe - Eastern Europe, North America West/East Coast -
North America Inland.

To further evaluate on this aspect, we studied the node location
distribution inside of a country, e.g., in Germany and Japan. In
Figure 16 we can see multiple node clusters in Germany, each
centered around one of Germany’s larger cities, with the largest
being in the metropolitan area of Berlin (52.52, 13.40) and second
and third largest around Munich (48.13, 11.57) and Frankfurt (50.11,
8.68). For Japan depicted in Figure 17, the largest node hub is located
in the metropolitan area of Tokyo (35.65, 139.74), followed by the
metropolitan areas of Osaka (34.66, 135.49), and Kobe (34.68, 135.19).

4.4 Discussion
Our findings exhibit how the Lightning Network and its implemen-
tations are distributed in the world. We could observe that LND
is popular in almost all countries and also showed that within a
country nodes form clusters around cities and expand into their
metropolitan areas. Also infrastructure plays a significant role in
the distribution of nodes within a continent or country.

Our analysis of channel connections between countries, shows
a pattern of nodes always connecting to the same countries, and

Figure 13: Channel Conn.: Poland (top), China (bottom)

we have found other possibly interesting patterns as well. By nor-
malizing the number of channels each country shares with other
countries by the number of nodes in these countries, we could ob-
serve that nodes in some countries, which either share the same or
similar language or ethnicity tend to establish channels as well. Our
first analysis has shown that Argentina shares 80% of the channels
with Paraguay, then Peru with 10% of the channels and lastly with
Chile and Venezuela with around 2-4%. Kenya shares more than
70% of the channels with South Africa, China shares most channels
with Taiwan and also several with Japan and Hong Kong, Slovenia
shares channels with Croatia, Czechia and Bulgaria and Mexico
with Colombia, Chile, Puerto Rico and Argentina. However, more
studies have to be carried out in order to evaluate this behavior.

5 RELATEDWORK
For an overview of the blockchain and Bitcoin in general we re-
fer the reader to Antonopoulos [7], and for an overview of off-
chain networks specifically, to the survey by Gudgeon et al. [12].
There exist many clever route discovery algorithms in the litera-
ture, e.g., SpeedyMurmurs [23] and SilentWhispers [10], to improve
the routing efficiency in off-chain networks. However, it has also
been shown that the gossiping and probing mechanisms needed
in off-chain networks to support efficient routing, may introduce
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Figure 14: Nodes in Europe (left), North America (middle) and Asia (right)

Figure 15: Node latitude and longitude in Europe (left), North America (middle) and Asia (right)

security issues, e.g., harm privacy [19] and/or performance if nodes
behave selfishly [28].

Some papers already have explored node classification in the
Lightning Network, mostly as a preparation measure for an attack.
Mizrahi et al. [18] performs a classification for a congestion attack
on the Lightning Network and also suggests mitigation techniques.
The data for this work was gathered with the describegraph
command of LND, which returns a JSON describing the networks
topology to a given timestamp. Our data was gathered by a node
logging the messages it received from March 2018 until January
2020. We also consider more parameters to ameliorate the classifi-
cation results and perform some further analysis with the results.
Pérez-Solà et al. [20] proposes an attack to discover channel bal-
ances in the network and also infers implementations for deriving
a private parameter’s value.

Measurement studies, e.g., also considering geographic aspects,
have been performed on many other peer-to-peer and social net-
works, also before cryptocurrencies. For example, Schiöberg et
al. [25] conducted an analysis of the social network Google+, which
also includes an examination of user locations. Scellato et al. [24]
study how geographic distance affects social ties in a social network
and Mislove et al. [17] geographical, gender and racial aspects of
Twitter users to the U.S. population.Measurements and implications
on attacks in the peer-to-peer network Kad have been discussed by
Locher et al. [16]. Dotan et al. [9] recently presented an overview of
cryptocurreny networks, which also includes a survey of empirical
studies on geological characteristics of the Bitcoin and Ethereum

networks. However, we are not aware of works investigating similar
aspects on off-chain payment channel networks so far. The Light-
ning Network’s topology has been analyzed by Seres et al. [27].
The work studies the robustness of the network against random
failures of nodes and targeted attacks. The authors also propose
some countermeasures to make the network more resilient. A simi-
lar , but more in depth work as been work has been carried out by
Rohrer et al. [22]. As far as privacy is concerned, Kappos et al. [13]
performed an empirical analysis of the Lightning Network based on
three attacks. The analysis also included measurements concerning
network, node, and channel parameters.

6 CONCLUSION
Analyzing a big dataset collected on the communication in the
Lightning networks, we have shown that it is possible to accurately
classify the node types in Lightning network with high probability,
potentially providing important security insights. We understand
our work as a first step and we plan to continue collecting data for
more extensive studies, also of the network evolution over time.
We also believe that our work opens several interesting questions
for future research. For example, it will be interesting to explore al-
ternative classification algorithms, improving the accuracy further,
or to investigate the applicability of our methods on alternative
off-chain networks.

In order to support such future research, our data is available at
https://github.com/lnresearch/topology [8].

https://github.com/lnresearch/topology
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Figure 16: Nodes and latitude and longitude in Germany

Figure 17: Nodes and latitude and longitude in Japan
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