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Improved Fast Rerouting Using Postprocessing
Klaus-Tycho Foerster , Andrzej Kamisiński , Yvonne-Anne Pignolet ,

Stefan Schmid , and Gilles Tredan

Abstract—To provide fast traffic recovery upon failures, most modern networks support static Fast Rerouting (FRR) mechanisms for
mission critical services. However, configuring FRR mechanisms to tolerate multiple failures poses challenging algorithmic problems.
While state-of-the-art solutions leveraging arc-disjoint arborescence-based network decompositions ensure that failover routes always
reach their destinations eventually, even under multiple concurrent failures, these routes may be long and introduce unnecessary loads;
moreover, they are tailored to worst-case failure scenarios.
This paper presents an algorithmic framework for improving a given FRR network decomposition, using postprocessing. In particular, our
framework is based on iterative arc swapping strategies and supports a number of use cases, from strengthening the resilience (e.g., in
the presence of shared risk link groups) to improving the quality of the resulting routes (e.g., reducing route lengths and induced loads).
Our simulations show that postprocessing is indeed beneficial in various scenarios, and can therefore enhance today’s approaches.

Index Terms—Resilience, fault-tolerance, computer networks, failover.
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1 INTRODUCTION

Communication networks have become a critical infrastruc-
ture of our digital society: enterprises which outsource their
IT infrastructure to the cloud, as well as many applications
related to health monitoring, power grid management, or dis-
aster response [1], depend on the uninterrupted availability
of such networks. To meet their dependability requirements,
most modern networks provide static Fast Rerouting (FRR)
mechanisms [2], [3], [4], [5]. Since FRR mechanisms pre-
configure conditional failover behaviors, they enable a very
fast traffic recovery upon failures, which only involves the
data plane but not the (typically much slower [6]) control
plane.

However, while allowing to pre-configure conditional
failover behavior is the key benefit of FRR, enabling the
fast response to failures, it is also the key challenge when it
comes to designing algorithms for such mechanisms: as the
conditional failover behavior needs to be configured before
the failures are known, the algorithmic problem of how to
optimally configure the failover rules at the different routers,
for all possible failures, seems inherently combinatorial. The
problem is particularly challenging in scenarios where packet
headers cannot be used to carry meta-information about en-
countered failures: such header rewriting is often undesired
and introduces overhead (related to header rewriting itself,
but also in terms of additional rules required at the routers
to process such information).

While FRR technology has been used for many years al-
ready in modern communication networks, a major algorith-
mic result on how to configure FRR mechanisms is relatively
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recent: Chiesa et al. [7], [8] showed that by decomposing the
network into k arc-disjoint spanning arborescences [9], highly
resilient FRR configurations can be defined. Edmonds [10]
proved that k-connected graphs always allow for k such
arborescences, and they can be computed rapidly [9].

However, Chiesa et al.’s conjecture that for any k-
connected graph, there exists a failover routing resilient
to any k − 1 failures, remains an open problem. What is
more, while this network decomposition approach ensures
connectivity, the failover routes may be far from optimal
regarding latency (i.e., route length) and congestion.

The goal of this paper is to improve the network decom-
position approach, in terms of resilience, performance, and
flexibility. In particular, we are motivated by the observa-
tion that in practice, additional information about failure
scenarios and failover objectives may be available, e.g., about
shared risk link groups [11], [12], [13] or about critical flows
for which it is important to be routed along short paths, even
after failures. Existing optimizations of arborescence-based
failover schemes are oblivious to such aspects.
Model. In a nutshell, we consider the problem of pre-
defining (static) conditional failover rules at network’s nodes
(i.e., switches or routers), which define to which link to
forward an incoming packet. These forwarding rules can
only depend on the destination t, the in-port at which a
packet arrives at the current node, as well as the status of the
links directly incident to the node. At the same time, they
should not depend on non-local failures or the packet source.
In particular, we do not allow for packet tagging (i.e., header
rewriting) or carrying failure information in the header.

More specifically, we consider FRR mechanisms leverag-
ing arc-disjoint arborescence network decompositions [7], [8]:
for each destination, a set of arborescences are defined which
are rooted at the destination and span the entire network
without two arborescences sharing an arc. As long as no
failure is encountered, a packet travels along an arbitrary
arborescence towards the root, being the destination. When
encountering a failure, a packet is rerouted onto the next
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arborescence according to some pre-defined order. The logic
of the latter is defined by the arborescence routing strategy.
Contribution. This paper presents an algorithmic framework
for postprocessing state-of-the-art FRR mechanisms based on
network decompositions, to improve resilience, performance,
and flexibility, of fast rerouting. The framework relies on
an iterative swapping of arcs, hence changing the network
decompositions towards a certain objective. More specifically,
such swapping operations can be used to account for specific
failure scenarios (e.g., given by shared risk link groups), to
improve traffic engineering properties of failover paths (such
as load and stretch), or to flexibly adjust the failover routes
to the specific requirements or priorities of flows (and their
applications).

We show that we do not limit ourselves by focusing
on arc-disjoint arborescence network decompositions by
proving that arborescence-based decompositions are as good
as any deterministic local failover method. Furthermore, we
demonstrate the potential of our arc-swapping framework
in four different use cases: two related to routing (i.e.,
improving stretch and load), and two related to properties
of the decomposition (namely, depth and independence of
paths). We report on extensive simulations using synthetic
network topologies, which illustrate the benefits of our
approach. Moreover, we also provide a novel Integer Linear
Program (ILP) formulation, to directly create optimized
arborescences, instead of postprocessing them.
Organization. The remainder of this paper is organized
as follows. Section 2 provides intuition on why focusing
on arborescences-based network decompositions is not a
limitation. Our postprocessing framework is described in
Section 3. We discuss and evaluate case studies in Section 4
and present our ILP in Section 5. After reviewing related
work in Section 6 we conclude in Section 7.

2 IMPOSSIBILITY OF BEATING ARBORESCENCES

We first motivate our focus on failover algorithms based
on arborescence network decompositions, showing that this
approach does not only provide a high resilience but also
competitive route qualities (in terms of lengths).

In general, while the static fast rerouting algorithms
considered in this paper have the advantage that they do not
require header rewriting nor control plane reconvergence,
the resulting failover routes may have a high additive stretch.
More formally, the (additive) stretch of a failover route from
v to t is defined as the difference between the number of
hops taken 1) along the failover route from v to t and the
hops 2) along the shortest route from v to t. The additive
stretch of the routing scheme is then the maximum stretch
along all failover routes, i.e., from all v to t.

We will see that this is a feature inherent to all local fast
failover algorithms, though as the later evaluation sections
show, it is more of a rarely occurring worst-case scenario.

We start with some definitions for arborescence-based
re-routing. Let (u, v) denote a directed arc from node u to v.
A directed subgraph T is an r-rooted spanning arborescence
of G if (i) r ∈ V (G), (ii) V (T ) = V (G), (iii) r is the only
node without outgoing arcs and (iv), for each v ∈ V \ {r},
there exists a single directed path from v to r. When it is
clear from the context, we use the term “arborescence” to
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Fig. 1. Example network from [14] with two different t-rooted arc-disjoint
spanning arborescence decompositions, T1 left and T2 right. In both of
them one arborescence is drawn with dotted red arrows, while the second
arborescence is depicted with dashed blue arrows. Note that the mean
path length of the arborescences of T1 is 2.5, while it is less than 2 in T2.

refer to a t-rooted spanning arborescence, where t is the
destination node. A set of arborescences T = {T1, . . . Tk} is
arc-disjoint if no pair of arborescences in T shares common
arcs, i.e., if (u, v) ∈ E(Ti) then (u, v) /∈ E(Tj) for all
i 6= j. A set of t-rooted arc-disjoint spanning arborescences
is a valid arborescence-based decomposition. See Fig. 1
for two examples of such arborescence decompositions. In
arborescence-based routing, packets follow an arborescence
towards its root. In case of encountering failures on its path
to the root, the packet switches to another arborescence. Let
the blue dashed arborescence be failover route for x if its
direct link to t fails. In this case the additive stretch is 3 for
the decomposition T1, while it is 1 for T2. This illustrates that
the choice of the decomposition has an impact on the quality
of service in case of failures.

In the following, we show that the arborescence-based
routing scheme depicted in Fig. 2 may lead to a detour
of length Ω(n), even though a constant-length detour is
available. In our example, the arborescences (depicted with
different colours and line patters in Fig. 2) to be used have
been constructed such that a certain set of failures leads to a
long detour for packets emitted by node 22, even though 22
is very close to the destination t. The only link out of node
22 belongs to an arborescence that takes this long detour if
no other links fail as the packet will stay on this arborescence
until it reaches t.

In general though, no failover algorithm can obtain a
better stretch than Ω(n) for three failures: an adversary could
fail the links (22, t), (21, 11), (23, 13), in which case even
algorithms with global information would take a detour of
length Ω(n).

However, what happens when we strengthen the defini-
tion of additive stretch to a competitive [15] point of view?

Recall that we so far defined the stretch in comparison
to the shortest path in the network without failures. In a
competitive setting, we compare the stretch under some
failure set, to the shortest path in the network with failures.

To give some intuition, in the simple network setting of a
cycle, a local failover strategy is to switch between clockwise
and counterclockwise routing. This strategy induces an
additive stretch according to the size of the cycle, for
the nodes neighboring the destination, when their direct
connection to the destination fails. However, for those nodes,
there is no shorter path to the destination after such a failure,
and hence from a competitive point of view, their failover
route is optimal. We next consider short failover routes.

In the failure example of Fig. 2, an algorithm with global
information could simply take a tour of length 5 from node 22

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.2998019

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, MAY 2020 3

`3

`2

`1

C`

13

t

11

C1

23

22

21

C2

33

32

31

C3 . . .. . .

Fig. 2. Example of a (4, `)-clique-torus (see Definition 1), with 4 t-rooted
arc-disjoint arborescences, in blue (dotted), red (dash-dotted), green
(dashed), and olive (loosely dashed). Three links (striked out) incident
to 22 have failed in this scenario, forcing a circular scheme to use the
olive (loosely dashed) arborescence at 22, which takes a tour of length
at least `− 1, even though a short 5-hop alternative is available.

to t, as already pointed out above. Is it possible to find better
deterministic local failover algorithms that can outperform
arborescence-based routing in this example?

In this context, a deterministic algorithm makes all
decisions on which out-port is used by a packet entirely
depend on available information only, no randomness is
used, e.g., when switching to another arborescence. An
algorithm is local if its failover decisions do not take the state
of other routers into account, but only the locally available
information (inport, dst). In particular a router does not know
where in the network other failures have happened.

Succinctly stated, the answer is no—all deterministic local
fast failover routing schemes perform badly in such cases,
i.e., they do not outperform arborescence-based routing. To
this end, we will show that there are k-connected k-regular
graphs where every deterministic local algorithm has to take
large detours, even though short routes are available.

The intuition behind this statement lies in the fact that
even with the freedom of taking other decisions, there are
cases that lead to long detours and/or high load when
only local knowhow can be used (i.e., the router does not
know where else failures have happened). Thus the power
of algorithms that make deterministic decisions without
knowing anything about the state of other flows and routers
coincides with the power of arborescence based algorithms.
For our proof we define the following graph class: start
with a cycle of ` nodes and replace each link with k − 1
parallel links. Observe that these graphs are k-connected and
k-regular, but have parallel links between neighboring nodes.
In order to obtain a simple graph without parallel links, we
expand each node into a clique of k − 1 nodes, preserving
connectivity and regularity. For example for k − 1 = 3, this
results in a 3× ` torus graph, as in Fig. 2.

Definition 1. Let k, ` ∈ N with k ≥ 3, ` ≥ 3. A (k, `)-clique-
torus is a graph with (k−1)` nodes and (`(k−1))+(` (k−1)(k−2)2 )
links, constructed as follows: create ` cliques Cj , 1 ≤ j ≤ `, of
k − 1 nodes, i.e., so far every node has degree k − 2. Denote the
k − 1 nodes of each clique Cj as vj,1, vj,2, . . . , vj,k−1. Next and
last, for each 1 ≤ j ≤ ` and each 1 ≤ i ≤ k − 1, connect vj,i
with v(j mod `)+1,i.

We show that every deterministic local fast failover
algorithm sometimes has to take detours with a length in
the order of the diameter of the graph, even though a route
with a constant number of hops is available. We note that
our results here refer to deterministic algorithms.

Theorem 1. For all k ≥ 3, ` ≥ 6: for deterministic local fast
failover algorithms ALG resilient to k− 1 failures on k-connected
k-regular graphs, matching on in-port (from which link the packet
arrives) and destination, the competitive additive stretch of ALG
vs. a globally optimal algorithm is ≥ `− 6.

We utilize the following Lemma for the theorem proof:

Lemma 1. Let G = (V,E) be a connected graph with a link
failure set F ⊂ E. Let U be a (V1, V2)-node separator of G s.t.
1) F ⊆ E(V1), 2) all links in F are not of the type (v1, v2), v1 ∈
V1, v2 ∈ V2, 3) all nodes in V1, which are adjacent to nodes in
V2 (denoted as NV2

(V1)) have at most degree |F |+ 1. Let t ∈ V2

s.t. there is no path to t in E(V1) \ F from any node in NV2
(V1),

but in E \ F . Let R(V1,V2)
t,F be the shortest path from any node in

NV2(V1) to t only using edges from E \ F and, over all nodes
v ∈ V2, v

′ ∈ V1, with F ′ = E(v′), let R(V1,V2)
t,F ′ be the maximum

length, of all shortest paths from nodes v ∈ NV1(V2) to t only
using edges from E \E(v′). Then, the competitive additive stretch
of any |F |-resilient local fast failover algorithm A, matching on
in-port and destination, on G is at least, for all eligible t, V1, V2, F :

max
t,V1,V2,F

R
(V1,V2)
t,F −R

(V1,V2)
t,F ′ − 1 . (1)

Proof: We start by considering fixed t, V1, V2, F fulfill-
ing the lemma requirements. Observe that A must provision
routes from all nodes in NV2(V1) to t when the links F fail,
where the shortest of such routes has the length R

(V1,V2)
t,F .

Let e be the first link used by R
(V1,V2)
t,F , i.e., e is from some

v1 ∈ V1 to some v2 ∈ V2. After traversing e, the route is
deterministically predefined, never encountering incident
links from F . We can furthermore enforce that e will be
traversed by A, by setting the failure set F ′ as all links
incident to v1 except e, with |F ′| ≤ |F |. Now, being at
node v2, both failure sets F, F ′ are indistinguishable to A,
i.e., the remaining route of R

(V1,V2)
t,F will be used. On the

other hand, the globally optimal route from v2 to t has at
most the the length R

(V1,V2)
t,F ′ , with one additional hop from

v1. As such, we proved a competitive additive stretch of
(R

(V1,V2)
t,F )− (R

(V1,V2)
t,F ′ + 1) for fixed eligible t, V1, V2, F , from

which the lemma statement follows directly.
We can now prove Theorem 1 in a succinct fashion, using

Lemma 1 as follows for (k, `)-clique-torus graphs: a local
algorithm cannot distinguish the situation where 1) all links
between two cliques failed, forcing a long detour, and 2)
being enforced to take a hop on the long detour, by a dense
cluster of failures which leaves a short detour intact.

Proof of Theorem 1: We pick t from clique 1 and set F
as the k − 1 links between clique 1, 2, with V1 being clique 2
and V2 being V \ V1, where the picked t, V1, V2, F fulfill the
requirements of Theorem 1. The theorem statement follows
from R

(V1,V2)
t,F ≥ `− 1 and that R(V1,V2)

t,F ′ + 1 ≤ 5 (1 hop for e,
1 in C3, 2 to reach C1, at most 1 extra to reach t ∈ C1).

Combining the fact that no deterministic local algorithm
can have a better competitive additive stretch than Ω(`) with
the fact that a (k, `)-clique-torus graph has (k − 1)` nodes,
i.e., ` ∈ Ω(n/(k − 1)), yields the following:

Corollary 1. For all k ≥ 3, deterministic local fast failover
algorithms resilient to k − 1 failures, matching destination and
in-port, have competitive additive stretch of Ω(n/(k − 1)).
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Algorithm 1: Basic Arc-Swap Operation
Input: valid arborescence-based decomposition
Output: modified valid arborescence-based

decomposition
1 given a node v and two outgoing arcs e, e′

2 if arborescence conditions hold for e, e′ then
3 swap arborescences

3 THE POSTPROCESSING FRAMEWORK

This section presents our algorithmic framework to post-
process arborescence-based network decompositions for im-
proved resilience and performance. In the following, we first
present the general framework, before we discuss concrete
use cases. In particular, we do not make any assumptions on
the given arborescence-based network decompositions nor
the (re)routing strategy used, which can be arbitrary (specific
examples will be considered in our simulations).

The framework can be used to optimize a large set of
objectives. We consider two classes of objectives in this paper
and present two examples each. In the first class, we aim to
improve traffic-engineering metrics of failover routes (like
load or stretch) or account for flow or application priorities,
given certain assumptions about a traffic scenario and failure
model, without sacrificing maximum resilience. As a shorthand,
we will refer to this first class as the traffic scenario. In the
second class, the concrete routing mechanism is ignored and
properties of the decomposition, e.g., depth and independence,
are improved, which can lead to shorter paths and higher
resilience respectively.

We will refer to this second class as the decomposition.
In the remainder of this section, we introduce our framework
without concrete instantiations of objective functions, which
we will cover in the next section.

At the heart of our postprocessing framework lies an
arc-swapping algorithm which can come in different flavors,
depending on the use case. All the different variants of the
arc-swapping algorithm have in common that they always
preserve connectivity: if a source-destination pair features
a certain property that influences the objective, then this
property can only be improved in each arc-swap operation.
In particular, these swaps must maintain the arborescence
character of the decompositions, i.e., they cannot introduce
cycles.

The general principle is quite simple (see Algorithm 1):
we only swap the arborescences of two outgoing arcs of the
same node v and ensure that no cycles are generated. For
simplicity we refer to the set of arcs that do not belong to
any arborescence as the 0-arborescence, even though they do
not form an arborescence. This allows us to treat all arcs
in a uniform manner and simplifies the description of our
algorithm.

More formally, we revisit the approach use to gener-
ate arborescences as in e.g. [9], where arcs are added to
arborescences incrementally until no further arcs can be
added. When this situation is reached, arcs belonging to
different arborescences and possibly the 0-arborescences are
swapped to allow the process to continue. The (incomplete)
arborescence set is denoted by {T1, . . . , Tk}. When growing
an arborescence Ti, the following minimal conditions must

t

v1

v2

Before swapping After swapping

t

v1

v2

e′
e

e′
e

Fig. 3. Introductory example with three nodes where growing arbores-
cences sequentially can end in a deadlock. On the left side, the dotted
blue arborescence uses both arcs to t, leaving no possibility for the
remaining dashed red arborescence to route to the destination. However,
after swapping (v2, t) with (v2, v1), the dashed red arborescence may
use the link (v2, t) on the right side (and subsequentially, the link (v1, v2)
to complete the construction).

hold when swapping e = (u, v) ∈ 0 − arborescence with
e′ = (u, v′) ∈ E(Tj) to ensure that the resulting arbores-
cences are valid [14]: 1

(1) u has a neighbor v′ ∈ V (Ti)
(2) e = (u, v) does not belong to any arborescence yet, i.e.,

e /∈ ∪ρ=1..kE(Tρ)
(3) u /∈ V (Ti)
(4) ∃j, s.t. e′ = (u, v′) ∈ E(Tj)
(5) v ∈ V (Tj)
(6) v′ is not on the path to from v to the root in Tj .

Let us consider an example. Let us assume that arbores-
cences have different colors. In Fig. 3, when we swap the
dotted blue arc (v1, t) to the unused arc (v1, v2), the dashed
red arborescence may now take over (v1, t), removing the
current deadlock situation. In general, when we cannot add
an arc to Ti in the normal round-robin fashion as explained
in [14] and discussed further in Section 4.4, we can check for
candidate arc pairs e = (u, v), e′ = (u, v′) leaving node u if
we could perform a swapping operation. Analogously to the
above conditions, we can formulate the criteria for swapping
two arcs belonging to arborescences Ti and Tj .

In contrast to the swapping checks necessary when
constructing arborescences, we do not have to test whether
each node is incident to an arborescence in this case: this is
guaranteed already by the existing decomposition (condition
(1,4,5)). Thus, in contrast to the swapping conditions during
the arborescence decomposition, there are two cases to
consider.

Case (i): e = (u, v) ∈ E(Ti), e
′ = (u, v′) ∈ E(Tj). From

the above correctness conditions (1,4,5) are always satisfied,
while (2,3) are irrelevant. In addition to (6), it must hold that
v is not on the path to from v′ to the root in Ti. If these
conditions are satisfied, then e can be added to Tj and e′ can
be added to Ti. An example is provided in Figure 4, which
improves the depth of both arborescences.

Case (ii), e = (u, v) ∈ E(Ti) and e′ = (u, v′) does not
belong to any (real) arborescence, e′ /∈ ∪ρ=1..kE(Tρ). In this
case, (1) is always satisfied and (2-6) are irrelevant. Instead,
to be able to remove e from Ti and replace it with e′ it must
hold that v does not belong to the path from v′ to the root in
Ti. An example is provided in Figure 5, which gives a better
depth for the dashed red arborescence.

If the conditions are met, then the arborescence set after
the swap is still valid. The time complexity of picking all

1 [9] and similar approaches use additional criteria which are immaterial
to this discussion

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2020.2998019

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, MAY 2020 5

t

v1 v2

v3

Before swapping

e′e

t

v1 v2

v3

After swapping

e e′

Fig. 4. Example for the swapping in Case (i).
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Fig. 5. Example for the swapping in Case (ii).

candidate pairs is in O(n2∆), where ∆ is the maximum node
degree.

Based on this arc-swap operation, the idea of our algo-
rithmic framework is then to swap arcs only if it improves
a certain objective function, see Algorithm 2. Recall that
we denote the set of all arcs that do not belong to an
arborescence the 0-arborescence and consider it to be always
valid (satisfying the condition of line 2 in Algorithm 1).
Observe that when two arcs are swapped, they must be
outgoing from the same node v: else, if v loses an outgoing
arc from some arborescence T , then node v no longer has a
way to route to t.

Observation 1. When exactly two arcs e, e′ are swapped in a
given valid arborescence decomposition, both must be outgoing
from the same node v, else at least one arborescence will be
disconnected, i.e., the decomposition is invalid.

Note that we do not need to check the validity of the
arborescence conditions from scratch. It suffices to check if
following the outgoing arcs from v, a sink (node without
outgoing arcs) before or beyond the destination was created
or a cycle was added, as we started with a valid arborescence-
based decomposition. In order to generate a new sink, namely
a node without any outgoing arborescence links, some node
besides the destination must be in some arborescence without
a corresponding outgoing edge. Algorithm 1 does not violate
this condition as both edges are outgoing from v, i.e., no
new sink will be generated. It remains to check for cycles,
which can only appear in the two affected arborescences and
must contain the arc e or e′. Recall that we do not need to
check the 0-arborescence. Hence, we can efficiently validate
a swap by simply following the unique outgoing edges of
the respective arborescence outgoing from v, terminating if
either the original v (cycle) or the destination t is reached.
The length of such a path is limited by the prior depth of the
arborescence, plus an extra hop for the arc e or e′.

Observation 2. Checking if a swap is valid in Algorithm 1 can be
performed in a runtime in the order of the depth of the arborescence,
hence in O(n).

Algorithm 2: Generic Post-Processing Algorithm
Input: valid arborescence decomposition
Output: improved (if possible) decomposition

1 improved← >;
2 while improved do
3 improved← ⊥;
4 for all nodes v ∈ V do
5 for all pairs of outgoing edges e, e′ of v do
6 apply Algorithm 1 to e, e′;
7 if objective function improves then
8 improved← >;
9 else

10 undo swap of e, e′

We now show that Algorithm 2 is correct:

Theorem 2. The algorithmic framework in Algorithm 2 never
introduces cycles and always converges.

Proof: We start with the convergence. During the execu-
tion of the algorithm, the sequence of “best” decompositions
so far, does not contain any repetitions, since a swap is only
kept if the objective function improves. The number of swap-
ping candidates examined in line 4 and 5 is bounded by the
number of edge pairs at all nodes, i.e., n·

(n
2

)
∈ O(n3). Hence,

as the number of different arborescence decompositions are
finite, convergence is guaranteed. Lastly, as edges may only
be swapped if the arborescence conditions are not violated,
we do not introduce any cycles.

As our algorithm framework allows for any objective
function, it might in the worst case try all possible arbores-
cences. For k arborescences, each edge has k+ 1 options, one
extra for not belonging to any arborescence, bounding the
number of decompositions from above by O((k + 1)|E|).

However, we only perform swaps if the objective function
improves, which is beneficial for, e.g., arborescence depth
optimization, where the maximum depth is less than |V | =
n. Hence, even if we need to check all O(n3) edge swap
possibilities each time, at a runtime of O(n) each, we obtain
a polynomial runtime.

Corollary 2. Given some objective function x and a graph G =
(V,E), let x#values(G) be the number of different values x evaluates
to on G over all possible valid arborescence decompositions. If x can
be evaluated in xruntime(n), then the runtime of Algorithm 2 on G
for x is bounded by O(n3) ·max{xruntime(n), O(n)} ·x#values(G).

Depending on the type of optimizations performed, the
complexity of computing the gains can differ: in the traffic
scenario case, the procedure and routing can be simulated;
in the decomposition case, calculating the improvement per
swap involves only the two affected arborescences.

Moreover, we note that our algorithmic framework can
also be generalized to swap multiple (i.e., more than two)
arcs before an improvement of the objective function is
required, even from multiple nodes at once. While the
validity checking remains tractable2, the search space grows
non-polynomially in Algorithm 1. As thus, we limit ourselves
to swapping two edges at once.

2 E.g., check each of the k arborescences from scratch by DFS in θ(kn).
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4 USE CASES AND EVALUATION

Our framework for postprocessing a decomposition can be
configured with different objective functions, depending on
the specific needs. In the following, we discuss and evaluate
different use cases, namely two traffic scenario optimization
use cases (for stretch/load) and two pure network decompo-
sition optimizations (SRLG and independent paths).

For the experimental evaluation we generate 100 in-
stances of undirected (bi-directional) 5-regular random
graphs with 100 nodes with the NetworkX library3 imple-
mentation of Steger and Wormwald’s algorithm [16]. We then
generate the corresponding arborescences, i.e., five for each
graph, picking a random root, and finally optimize those
arborescences for the use cases mentioned above. We then
compare the unoptimized and optimized arborescences by
failing a fraction of the network links picked at random,
and simulate a circular arborescence routing process on
the resulting infrastructure. In circular arborescence routing,
packets follow an arborescence towards a destination until
they either reach their target or encounter a failed link. In the
latter case, they continue on the next available arborescence,
i.e., if a packet has used arborescence Ti up to the failed
link, it will then follow arborescence Ti+1 provided that the
corresponding outgoing link is available, or try arborescences
Ti+2, . . . otherwise.

4.1 Impact of the Original Network Decomposition
We first study the impact of the network arborescence de-
composition algorithm (that is, the input of the optimization
process) on the optimization efficiency, before analyzing the
optimization scenario in more detail. To this end, we first
compare a Random and a Greedy decomposition generation
algorithm, both always find a valid decomposition.4 Random
produces a valid yet randomized set of k arbitrary arbores-
cences, whereas Greedy constructs the arborescences in a way
that ensures that routes are shorter on arborescences with
low indices, while longer detours are accepted for higher
indices, which will only come into play for several failures.
Both of them are described next in more detail.
Random decomposition. An approach, which successfully
builds the arborescences T1, . . . , Tk in order, needs to main-
tain the invariant that the remaining graph has sufficient
connectivity. To this end, when we add an arc (u, v) to the
(partial) arborescence Ti, where (u, v) does not belong to
any Tj , j < i and u /∈ Ti, v ∈ Ti, we check that k − i arc-
disjoint paths remain from u to the root [14]. In the random
decomposition, the choice of the arc (u, v) is random from all
valid candidates, and is turn iterated until the arborescence
Ti contains all nodes, afterwards starting with Ti+1, finishing
when k arborescences are completed. With respect to the
runtime, we can leverage maximum flow algorithms, where
for k arc-disjoint paths, we need k augmenting paths, each in
O(|E|). Hence, as each arc of the O(E) arcs might get tested
O(k) times, the construction finishes in O(|E|2k2).
Greedy decomposition. The greedy decomposition is anal-
ogous to the random decomposition and is used for the
experimental evaluation in [17]. The only conceptual differ-
ence is that instead of choosing randomly from all possible

3 https://networkx.github.io/ 4 Evaluation results for a recent
heuristic [14] are discussed in Section 4.4.
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Fig. 6. Efficiency of stretch optimization when optimizing Random (top)
or Greedy (bottom) arborescences, facing random failures. Each point
represents the median metric value over 100 independent trials. The
shaded area delimits the 10 (resp. 90) quantile values.

arc candidates, we pick one of the arcs that increases the
depth of the current arborescence Ti the least (ideally by 0).
Prior work [17] showed that the greedy decomposition, in
combination with circular rerouting, leads to good failover
performance, as the depth of the arborescences T1, . . . , Tk
increases monotonically. For the runtime, the arc testing can
again be performed in O(|E|k), leading to a total runtime of
O(|E|2k2) as well. This includes the greedy aspect, as each
node can store its current depth and we only have unit arc
weights, else one could implement, e.g., a priority queue.
Stretch comparison. Figure 6 presents the maximum stretch
values recorded before and after stretch optimization. First,
one can observe that the Random arborescence decomposi-
tion (top) performs worse than the Greedy arborescences
decomposition before optimization (bottom): for instance
facing x = 20 random link failures, the median stretch
is 11 for Random and only 5 for Greedy, and 10% of the
samples have a stretch above 22 for Random, and only
above 9 for Greedy. Interestingly, the stretch optimization
is efficient on both structures, producing arborescences that
maintain a lower stretch compared to unoptimized arbores-
cences, especially under high numbers of failures. However,
even when optimized, arborescences originally produced
by Random still perform worse than Greedy arborescences:
the original performance gap between Greedy and Random
is not completely filled by the optimization process. In the
following, we therefore focus on optimizing Greedy network
decompositions.

4.2 Optimization Use Cases
Reducing Route Stretch. A first fundamental objective is
to ensure that failover routes are short. The idea is hence
to perform edge swapping such that route lengths under
failures are reduced. To this end, given a set F of possible
link failures, we postprocess the network decomposition to
minimize the maximum additive route stretch of a subset of
“important” nodes for the case the links F fail.

More specifically, the objective function ensures the
following. Given a subset of nodes that are deemed crucial
and need to send packets to some destination node (the root
of the arborescence) as well as a set of links highly susceptible
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Fig. 7. Resilience, stretch and load worst case performances of greedy structures, before and after improvement, when improvement targets stretch
(left) and load (right), facing random failures. Each point represents the median metric value over 100 indep. trials. Ribbon delimits the 10 (resp. 90)
quantile values.

to failures, the packets should reach the destination even if
all these links or a subset of them failed with short detours.
In other words, as long as an edge swap does not reduce
connectivity (i.e., no pair is disconnected) of circular routing,
we execute the swap if it strictly reduces the maximum
(route length - shortest path) over all pairs under this set of
failures F .

Figure 7 (left) presents the impact of this optimization
approach, measured by three metrics capturing the perfor-
mance of the circular arborescence routing scheme exploiting
the unoptimized and optimized versions of the arborescence
decomposition. The traffic we simulate consist in the sending
of a flow of size 1 by 20% of the network nodes to a random
destination despite a set of 0 to 40 random link failures.5

The first metric is the number of routing failures en-
countered. It shows that both unoptimized and optimized
arborescences manage to keep the number of failures very
low. Even under a high number of failures (e.g. 40), the
median of routing failures is 0 in both optimized and
unoptimized arborescences, only the 10% worst unoptimized
arborescences seem to raise to a low 5% failure rate. The two
next metrics are maximum load and maximum stretch under
the same traffic. While both optimized and unoptimized
arborescences exhibit roughly the same loads, the stretch of
the optimized arborescences is consistently lower than in the
unoptimized case and the quantiles are much narrower. This
shows the efficiency of our stretch optimization. Interestingly,
optimizing the stretch only induces a slight increase in the
load, though one expects a trade-off between stretch and
load. Intuitively, lower stretch induces higher load, as for
low stretch many flows use the same “good” links. For low
load some flows must take detours, so in general optimizing
for low load leads to higher stretch, as we will see in our
next experiments.
Reducing Load. A second fundamental objective is to ensure
that failover routes do not overload the network. To that end,
we propose an objective function similar to the one used
above. Given a set F of possible link failures, we postprocess
the network decomposition to minimize the load, defined as

5 We omit results from other failure set sizes as they exhibit the same
properties

the maximum number of times a link is used due to rerouting
messages for the case the links F fail.

Thus, as long as an edge swap does not reduce con-
nectivity (i.e., no pair is disconnected) of circular routing,
we execute the swap if it strictly reduces the maximum
of additional flow on edges when re-routing over all pairs
under the failure set F .

Figure 7 (right) presents the impact of this optimization,
captured again along 3 metrics assessed by simulating the
sending by 20% of the network nodes of a flow of unit size
to a random node in the network. One can first observe
(top) that this optimization has an impact on the routing
failure rate: before optimizing, some packets do not reach
their destination, but after swapping, the failure rate is 0.

The two next metrics exhibit a mirrored trend compared
to the figure of stretch: optimizing load efficiently reduces
the load in both median and 10% worst cases. This effect
increases with the failure rate, and under a high number of
failures (e.g. 40) the median maximum load drops from 5 to
2 thanks to the optimization. This optimization however
has a slight impact on the stretch, and load-optimized
arborescences exhibit a stretch distribution globally above
the stretch distribution of non-optimized arborescences.

We conclude from both Figures 7 left and right that
optimizing arborescences for load or stretch is efficient, in
the sense that the optimized metric is effectively reduced by
the optimization. Overall, there is only a very small loss in
the un-optimized criteria (stretch degrades when optimizing
load, load degrades when optimizing stretch).

Note that these objective functions were chosen to il-
lustrate the power of our framework for optimizing the
rerouting in a certain traffic scenario. While we picked a
random set of nodes and links to be sources and error-prone
respectively, this approach can be used in traffic engineering
to optimize important scenarios with varying failure sets etc.
Instead of focussing on one optimization criterion like load
or stretch, more complicated objectives that give weights to
certain outcomes can be constructed. Theorem 2 guarantees
that the optimization converges.
Shared Risk Link Groups. Link failures are often interde-
pendent, if links in a network share a common fiber or other
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optimization on 4800 graphs.

physical attributes (e.g., if they are close geographically [12]),
and thus may fail simultaneously. Such dependencies are
known as shared risk link groups SRLGs [11], [12], [13].

Existing arborescence-based network decompositions do
not account for SRLG. In fact, the main objective of most
existing FRR algorithms is to preserve connectivity of up to
k− 1 failures in k-connected networks, no matter where these
failures occur and even if the remaining network remained highly
connected with more failures. Note that a network may keep the
same connectivity despite additional failures, if the failures
do not affect nodes that suffer from reduced connectivity
already.

Accordingly, we show how to use our algorithmic
framework to improve the connectivity provided by an
arborescence-based network decomposition (based on circu-
lar routing), exploiting information about SRLGs. A basic
observation one can make is the following. Since in a k-
connected network, a decomposition can only consist of k
edge-disjoint arborescences, it is generally not possible to
tolerate more than k−1 link failures. Furthermore, if the links
of a large SRLG are distributed across many arborescences,
the failure of this SRLG can easily disrupt connectivity: there
are simply no arborescences left that provide a valid route to
the destination.

However, the situation looks different if we are able
to collocate the links of a SRLG in a small number of
arborescences.6 The failure of this SRLG, even if it is large,
will only affect this arborescence set. When encountering the
first failure in this SRLG, the routing mechanism can then
simply re-route traffic to other arborescences unaffected by
any failures in the same group. The beauty of this approach
lies in the fact that the routing mechanism does not enter the
objective function in this case.

To implement this idea, we can hence exploit our algo-
rithmic framework to swap edges in such a way that links
from an SRLG are assigned to the same arborescences. Thus,
if all these links fail simultaneously, they just affect a small
number of arborescences, independently of the number of

6 In general it is not possible to put an arbitrary set of links into
one single arborescence, e.g., only one directed link of a symmetric
connection can be in one arborescence and from each node there is only
one outgoing link for each arborescence.

Algorithm 3: Postprocessing for SRLG
Input: valid decomposition, SRLG S
Output: s ∈ S belong to Tk−1, Tk (if possible)

1 for each link (u, v) ∈ S do
2 for each v′ s.t. (u, v′) ∈ Tk−1 or Tk do
3 if (u, v′) /∈ S swap((u, v),(u, v′)) valid then
4 break /*inner for-loop*/

failures. All other arborescences stay intact, and are available
in the case of further failures. In particular, we can simply
use the following approach. Given a SRLG, we select two
or more arborescences to contain the SRLG arcs and then
we iterate over all edges in this set, e.g, the two with the
highest index Tk−1, Tk. In this case, we pick an edge (u, v)
in SRLG but not yet in the SRLG arborescences Tk−1 and Tk
and we check for all outgoing links of u whether swapping
the two edges will increase the number of links in the SRLG
to be assigned to Tk−1 or Tk(Algorithm 3). After running this
algorithm, we will have a maximal number of SRLG links
in Tk−1 and Tk. In circular arborescence routing these two
arborescences will be selected last, i.e., after k − 1 failures
occurred and once a packet has encountered two links from
this set it will not be routed to another link of this set unless
k − 2 more failures happen or not all SRLG links have been
assigned to Tk−1, Tk.

Note that the runtime of Algorithm 3 is linear in the
SRLG’s size (which can be much smaller than the network
size n): we can simply try to swap an SRLG link with one of
the outgoing links belonging to the SRLG arborescences.

This scheme can be combined with circular routing by
ensuring that all SRLG arborescences are indexed consecu-
tively and can thus be skipped once a failed SRLG link is
encountered. Moreover at nodes that belong to network parts
with a high likelihood of SRLG link failures can always skip
these arborescences even if no failures occur to increase the
chances of staying clear of them.

To evaluate the effects of our approach, we randomly
generated networks as above and selected random SRLGs of
varying size. We then measured the capacity of our scheme to
move those links towards the last two arborescences. These
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results are represented Figure 8 (left): The fraction of SRLG
links in the last arborescences is constant before optimization
(since SRLG links are picked at random). One can observe
that the optimized arborescences all manage to pack a greater
fraction of the SRLG links into the last arborescences. More
precisely, the algorithm nearly reaches a perfect optimization
when there are few SRLG links (e.g. less than 50). When the
number of SRLG links increases, the algorithms manages to
put proportionally less such links in the last arborescences.
This is due to the last arborescences “saturating”: recall that
those 2 last trees can only contain 200 links in total, and
each must still connect all the nodes, therefore increasing the
difficulty of the optimization.

These results confirm the ability of our algorithmic
framework to optimize arborescences based on SRLG criteria.

Note that SRLGs are not random subsets of edges in
practice. Unfortunately, we could not find a suitable dataset
or other information to construct a more meaningful experi-
ment. Observe that the performance of arborescence-based
FRR for SRLGs depends on the density of the subgraph the
SRLG forms. The more arcs of a node belong to an SRLG the
more arborescences will contain SRLG arcs, even after the
optimization.
Providing Independence. Lastly, we focus on a case study
that concerns the independence of the decomposition. Two
paths are independent if they do not share any nodes except
their source and destination. This property is useful to
deal with node failures where all incident links to a node
fail simultaneously. The more such independent path pairs
exist the more (node failures)-resilient arborescence-based
rerouting can be. In particular, maximal resiliency of k − 1
can be achieved with circular routing if all node pairs use
independent paths in each arborescence.

Note that this node failure case usually cannot be mod-
elled with shared risk link groups as we cannot cover all
incident links to a node with a single arborescence in general.

Figure 8 (right) presents the results of swapping edges
with the objective of increasing the number of independent
paths from all nodes in all arborescence pairs. To measure
how efficiently our approach manages to ensure independent
paths, we generated 4800 random 5-regular graphs with 100
nodes and counted the number of independent paths before
and after optimization. Per instance

(k
2

)
· n = 1000 pairs

are evaluated. This figure shows that before optimization,
all topologies have at least 828 independent paths out of
1000. Thus paths are already independent with a high
probability (949/1000 on average), and that this quantity
varies considerably across networks (high dispersion of
values). After the optimization, pairs are independent with
a high probability (999/1000 on average) in nearly all the
cases (lowest recorded value is 997, 1000 reached in 59% of
the networks). This confirms the ability of our optimization
to produce independent (and therefore more resilient) paths.

4.3 Runtime Analysis

We now turn our attention to the runtime of our optimization
framework. To test this, we measured the wall clock times of
the optimization processes over random regular graphs of
varying sizes and connectivities. The single-threaded code is
executed on a 24-core Intel Xeon E5-2620 platform with 32Gb
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memory. Figure 9 presents the distribution of those results. It
shows that optimizing stretch or load on a 80-nodes topology
takes on average around 750 seconds. Quite surprisingly,
connectivity only has a slight impact on runtime. Runtimes
varies roughly quadratically with topology size (R2 = .89).

4.4 Optimizing Network Decomposition Heuristics
So far in this section, we evaluated our postprocessing
framework on network decomposition algorithms that always
yield a valid output. Recent work [14] also proposed a
heuristic called Bonsai that attempts to generate arborescences
of small depth, with no guarantees if a valid output may be
produced. Notwithstanding, if successful, the question arises
if said arborescences can further benefit by our approach.
Heuristic round-robin decomposition. Bonsai [14] proposes
to build the k arborescences in parallel (round-robin), with the
goal of achieving small (i.e., low depth respectively stretch)
arborescences. This is in contrast to the random and greedy
schemes, which build arborescences sequentially. However,
even though the Bonsai round-robin scheme outperforms
the greedy and random schemes regarding stretch quality
in evaluations in [14], it has the downside that it might not
produce a valid decomposition. To this end, the authors
in [14] propose a further additional swapping heuristic for
Bonsai to boost their success rate, which however cannot
guarantee the output to be valid—unlike the swapping per-
formed in our postprocessing framework, which guarantees
valid arborescences.
Results. Maybe surprisingly, the rate of improvement is quite
similar to the effects described in Section 4.2 for the Greedy
approach. In other words, even though the heuristics in [14]
were already optimized ahead of time, our postprocessing
framework still yielded similar significant improvements for
Bonsai. The plots are shown in Figures 10 and 11.

4.5 Experiments on Real World Graphs
To complement our experiments on synthetic graphs, we also
ran them on well-connected cores of network topologies,
taken from the Topology Zoo data set [18]. We trim the
Topology Zoo graphs s.t. only the well-connected cores
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Fig. 11. Load (left) and stretch (right) performances of Bonsai arborescences [14], before and after improvement, when improvement targets load
(top) or stretch (bottom), facing random failures. Each point represents the median metric value over 100 indep. trials. Ribbon delimits the 10 (resp.
90) quantile values.

remain, as follows. We first contract nodes of bidirected
degree 2 into a single bidirected link. Next, we replace nodes
that have a degree 3 with three edges between the three
affected neighbors. This process is repeated until no more
nodes can be contracted or removed. If the trimming resulted
in less than 10 nodes, we omit them. All 11 topologies
generated like this are of connectivity at least 4. For each
such topology (with 10 to 83 nodes and 54 to 111 edges),
we pick 20 different nodes uniformly at random, selecting
them as a root for the arborescence packings. The results of
the experiments are very similar to the results on synthetic
graphs. In all cases, the optimizations are computed quickly
and yield improvements in the same percentage range as we
have observed on synthetic graphs. As a consequence, we
do not present plots for these graphs.

5 AN EXAMPLE ILP MODEL FOR THE CIRCULAR
ROUTING SCHEME

The existence of a valid circular routing scheme based on
k arc-disjoint spanning arborescences in a given network
graph containing a known set of failed links can also be ana-
lyzed with the aid of Integer Linear Programming (ILP) tools.

To illustrate one of the possible approaches, we formulate
an example mathematical model of the corresponding ILP
optimization problem for path lengths and stretch below.
Please note that the proposed formulation may not be
suitable for medium and large problems due to significant
computational complexity.
Constants:
• A — set of arcs;
• F — set of failed arcs;
• T — set of arc-disjoint arborescences;
• D — set of traffic demands;
• sd — the source node of traffic demand d.

Variables:
• fvwit ∈ B — presence of a unit virtual flow on arc

(v, w) ∈ A associated with arborescence t and source i;
• avwt ∈ B — assignment of arcs to arborescences;
• xvwd ∈ B — presence of a unit data flow associated with

demand d on arc (v, w) ∈ A;
• yvwd ∈ B — presence of a unit virtual flow associated

with demand d on arc (v, w) ∈ A;
• uadt ∈ B — 1 if arborescence t is used by demand d;
• ua indwt ∈ B — 1 if arborescence t is used by demand
d to enter transit node w;
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• ua outdwt ∈ B — 1 if arborescence t is used by demand
d to leave transit node w;

• ua pairsdwtatb ∈ B — 1 if arborescences ta and tb
are used by demand d to enter/leave transit node w,
respectively;

• ld ∈ Z+ — # hops/arcs included in the path used by
demand d;

• lmax ∈ Z+ — # hops/arcs included in the longest path
among all demands;

• psmax ∈ Z+ — maximum path stretch.

The objective function:

min z = lmax + psmax +
∑

(v,w)∈A

∑
d∈D

yvwd +
∑
d∈D

∑
t∈T

uadt+

∑
d∈D

∑
w∈V \{sd,r}

∑
t∈T

(ua indwt + ua outdwt) (2)

Constraints:

∀(v,w)∈A
∑
t∈T

avwt ≤ 1

(1: Arc in one tree)

∀t∈T
∑

(v,w)∈A

avwt = n− 1

(2: Spanning arborescence)

∀i∈V \{r}∀t∈T
∑

(w,i)∈A

fwiit −
∑

(i,w)∈A

fiwit = −1

(3: Tree sources)
∀i∈V \{r}∀v∈V \{i,r}∀t∈T :∑

(w,v)∈A

fwvit −
∑

(v,w)∈A

fvwit = 0

(4: Tree balance)

∀i∈V \{r}∀t∈T
∑

(w,r)∈A

fwrit −
∑

(r,w)∈A

frwit = 1 (5: Tree sink)

∀i∈V \{r}∀(v,w)∈A∀t∈T fvwit ≤ avwt

(6: Tree assignment)

∀d∈D
∑

(v,w)∈A:w=sd

xvwd −
∑

(w,v)∈A:w=sd

xwvd = −1

(7: Traffic sources)

∀d∈D∀w∈V \{r,sd}
∑

(v,w)∈A

xvwd −
∑

(w,v)∈A

xwvd = 0

(8: Traffic balance)

∀d∈D
∑

(v,r)∈A

xvrd −
∑

(r,v)∈A

xrvd = 1

(9: Traffic destination)
∀d∈D∀t∈T ∀(v,w)∈A xvwd + avwt ≤ 1 + uadt

(10: Traffic used trees)
∀d∈D∀t∈T ∀(v,w)∈A:w/∈{sd,r} :

xvwd + avwt ≤ 1 + ua indwt

(11: Traffic inbound trees)
∀d∈D∀t∈T ∀(w,v)∈A:w/∈{sd,r} :

xwvd + awvt ≤ 1 + ua outdwt

(12: Traffic outbound trees)

∀(v,w)∈F
∑
d∈D

xvwd = 0

(13: Traffic skip failed arcs)

∀d∈D ld =
∑

(v,w)∈A

xvwd

(14: Traffic path length)
∀d∈D lmax ≥ ld

(15: Traffic the longest path)
∀d∈D∀w∈V \{sd,r}∀ta,tb∈T :ta<tb∧tb−ta>1 :

ua indwta + ua outdwtb ≤ 1 + ua pairsdwtatb
(16: Non-consecutive trees A)

∀d∈D∀w∈V \{sd,r}∀ta,tb∈T :ta>tb∧k−(ta−tb)>1 :

ua indwta + ua outdwtb ≤ 1 + ua pairsdwtatb
(17: Non-consecutive trees B)

∀d∈D∀w∈V \{sd,r}∀ta,tb∈T :ta<tb∧tb−ta>1 :∑
(w,v)∈A∩F

∑
ti∈T :ti>ta∧ti<tb

awvti ≥ (tb − ta − 1) · ua pairsdwtatb
(18: Prohibited rerouting A)

∀d∈D∀w∈V \{sd,r}∀ta,tb∈T :ta>tb∧k−(ta−tb)>1 :∑
(w,v)∈A∩F

∑
ti∈T :ti>ta∨ti<tb

awvti ≥ (k − [ta − tb]− 1) · ua pairsdwtatb
(19: Prohibited rerouting B)

∀d∈D
∑

(v,w)∈A:w=sd

yvwd −
∑

(w,v)∈A:w=sd

ywvd = −1

(20: Reference paths sources)

∀d∈D∀w∈V \{r,sd}
∑

(v,w)∈A

yvwd −
∑

(w,v)∈A

ywvd = 0

(21: Reference paths balance)

∀d∈D
∑

(v,r)∈A

yvrd −
∑

(r,v)∈A

yrvd = 1

(22: Reference paths destination)

∀(v,w)∈F
∑
d∈D

yvwd = 0

(23: Reference paths skip failed arcs)

∀d∈D psmax ≥ ld −
∑

(v,w)∈A

yvwd

(24: Max path stretch)

The mathematical formulation presented above includes
the necessary elements to model the following features:
• finding the set of k arc-disjoint spanning arborescences

rooted at node r in a given network graph;
• routing traffic flows associated with user demands d,

originating at the corresponding source nodes sd and
terminating at the root node;

• the circular routing scheme;
• computation of the shortest paths in the graph contain-

ing failed links;
• minimization of both the maximum path stretch and the

maximum path length.
In this example, the primary objective is to minimize

the maximum path length among all traffic demands (lmax),
while also minimizing the maximum path stretch, psmax.
The remaining terms in Formula (2) guarantee that the
corresponding binary variables are set to 0, unless the
positive value is required to satisfy the constraints.

The first group of constraints (1: Arc in one tree) guaran-
tees that each arc in the network graph belongs to at most
one of k arc-disjoint spanning arborescences covering the
graph. Then, constraints (2: Spanning arborescence) ensure
that the arborescences contain exactly n− 1 arcs each. To be
able to construct valid arborescences in the graph, we rely
on virtual unit flows and we introduce the corresponding
flow conservation constraints in groups (3: Tree sources)-
(5: Tree sink). The first of the three groups is related to
sources of virtual flows, the second — to transit nodes
(virtual flows must be forwarded without losses), and the
third group — to the destination. As an example, if variable
fvwit equals 1, it means that arc (v, w) ∈ A associated
with arborescence t carries the unit flow from the source
node i to the destination (the root node of the arborescence,
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r). Constraints (6: Tree assignment) assign arcs to particular
arborescences based on the values of fvwit for all possible
indices.

Transmission of user data is modeled in a similar way
— we introduce the corresponding flow conservation con-
straints in groups (7: Traffic sources)-(9: Traffic destination),
relying on binary variables xvwd describing the presence
of the unit data flow associated with demand d on arc
(v, w) ∈ A. Note that we do not model the load of particular
arcs in the current ILP formulation. Variables xvwd may
also be used to determine the path associated with each
demand. Failed links cannot be used by data flows, which is
guaranteed by constraints (13: Traffic skip failed arcs). The
lengths of the resulting forwarding paths are set by con-
straints (14: Traffic path length), whereas the maximum ob-
served path length among all traffic demands is determined
based on inequalities (15: Traffic the longest path). Note that
the value of lmax is minimized.

To be able to enforce the deterministic circular
routing scheme in the network, we first determine which
arborescences are used to forward traffic associated with
particular demands — see constraints (10: Traffic used trees).
In the next step, as it is important to track which
arborescences are used to enter and leave a transit node
on the flow’s path, we introduce the corresponding
constraints in groups (11: Traffic inbound trees)-
(12: Traffic outbound trees). Then, we eliminate
the forbidden combinations of used arbores-
cences, which is enforced by the following
groups of constraints (16: Non-consecutive trees A)-
(19: Prohibited rerouting B).

Finally, to be able to minimize the maximum path stretch
among all user demands d in the network graph containing
failed links (arcs belonging to the set F ), we first introduce
additional virtual unit flows to find the shortest paths
between the source nodes sd and the root node r, and
then, we determine the maximum path stretch based on the
difference in length between the actually used paths (circular
routing) and the reference paths (the shortest paths avoiding
the failed links). The corresponding constraints are defined in
groups (20: Reference paths sources)-(24: Max path stretch).

The example formulation presented above can be mod-
ified in different ways, according to specific needs. For
instance, only a subset of constraints and variables might be
considered to find k arc-disjoint spanning arborescences in
a given graph.

6 RELATED WORK

Link failures are the norm rather than the exception in
large networks, and have recently led to several outages,
as reported in, e.g., [19], [20], [21], [22]. Many existing
robust routing mechanisms in the literature, while tolerating
multiple concurrent failures, involve the control plane and
are hence slow. A well-known example are link reversal
algorithms [23], [24], [25], [26], which require dynamic
router tables and long convergence times, quadratic in
the number of nodes [27]. While there exist interesting
approaches to implement link reversal algorithms also in the
data plane [6], they do not affect the other main drawbacks of
link reversal algorithms. Many solutions in the literature also

rely on packet-header rewriting [28], [29], [30], [31] or packet-
duplication [32]. However, the former consumes header
space and the latter introduces additional loads, which is
undesirable. Another approach in the literature pre-computes
multiple paths s.t. even in the event of multiple failures, the
ingress switches can reroute the traffic efficiently without
additional computational overhead [33]. Notwithstanding,
packets currently en route on a failure-ridden path are not
protected by such schemes.

We in this paper are interested in static fast rerouting
algorithms in the data plane, which rely on precomputed
failover rules and do not require packet header rewriting.
Our model is hence closely related to the papers by Feigen-
baum et al. [34], Chiesa et al. [7], [8], Elhourani et al. [29] and
Stephens et al. [35], [36] which all study reachability even
under multiple failures. In contrast to our work, however,
they do not account for performance aspects of the computed
failover paths.

The work in [37] provides stretch guarantees for some spe-
cial graph classes, such as Hypercubes, Tori, Grids, and Clos-
/BCube-topologies, but does not apply to general networks,
the focus of this paper. There is also work on algorithms for
constructing (implicit) network decompositions with certain
properties from scratch [14], [38], [39], [40]. Except [14], all
approaches require to match also the packet source, not
only the in-port, and some of them rely on computationally
expensive preprocessing (to compute block designs). [14]
proposes a heuristic that attempts to produce arborescences
of small depth, which may not always succeed. That said,
we see both works as orthogonal, as our approach in this
paper could be leveraged to optimize also the network
decompositions described in these papers. The approach
in [38] is also less general than our framework, and can e.g.,
not be used to account for special failure scenarios, such
as shared risk link groups, simultaneous geographically-
correlated failures of multiple network elements [41], or
requirements of communication pairs. Indeed, while shared
risk link groups (and their characterization) has been studied
intensively in the literature, e.g., see [12]. We are not aware
of any work on accounting for such risk groups in state-of-
the-art decomposition-based FRR mechanisms.

Finally, we note that our results also have applications
in other contexts, such as multicasting, which also rely on
arborescence decompositions [42], [43], [44].

7 CONCLUSION

This paper was motivated by the computational challenges
involved in computing network decompositions which do
not only provide basic connectivity but also account for the
quality of routes after failures. We proposed and evaluated
a simple solution which improves an arbitrary network
decomposition, using fast postprocessing, in terms of basic
traffic engineering metrics such as route length and load.
Furthermore, we showed that our framework can also be
used to improve resiliency for shared risk link groups: an
important extension in practice.

We understand our work as the first step and believe
that it opens several interesting avenues for future research.
In particular, it will be interesting to study alternative
postprocessing algorithms, and derive formal performance
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guarantees for them. It would also be interesting to study
further use cases for our framework, beyond the ones given
in this paper, e.g., for SRLGs combined with load and stretch.

Lastly, in order to guarantee reproducibility and facil-
itate other researchers to build upon our algorithms, our
code is publicly available at https://gitlab.cs.univie.ac.at/ct-
papers/fast-failover.
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