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ABSTRACT
In networks, availability is of paramount importance. As link

failures are disruptive, modern networks in turn provide Fast

ReRoute (FRR) mechanisms to rapidly restore connectivity.

However, existing FRR approaches heavily impact perfor-

mance until the slower convergence protocols kick in. The

fast failover routes commonly involve unnecessary loops and

detours, disturbing other traffic while causing costly packet

loss. In this paper, we make a case for augmenting FRR mech-

anisms to avoid such inefficiencies. We introduce ShortCut
that routes the packets in a loop free fashion, avoiding costly

detours and decreasing link load. ShortCut achieves this by

leveraging data plane programmability: when a loop is locally

observed, it can be removed by short-cutting the respective

route parts. As such, ShortCut is topology-independent and
agnostic to the type of FRR currently deployed. Our first ex-

perimental simulations show that ShortCut can outperform

control plane convergence mechanisms; moreover avoiding

loops and keeping packet loss minimal opposed to existing

FRR mechanisms.
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1 INTRODUCTION
With the emergence of low-latency and high-bandwidth

distributed applications [62] in datacenter or wide area net-

works, there is an ever-increasing pressure on the network

operators in the form of stringent SLOs (Service Level Objec-

tives) to ensure a peak performance in terms of availability,

latency, bandwidth, and packet loss. However, unexpected

failures (link/switch) are inevitable and happen regularly re-

quiring a rapid action to ensure seamless connectivity with-

out compromising on performance. A plethora of In-network

Fast Reroute (FRR) approaches [11, 29] have been developed

entirely in the data plane to address such a problem. How-

ever, these approaches are slow, incur loops, trigger packet

loss when routes become unavailable, to reroute traffic via a

sub-optimal path [36] which may be shared by other traffic.

Control plane Convergence is slow: In the light of fail-

ures, the global control plane convergence is proven to be

slow in seconds scale [35] or even in some cases on a minutes

scale [30], adversely impacting the SLOs, and thus, business

of network operators. The reason for slow control plane

convergence is attributed to detecting failures, notifying

switches of failures, recomputing new paths, and updating

forwarding states depending on switch control plane de-

sign [27] accordingly. Therefore, in order to meet the SLOs,

local FRR mechanisms [13] have been deployed on the data

plane for fast reaction to unexpected and crippling failures.

The conventional wisdom is to proactively install backup

rules on the switches which take priority when the failure

happens. Therefore, a hierarchical control plane design with

a global control plane and local reactive control on the data

plane has emerged as a popular approach.

Navigating the FRR landscape of FRR: Local FRR [9, 12,

14, 16, 18–21, 26, 57] can react almost immediately [13] to

failures by proactively installing reroute rules, e.g., of lower
priority. As such they are the fastest failover schemes, at-

tempting to always maintain connectivity, but can only do

so with some downsides. First, in many scenarios, it is impos-

sible to protect against more than a single failure [12, 18, 23].

Second, reminiscent of graph exploration [6], packets probe

for working paths, introducing long detours.

Local FRR can also be achieved by means of packet header

modification or encapsulation [3, 32, 34]. Here however one

has the drawbacks of needing custom-tailored protocols,
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Figure 1: Comparison of no FRR without failure, FRR, and ShortCut

potentially disturbing other network functions due to, e.g.,
header changes, issues due to increased packet sizes, e.g.,
with the MTU, and encountering reroute loops as well. More-

over, there is FRR that leverages control plane convergence

ideas in the data plane itself. For example, DDC [35] utilizes

link reversal algorithms [28, 56] to provide connectivity, as

long as the network is not partitioned. Blink [30], on the other
hand, tracks TCP disruptions to switch to backup routes.

While FRR implementation in the data plane, opposed to the

control plane, significantly speeds up recovery, these mech-

anisms cannot provide the same rapid protection as local

FRR schemes: e.g., Blink [30] needs disruptions to occur first

and link reversal algorithms, as in DDC [35], face quadratic
convergence time in the worst case [8]. Still, the above con-

vergence mechanisms also cover a wider range of multiple

link failure scenarios, unobtainable by local FRR [18, 23].

Problem Statement. In this paper, we pose the following

question: Local FRR maintains reachability by paying the
price of additional delay and network load. Can we locally and
rapidly remove those inefficient detours, before relatively slow
convergence protocols kick in?
Solution Design. To this end we propose ShortCut, which
augments FRR by locally removing reroute loops while main-

taining protection to a link failure, largely agnostic to un-

derlying FRR. ShortCut is enabled by data plane methods,

but unlike convergence methods, is purely local, without

(implicit) message exchange by, e.g., link reversals, and fur-

thermore does not rely on packet loss TCP signaling, main-

taining immediate protection. Hereby ShortCut expands the
design space of hierarchical FRR and convergence schemes,

placing itself as an intermediate layer between both.

ShortCut leverages programmable data planes: The P4
language [7, 15] enables the programmability and customiza-

tion of data plane functionalities in network devices. P4, an

open-source language, allows programming of packet for-

warding planes, and is increasingly supported by a panoply

of network vendors. Via the P4 language, one can define in

P4 programs the instructions for processing the packets, e.g.,

how the received packet should be read, manipulated, and

forwarded by a network device, e.g., a switch.

Speaking of “local” fast reroute, P4 programs offer the

required platform to fast reroute the packets on desired links

at line rate when the link failure occurs while avoiding crip-

pling loops and costly packet loss. Such “local” capability

is crucial as the “global” control plane convergence mecha-

nisms are slow [30, 35] to react to data plane events which

require rapid action. Finally, when the global control plane

mechanisms converge, they overwrite the local ShortCut.
We observe such hierarchical control as also, shown in [35,

58], is crucial to meet the SLO targets. Our experimental

simulation endorses our position as ShortCut outperforms

the global control plane convergence. Furthermore, we show

that ShortCut avoids costly loops and thereby load-induced

packet loss [5], unlike existing FRR [9, 12, 16, 18, 26, 57].

Contributions. Our main contributions are:

•We identify an untapped opportunity in local FRR mech-

anisms to shorten failover routes and propose ShortCut, a
data plane method leveraging it. Our method is largely ag-

nostic to the deployed local FRR mechanism, and also leaves

data packets unchanged, respectively does not require packet

state on the switches. (§2)

•Weprove correctness and efficiency of ShortCut, i.e., single
link failure protection under shorter (loop-free) routes. More-

over, we show that ShortCut is realizable without additional
communication, i.e., just by observing the data plane. (§3)

•We conduct an experimental evaluation of a ShortCut pro-
totype: ShortCut strongly outperforms control plane conver-

gence mechanisms, removing FRR loops and keeping packet

loss minimal. (§4)

•We rigorously discuss FRR mechanisms and their interplay

with ShortCut, charting the landscape of FRR in depth. (§5)

2 MOTIVATION AND BACKGROUND
The Control Plane is Slow. A cornerstone of FRR mecha-

nisms is that reactions are immediate, ideally always main-

taining logical connectivity.We cannot rely on instrumenting

the control plane to this end, as “the control plane typically
operates at timescales several orders of magnitude slower than
the data plane, which means that failure recovery will always
be slow compared to data plane forwarding rates” [35].
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2.1 Local Fast Reroute Mechanisms
Hence, to react without delay to link failures, switches and

routers must have the new routing already pre-computed,

i.e., a mapping of incident faults to forwarding rules. We

give an example in Fig. 1a, where the task is to route packets

from a source 𝑆 to sink 𝐷 , e.g., via the black path S-S1-S2-

S4-D. When the link between S2 and S4 fails, a global view

would change the routing at node S1, s.t. the new path is

S-S1-S3-S4-D. However, for immediate reactions, we can-

not rely on the control plane, and hence only Node S2 (and

S4) can change their behaviour immediately. Here, the sole

meaningful option at Node S2 is to bounce the packet back

to its only neighbor S1, hoping that the packet reaches 𝐷 .

At this point, the careful preprocessing of the network’s

topology by means of FRR comes into play. State-of-the-art

FRR leverages that nodes can send the same packet to differ-

ent outports, based on the inport [57]. In other words, when

the packet returns from Node S2 to Node S1, the Node S1

can now forward the packet to Node S3, from there to S4 and

then to the destination. Various methods have been proposed

in this setting, such as (backtracking in [18]) DAGs [36], par-

tial structured networks [57], or arc-disjoint paths, trees, and

arborescences [9, 12], all utilizing inport-awareness.

As such, FRR has maintained connectivity, by routing

the packets along the black-red path S-S1-S2-S1-S3-S4-D.

Notwithstanding, until the (slow) global convergence kicks

in, this routing is inefficient, due to each packet looping once

between S1 and S2. What’s worse, the rerouted packets will

compete with the blue HS-flow, where we will lose up to

≈ 50% of the total throughput. Purely local and static FRR

cannot overcome this inefficiency, the incident link fault state

remains unchanged at Node S1; there are no incident failures.

2.2 Leveraging the Data Plane
We are motivated by the above scenario and hence aim at

preserving 1) FRR connectivity guarantees while also 2) re-
moving the inherent inefficiency of detour loops. Our idea is

to instrument the data plane to shortcut unnecessary loops in
FRR mechanisms, optimizing network performance until the

control plane kicks in. In more detail, we propose to observe

the data plane, implicitly waiting for packets to traverse the

same node twice, and then to remove routing loops.

A straightforward approach to packet loop detectionwould

be to remember packets or to mark them, which however

comes with undesirable overhead in local storage or header

expansion, the latter disturbing other network functions.

Rather, we propose to detect loops FRR implicitly, by means

of different ports. In Fig. 1a, Node S1 expects packets, des-

tined for D, to always arrive via S and to exit via Node S2, i.e.,
such packets arriving by Node S2 and leaving towards Node

S3 implicitly signal a failure downstream, as we explain next:

Node S1 deduces thereby that the returning packets tra-

verse an unnecessary loop
1
and shortcuts the route by match-

ing packets with inport S and destination D to the outport to

Node S3. From now on, no more packets will enter the loop

S1-S2-S1, improving these links’ utilization and in particular

the latency of the flow’s packets due to a shorter route. In

this example, the shortcutted route is even already the route

the control plane will converge to after some time. In more

detail, a first packet from the SD-flow on the outport to Node

S3 triggers Node S1 to change its routing, as shown in Fig. 1b:

at the inport from S, the top priority rule (to S2) is removed

and the second priority rule (to S3) becomes the default.

3 ShortCut DETAILS
We model the network as a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes

(routers, switches, hosts) 𝑉 and𝑚 directed links 𝐸. We first

define the routing for the failure-free case, i.e., without FRR.
Each packet in a flow 𝑓 is routed from a source 𝑠 = 𝑠 (𝑓 ) ∈ 𝑉

to a destination 𝑡 = 𝑡 (𝑓 ) ∈ 𝑉 along a simple path, i.e., a
sequence of nodes without repetition. We assume that the

forwarding at a node 𝑣 (to an outport 𝑣𝑜 of 𝑣) is deterministic

and may only match on 1) the flow’s source2 and destination
and 2) the incoming packet’s port (inport 𝑣𝑖 ) at 𝑣 .3

We next specify the FRR model and its routing for a link

failure between any node pair 𝑢,𝑤 . We will later discuss

how to extend ShortCut to further failure models. Now, the

forwarding at 𝑢,𝑤 may also match on a third item, namely

that the link (𝑢,𝑤) is down. Note that all other nodes are
not aware of this failure and hence leave their routing un-

changed. Now, FRR may route the packets along a walk, i.e.,
node repetitions are allowed, but due to the deterministic

forwarding behaviour, link repetitions lead to the packet

not reaching the destination—as we assume packets are not

modified by FRR. We assume that each node 𝑣 has an ordered

priority of outports 𝑣𝑜
1
, . . . , 𝑣𝑜

𝑘
for a given flow (or destina-

tion), where 𝑣𝑜
1
is the default outport without failures. Herein,

the forwarding from each inport 𝑣𝑖 may implement a part of

this priority list, i.e., 𝑣𝑜𝑗 , . . . , 𝑣
𝑜
𝑘
, for 1 ≤ 𝑗 ≤ 𝑘 .

We give an example for FRR with link-disjoint spanning

arborescences
4
[16]. In this FRR scheme, the idea is to first

try to route on the first arborescence (tree), if a failure is

encountered, then to switch to the second one, and so on.

To this end, at each node 𝑣 , the outport 𝑣𝑜
1
corresponds to

the first arborescence, 𝑣𝑜
2
to the second, and so on, where the

inport of the first arborescence starts the priority list with

𝑗 = 1, the inport of the second arborescence with 𝑗 = 2 etc.

1
they visit both S2 and S3 from S1, one after another

2
Our mechanism also works for destination-based routing via trees.

3ShortCut also works for routing and FRR without usage of the inport, as

we can then simply assume the forwarding is identical for all node inports.

4
An arborescence is a directed tree oriented towards its root.
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3.1 ShortCut Mechanism and Properties
At each node 𝑣 ∈ 𝑉 , ShortCut performs the following oper-

ation continuously: for each inport 𝑣𝑖 and flow 𝑓 , if packets

from 𝑓 are sent through 1) an outport 𝑣𝑜
ℎ
in the priority list

𝑣𝑜𝑗 , . . . , 𝑣
𝑜
𝑘
of inport 𝑣𝑖 for 𝑓 and 2) 𝑣𝑜

ℎ
is not 𝑣𝑜𝑗 , i.e., not its

top priority, then 𝑣𝑖 removes the first items from its outport

priority list until only 𝑣𝑜
ℎ
, . . . , 𝑣𝑜

𝑘
remains. In other words, by

observing that a lower priority outport is taken, correspond-

ing inports make this outport their highest priority choice

and remove all outdated higher priority outports in the pro-

cess from their list. Note that if an outport is not available

due to link failure, it is considered as removed as well.

Observation 1. ShortCut operates locally at each node,
without control plane messages or exchange between the nodes.

ShortCut 1) maintains the underlying FRR reachability,

2) that the packet route turns into a loop-free sub-path of

FRR, and 3) triggers within one end-to-end delay.

Theorem 3.1. When the FRR schememaintains reachability
under one link failure, then ShortCut maintains reachability
and changes the route to a loop-free FRR sub-path.

Proof Idea. We just give the main idea here due to space

constraints [47]: Observe that when FRR maintains reacha-

bility after a failure, a packet in the studied model can visit a

node multiple times (finitely), but traverse each directed link

only once (determinism). When the packet visits the node

again, it hence must exit through a different outport and we

can as thus “shortcut” the previous inports to this outport,

due to the ordering – which also guarantees termination. □

Observe that for the above routing change actions are all

triggered as soon as a packet traverses the whole FRR path.

Corollary 3.2. After a link failure, all ShortCut route
change actions are triggered within one end-to-end delay.

4 PROOF-OF-CONCEPT EVALUATION
In the following section, we demonstrate the effectiveness

of a ShortCut in P4 over control plane convergence mech-

anisms (routing protocols) in terms of throughput leverag-

ing our P4 evaluation. In particular, we note that ShortCut
avoids loops and packet loss to ensure better throughput

compared to control plane convergence mechanisms.

For our experimental evaluation, we choose the topol-

ogy illustrated in Figure 1 with preinstalled rules. We de-

ploy an LPM (Longest Prefix match) P4 program [1] written

in P416 [15] in a Mininet [40] environment and leveraged

iperf [17] for generating the end-to-end TCP traffic (between

end hosts). Our evaluation leverages a centralized controller

for simplicity. Furthermore, P4 ensures fast routing on the

network dataplane until the control plane convergence kicks

in. Therefore, we leverage hierarchical control, i.e., global
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Figure 2: ShortCut vs Control plane convergence w.r.t. mean end-to-
end throughput over multiple TCP experiments. The link failure
finally comes into effect at 2 seconds, it takes seconds for the control
plane convergence mechanisms to kick in, while ShortCut routes
traffic loop-free, maintaining tolerable packet loss.

control with control plane convergence and local ShortCut
for fast reactive response to immediate dataplane failures.

To simulate a 1-link failure scenario under TCP traffic (see

Figure 1), we use our custom Python-based script to “fail and

reroute” traffic from S-S1-S2-S4-D to S-S1-S3-S4-D in the case

of control plane mechanism and ShortCut (See Figure 1c).
For our evaluation, we derivemotivation from [30, 35], where

they observe that the control plane involves CPU operations

which are significantly slower (seconds scale) than the opera-

tions in the data plane (microseconds scale). It is noteworthy

that until the control plane mechanism kicks in, the unavail-

ability of routes leading to packet loss will already occur.

However, in ShortCut, the rerouting happens at microsec-

ond scale while avoiding loops and keeping packet loss to a

minimum until switch-over to the new route happens.

Note, in existing FRR approaches, there will be loops as

the path taken will be S-S1-S2-S1-S3-S4-D and packet loss

since, the rerouted flow (in red in Figure 1b) competes for

the link capacity with another flow (in blue in Figure 1b).

Figure 2 illustrates the mean end-to-end throughput com-

parison against the control plane convergence mechanism

before and after link failure over multiple experiments. We

observe that ShortCut outperforms the control plane con-

vergence mechanisms with a rapid local reroute, avoiding

loops and keeping packet losses minimal. We observe that

the iperf tool reports that there is latency in the link failure.

We note that link failure with zero throughput fully comes

into effect at 2 seconds when we introduce the link failure

at the zeroth second. Note, that ShortCut’s reroute is for a
transient amount of time and is finally overwritten by the

global control plane convergence.
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5 DISCUSSION
Beyond, e.g., arborescence-based FRR, we now provide a rig-

orous discussion on the applicability of ShortCut to further

mechanisms and scenarios, charting the local FRR landscape.

Due to space constraints, we defer some discussion to [47].

Greedy FRR. Some FRR mechanisms use a greedy approach

to circumvent link failures. For example, in some regular

graph topologies such as the 2-dimensional torus [25], it

suffices to first try to go closer to the destination, and else

“shift” slightly to other directions, then going closer again.

However, these mechanisms, due to their greedy nature, usu-

ally need to exclude the incoming edge as the next outport,

as else the reroute can easily get stuck in a permanent loop;

the exception is if the inport is the only remaining choice to

reach the destination. As such, there is no longer an ordered

priority of outports at each node, as inports put themselves at

the bottom of their priority General examples of greedy FRR

include directed acyclic graphs (DAGs) [18] or partial struc-

tural networks (PSNs) [57], where the quality of greedy FRR

depends on the careful precomputation of the DAGs/PSNs.

We can nonetheless let ShortCut also augment greedy

FRR. If the (local) route is 𝑣1-𝑣2-𝑣1, then, at 𝑣2, bouncing back

to 𝑣1 was the best (greedy) choice. Hence, if the packet were

to return to 𝑣2 later and would choose a different outport

than to 𝑣1, then this choice would already have been made

at the earlier visit, due to the nature of greedy FRR, and as

thus ShortCut can set 𝑣1 as the highest priority outport.

Multiple Failure FRR. ShortCut is designed with a single

link failure in mind, as we expect the control plane to deploy

new rules until a new failure appears. However, extending

ShortCut to multiple link failures is difficult, as ShortCut
is largely agnostic to the underlying FRR. When ShortCut
removes the loops introduced by the FRR after the first link

failure, it could very well be that exactly those loops guaran-

tee destination reachability when further failures appear.

Notwithstanding, ShortCut can incorporate the scenario

of a whole node failing, taking all its attached links down

with it. The reason is that for a node failure, the FRR does

not change over time, and ShortCut removing FRR loops

hence does not impact reachability of the flow’s destination.

SegmentRouting andMPLS FRR.Conceptually, ShortCut
can also augment Segment Routing (SR) and MPLS FRR [3]

schemes, treating the packet encapsulation or top label iden-

tically to flow routing rules. However, ShortCutwill only re-
move routing loops for each individual encapsulated header

respectively label, not across them. It could be interesting to

extend ShortCut across the whole label stack. For example,

when using TI-LFA [34] for link protection, the segments to

route around the failed link can intersect with the original

route, and here ShortCut could remove those loops across

header segments/encapsulations, handling failure carrying

packet FRR schemes [24, 32] analogously.

Non-local ShortCut implementation. ShortCut only re-

quires observation of the data plane at each node individually,

without communication between the nodes and/or a logically

centralized controller, recall Observation 1. Still, ShortCut
requires some ability to actually change the routing at a node

upon being triggered by the data plane. While we believe

future, e.g., P4 extensions or custom programs could be used

to this end, a direct solution would be to proceed analogously

as proposed by Ngyuen et al. [39]: each node has its own

(low-cost) controller, allowing to implement routing table

updates near instantaneously. Alternatively, a distributed

control plane with, e.g., multiple controllers could be lever-

aged [44], or even a classic centralized controller setup: while

a new routing configuration is prepared, the controller could

rapidly issue the simple updates needed by ShortCut.

Temporary Failures and Inconsistencies. Some link fail-

ures are only temporary, e.g., link-flaps due to protocol is-

sues [41] or optical reconfiguration [51]. Here ShortCut
does not automatically switch back to the now again avail-

able route, and it would be interesting to study trade-offs

involving delays and probing [30], before the control plane

takes over. It it would moreover be interesting to investigate

the interplay of ShortCut with temporary inconsistencies

due to bugs or outdated control plane views [46, 48, 49], re-

spectively during network updates [22], e.g., separated into

fast-paced rounds [50], and with route verification in P4 [61].

6 RELATEDWORK
Resilient routing has been widely studied [29], especially for

fast recovery and reroute mechanisms [11]. We next focus

on 1) local fast reroute (FRR) mechanisms, which covers stat-

ically pre-installed failover rules, and 2) non-local recovery
mechanisms by means of (control/data plane) convergence.

Static local FRR mechanisms have the advantage that

routing is deterministic, that no additional (packet) mem-

ory is required on the nodes (or alternatively, tagging of the

packet), and in particular no message exchange is required.

Chiesa et al. [9, 12] use link-disjoint destination-rooted span-

ning arborescences to this end, where the resilience is related

to the number of arborescences the network supports; af-

ter a failure the next arborescence is chosen, see also [52].

CASA [26] investigates here how to minimize the load under

rerouting in arborescences, also looking into edge-disjoint

paths—extended in [45]. Conceptually, CASA takes some in-

spiration from U-Turn [2], which extends LFA protocols to

multi-hop repair paths, by pushing the packet back to a point

where it can potentially reach the destination, possible itera-

tively [59]. However these and the next works provide no

mechanisms on how to short-cut packets traversing nodes

more than once. Various further works [18, 33, 37, 38, 55, 60]
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consider how to protect against only single failures, but in

contrast work without any topology assumptions.

Different from worst-case guarantees, Yang et al. [57] pro-

pose a version of greedy FRR, where packets try to get closer

to the destination, or at least not increase their distance.

ShortCut is complementary to the above FRRmechanisms

and can augment them by locally removing routing loops

induced by rerouting, turning the packet route into a path,

and hence reducing packet delay and the congestion of other

links in said loops. We are not aware of other works that

operate in this setting, i.e., deterministic without tagging,

probing, state, or message exchange, as an intermediate be-

tween local FRR and convergence schemes.

Furthermore, local FRR that relies on randomization [6, 10]

or on state to remember packets [4]. However, both can be

problematic in practice and are non-standard, requiring extra

memory and randomization beyond hashing, while causing

packet reordering. Additionally, some local FRR moves the

additional memory into the packets, i.e., by means of failure

carrying packets [32, 53], MPLS [3], segment routing [34], or

as general rewritable header
5
space [12, 16]. ShortCut can

conceptually be expanded in this latter direction, under the

assumption that the memory content induces a strict order-

ing and/or if the whole label stack can be analyzed. We note

that, unless failures are (implicitly) added to the packets [32],

it is unclear how to extend, e.g., segment routing [34] beyond

protection for a single link in general [24].

Control plane convergence methods to optimize rout-

ing however are well established, such as classical distance-

vector and link-state algorithms, also centralized SDN meth-

ods [29]. Nonetheless, they all suffer from significant delays

in comparison to data plane speeds [35].
6
As thus, the state

of the art for best protection is a two-tier hierarchical ap-

proach, where local FRR provides immediate reroute, at the

cost of non-optimal paths, followed by slower convergence

protocols with a global view. We refer to the recent book

edited by Rak and Hutchison [42] for further discussions.

Data plane convergencemethods have recently taken off,
allowing the possibility of similar recovery without invoking

the control plane. For example and notably, Blink tracks TCP
disruptions to quickly change paths after loss is indicated

at the ingress. Thus, it is notably faster (according to the

authors, “sub-second rerouting”), but it also does not aim for

immediate protection such as local FRR. DDC [35] imple-

ments link reversal algorithms in the data plane [28, 56],

and hence can recover from any non-partitioning failure set,

5
There are also solutions that use header space to detect loops in the (P4)

data plane, for example the recent work by Kucera et al. [31].

6
Reroute speed is significantly improved if each node has its own control

plane [14], only exchanging messages for convergence in a two-tier hierar-

chical approach. However, conceptually this can then be understood as (a

precursor to) local FRR.

faster than in the control plane, yet still cannot avoid slow

(quadratic) recovery times inherent to link reversal [8], and

does not provide immediate protection as well. Ramadan et

al. [43] propose to speed up the convergence time by means

of preorders and iteratively deactivating links. Lastly, Chiesa

et al. [13] proposed FRR primitives for programmable data

planes which can complement ShortCut, and Stephens et

al. [54] investigate how to scale FRR rules by compression.

7 CONCLUSION
We studied the fundamental question of how to improve fast

failover routes in the data plane. Current fast reroute mech-

anisms maintain reachability by means of detours, where

extra delay and additional link load persists until the rela-

tively slow control plane kicks in.

Our system, ShortCut, leverages the observation that lo-

cal fast failover routes often contain transient loops, which

can be shortcut in the data plane. By removing such un-

necessary detours locally, ShortCut can rapidly improve

fast reroute quality while maintaining reachability and pro-

tection guarantees. Herein, ShortCut is not a replacement

for already implemented failover protection, but rather aug-

ments them, being largely agnostic to the local fast reroute

mechanisms in place. As such, the protection guarantees of

current (and future) fast reroute implementations are main-

tained, with ShortCut improving the network performance

until the control plane reconverges.

Our experimental simulations of a ShortCut prototype

showcases feasibility and benefits over slower control plane

convergence mechanisms, removing FRR loops and their in-

duced packet loss. We moreover discuss the existing FRR

landscape and their interplay with ShortCut in-depth, chart-
ing future directions and extensions.

Conceptually, ShortCut expands the design space of hier-

archical fast reroute and recovery mechanisms, placing itself

as an intermediate between rapid FRR and slow convergence.

Outlook. Even though ShortCut is largely oblivious to the

underlying local FRR mechanism, and hence has the advan-

tage of being widely applicable, it could be interesting to pro-

vide more direct integration into FRR and recovery schemes,

trading off generality versus performance.

As next steps, we plan to investigate the extension of

ShortCut to multiple failures, respectively to show where

such extensions are infeasible, and to expand our proof-of-

concept implementation, along with large-scale simulations.
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