
Load-Optimization in Reconfigurable Networks:
Algorithms and Complexity of Flow Routing⇤

Extended Abstract

Wenkai Dai Klaus-Tycho Foerster David Fuchssteiner Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria

{wenkai.dai, klaus-tycho.foerster, david.alexander.fuchssteiner, stefan schmid}@univie.ac.at

ABSTRACT
Emerging reconfigurable data centers introduce the unprece-

dented flexibility in how the physical layer can be programm-

ed to adapt to current tra�c demands. These reconfigurable

topologies are commonly hybrid, consisting of static and re-

configurable links, enabled by e.g. an Optical Circuit Switch

(OCS) connected to top-of-rack switches in Clos networks.

Even though prior work has showcased the practical benefits

of hybrid networks, several crucial performance aspects are

not well understood.

In this paper, we study the algorithmic problem of how to

jointly optimize topology and routing in reconfigurable data

centers with a known tra�c matrix, in order to optimize a

most fundamental metric, maximum link load. We chart the

corresponding algorithmic landscape by investigating both

un-/splittable flows and (non-)segregated routing policies.

We moreover prove that the problem is not submodular for

all these routing policies, even in multi-layer trees, where a

topological complexity classification of the problem reveals

that already trees of depth two are intractable.

However, networks that can be abstracted by a single

packet switch (e.g., nonblocking Fat-Tree topologies) can be

optimized e�ciently, and we present optimal polynomial-

time algorithms accordingly. We complement our theoret-

ical results with trace-driven simulation studies, where our

algorithms can significantly improve the network load in

comparison to the state of the art.

Keywords
reconfigurable networks, demand-awareness, matchings

1. INTRODUCTION
Data centers nowadays empower everyday life in aspects

such as business, health, industry, but also science and so-

cial interactions. With the rise of related data-intensive

workloads as generated by machine learning, artificial intel-

ligence, and the distributed processing of big data in general,

data center tra�c is growing rapidly [33], evoking consider-

able interest in data center design [29].

Herein the emergence of a programmable physical layer,
enabled by optical circuit switches [13, 37], free-space op-

⇤
Supported by the European Research Council (ERC), grant

agreement No. 864228 (project AdjustNet).

Copyright is held by author/owner(s).

tics [8], or beamformed wireless connections [21], leads to

intriguing new possibilities, as leveraging fully electrically

packet switched networks “is increasingly cost prohibitive
and likely soon infeasible” [28]. Extensive past work has al-

ready shown significant benefits of such reconfigurable data

center networks [17], but the underlying complexity is not

well understood [6]. For example, many works artificially

restrict their flow routing policies to be segregated between

programmable and static network parts, aiming to place ele-

phant flows on reconfigurable links [15].

Whereas some general algorithmic results exist w.r.t. la-

tency [7, 14, 16, 19, 24] or specific tra�c patterns [36], com-

plexity questions of network design for the objective of load-

optimization are mostly uncharted. An exception is the

work by Yang et al. [40], which focuses on the hardness

induced by wireless interference, and the work by Zheng et

al. [42], who study intractability on general graphs.

At the same time, link load is a most central performance

metric [21], and flow routing in traditional networks has

been investigated for decades already [2]. We are thus mo-

tivated by the desire to take the first steps towards fun-

damentally understanding the network design problem for

load-optimization in data center networks, jointly consider-

ing flow routing and (interference-free) physical layer pro-

grammability enabled by, e.g., optical circuit switches.

Contributions. This paper investigates network design

of load-optimization in reconfigurable networks with optical

circuit switches, leveraging the flexibility of emerging pro-

grammable physical layers for flow routing. We study the

problem of multiple dimensions, from splittable to unsplit-

table flows, to fully flexible (non-segregated) versus segre-

gated routing policies. We summarize the results as follows:

1. Complexity: We prove strong NP-hardness for these

four routing policies on trees of any height not less

than two. Moreover, all four problem settings are not

submodular w.r.t. load-optimization, preventing com-

mon approximation techniques.

2. Algorithms: In turn, we give polynomial-time optimal

algorithms for the hybrid switch model [36], which ap-

plies to non-blocking data center interconnects as, e.g.,

Fat-Trees. To this end we leverage a combination of

subset matching results and topology-specific insights.

3. Evaluations: Our workload-driven simulations (using

real-world and synthetic traces) show that our algo-

rithms significantly improve on state of the art meth-

ods, decreasing the maximum load by 1.6⇥ to 2.0⇥.

Performance Evaluation Review, Vol. 48, No. 3, December 2020 39

a

b

cd e

20

20

66

(a) A hybrid network N

a

b

cd e

12

12

6 6
8

(b) Reconfiguration M1 = {{a, b}, {d, e}}

a

b

cd e

10

10

10

10

44 4

(c) Reconfiguration M2 = {{d, b}, {a, e}}

Figure 1: Illustration of the load-optimization reconfiguration problem with a hybrid network N of five nodes {a, b, c, d, e},
four static links (drawn solid) and four reconfigurable links (dashed).

2. MODEL AND PRELIMINARIES

Network model. Let N = (V,E, E , C) be a hybrid net-

work [26,36] connecting the n nodes V = {v1, . . . , vn} (e.g.,

top-of-the-rack switches), using static links E (usually con-

nected by electrical packet switches), meanwhile N also con-

tains a set of reconfigurable (usually optical) links E . The

graph (V,E [E) is a bidirected
1
graph such that two direc-

tions of each bidirected link {vi, vj} 2 E (resp. {vi, vj} 2 E)
work as two (anti-parallel) directed links (vi, vj) and (vj , vi)

respectively. Let
−!
E (resp.

−!E) denote the set of correspond-

ing directed links of E (resp. E). Moreover, a function

C :
−!
E [−!E 7! R+

defines capacities for both directions of

each bidirected link in E [E . Note that (V,E [E) can be a

multi-graph, e.g., when a reconfigurable link in E also con-

nects two endpoints of a static link in E.

Reconfigured Network. We say that a hybrid network

N is reconfigured by a reconfigurable switch if some recon-

figurable links M ✓ E , which must induce a matching,2

are configured (implemented) to enhance the static network

(V,E). The enhanced network N (M) obtained by inte-

grating the configured links M with the static links E of

the hybrid network N is called a reconfigured network, i.e.,
N(M) = (V,E [M). The set of configured (bidirected)

links M , i.e., a matching, is called a reconfiguration of N .

Topologies. Our network model does not place a restric-

tion on the underlying static topology and hence can be ap-

plied generally. Notwithstanding, for our hardness results

in §3, already simple trees suffice, whereas our positive al-

gorithmic results cover many data center topologies (§4).
Tra�c Demands. The resulting network should serve a

certain communication pattern, represented as a |V | ⇥ |V |
communication matrix D := (dij)|V |⇥|V | (demands) with

non-negative real-valued entries. An entry dij 2 R+
rep-

resents the traffic load (frequency) or a demand from the

node vi to the node vj . With a slight abuse of notation, let

D(vi, vj) = dij hereafter.

Routing Models. In a reconfigured network, for each de-

mand, unsplittable routing requires its flows being sent along

a single (directed) path, while splittable routing does not

restrict the number of paths used for sending its flows; Seg-

1
Symmetrical connectivity is the standard industry assump-

tion for static cabling, however for reconfigurable links as

well. Outside highly experimental hardware, o↵-the-shelf

products use full-duplex connections and this model assump-

tion is hence prevalent, even in FSO [8].
2
In other words, no two links in M are adjacent or share

an endpoint, enforced by hardware constraints in practice

(exclusive connections between ports).

regated routing requires flows being transmitted on either

static links or configured links, but non-segregated routing

admits to sending flows on a path consisting of both config-

ured and static links [13, 37]. Hence, we have four di↵erent
routing models: Unsplittable & Segregated (US), Unsplittable
& Non-segregated (UN), Splittable & Segregated (SS), and
Splittable & Non-segregated (SN).

2.1 Load Preliminaries

Load Optimization. Given a reconfigured network N(M)

and demands D, let f :
−!
E [−!

M 7! R+
be a feasi-

ble flow serving demands D in N(M) under a routing

model ⌧ 2 {US,UN,SS, SN}. The load of each directed

link e 2 −!
E [−!

M induced by the flow f is defined as

L (f (e)) := f (e) /C (e), and then the maximum load is de-

fined as Lmax(f) := max

n
L (f(e)) : e 2 −!

E [−!
M

o
. There

must be an optimal flow fopt such that its maximum load

is minimized for all feasible flows serving D on N(M). Such

an optimal flow is called a load-optimization flow in N(M).
3

Load-Optimization Reconfiguration Problem. Given

a hybrid network N , a routing model ⌧ 2 {US,UN,SS, SN},
and demands D, the ⌧ -load-optimization reconfiguration
problem is to find an optimal reconfiguration M ✓ E , to

generate an optimally reconfigured network N(M), where

the maximum load of load-optimization flow is minimized.

Example. To illustrate the ⌧ -load-optimization reconfigu-

ration problem, we give a small example in Figure 1. Fig. 1a

depicts the network before any reconfiguration. We con-

sider the routing model ⌧ = SN and a capacity function

8e 2 −!
E [−!E : C(e) = 20, with the six demands: D (a, b) = 8,

D (a, c) = 6, D (c, b) = 6, D (d, b) = 6 and D (a, e) = 6. In

Fig. 1a, each flow can only be routed along static links, cre-

ating a link load of 20/20 = 1 on, e.g., (a, c) with three de-

mands of size 8, 6, 6 from a. To improve the maximum link

load, a greedy algorithm adds the links {a, b} in Fig. 1b.

Now, the demand D (a, b) = 8 is routed directly, reducing

the maximum load to just 0.6, which cannot be improved

further without undoing this first greedy choice.

Notwithstanding, we can improve the maximum load fur-

ther. To this end, we select {a, e} and {d, b} to reconfigura-

tion, as shown in Fig. 1c. At first, this might seem counter-

intuitive, as D (a, e) and D (d, b) are only of size 6 each,

leaving a load of 0.7 on the links (a, c) and (c, b). However,

the demand D (a, b) = 8 can be routed indirectly, via the

path {a, e, c, d, e}, yielding an optimal link load of 0.5.

3
We note that in other works with analogous defini-

tions, load might also be denoted by utilization, and load-

optimization by load-balancing.

40 Performance Evaluation Review, Vol. 48, No. 3, December 2020

3. COMPLEXITY

In this section we consider the underlying complexity of

the load-optimization problem in reconfigurable networks.

We begin with the investigation of NP-hardness, and then

discuss the submodularity for our objective functions.

3.1 Intractability

We state the conclusions of NP-hardness w.r.t. these

four routing models in Theorem 1, where the strong NP-

hardness is shown by reductions from the strongly NP-hard

3-Partition problem [18], and the weak NP-hardness is ob-

tained from the weakly NP-hard 2-Partition problem [18].

Theorem 1. The ⌧ -load-optimization reconfiguration
problem, where ⌧ 2 {US,SS,UN,SN}, is strongly NP-hard
when the static network (V,E) of the given hybrid network
N is a tree of height h ≥ 2. Furthermore, for ⌧ = UN,
the ⌧ -load-optimization reconfiguration problem is weakly
NP-hard if (V,E) is a star (a tree of height h = 1).

3.2 Non-Submodularity

The submodularity of objective functions plays an impor-

tant role in approximating optimization problems [35], as

by Venkatakrishnan et al. [36] for hybrid switch networks.

However, their objective function does not consider load-

balancing and therefore does not apply in our setting.

Objective functions. We investigate the submodularity

of the objective function Φ of a ⌧ -reconfiguration problem,

where for any matching M 2 2
E
, Φ (M) 2 R+

denotes the

maximum load of a load-optimization flow in the reconfig-

ured network N (M). Moreover, we are also interested in the

submodularity of the objective function ⌦. For a match-

ing M 2 2
E
, ⌦ (M) 2 R+

denotes the di↵erence between

the maximum load of a load-optimization flow serving D in

the static network (V,E) and the maximum load of a load-

optimization flow in the reconfigured network N (M).

Theorem 2. For ⌧ 2 {US, UN, SS, SN}-reconfiguration
problems, objective functions Φ and ⌦ are not submodular.

4. HYBRID SWITCH NETWORKS

As shown, already simple tree networks of height h ≥ 2 are

intractable, and optimizations leveraging submodularity are

impossible. This raises the question if we can obtain optimal
and polynomial-time algorithms for meaningful settings.

4.1 Non-Blocking Data Center Topologies

Common data center topologies have trees of height 2 as

subgraphs or minors and hence seem like bad candidates for

efficient algorithms at first glance. However, already early

designs adapted from telecommunications such as Clos [10]

topologies have a so-called non-blocking property, which we

can use to our advantage. An interconnecting topology C
is non-blocking, if the servability of a flow from v1 to v2

via C only depends on the utilization of the links (v1, C)
and (C, v2): “such an interconnect behaves like a crossbar
switch” [41]. Non-blocking interconnects have become pop-

ular data center topologies [3] in particular in the form of

folded Clos networks or Fat-Trees [25], depicted in Fig. 2a:

the actual topology inside the interconnect (marked in a

blue rectangle) is immaterial and we only need to consider

the links incident to the nodes.
4

4
We note that the non-blocking property can also be re-

stricted to keep distributed routing schemes in mind, we

refer to Yuan [41] for an in-depth discussion.

Switch Switch

Switch Switch Switch Switch

Node Node Node Node Node Node Node Node

Switch Switch

Switch Switch Switch Switch

Packet Switch

(a)

Circuit
Switch

Packet
Switch

Node 1

Node 2

Node 3

Node i

...

Node i+ 1

Node i+ 2

Node i+ 3

Node n

...

(b)

Figure 2: Illustration of a Fat-Tree network in 2a and a

hybrid switch network in 2b, as in [29]. Due to the non-

blocking property of network in 2a, we can abstract the in-

terconnect enclosed by the blue box as a packet switch, as

depicted in 2b. Additionally, a hybrid switch network also

contains a reconfigurable circuit switch (e.g. an OCS) that

provides a matching of the nodes, to be optimized for the de-

mands D. Hence, augmenting a Fat-Tree by an OCS can be

investigated from the viewpoint of hybrid switch networks.

As thus, for our purposes, we can abstract the data center

interconnect C (which can be understood as a packet switch)

by a single center node c, leaving our previous intractabil-

ity considerations behind. We hence turn our attention to

hybrid switch networks as considered by of Venkatakrishnan

et al. [36], which are represented by a packet and a circuit

switch connected to all nodes, see Fig. 2b.

4.2 Optimization of Hybrid Switch Networks

We formalize our algorithm in Algorithm 1, which opti-

mally solves the ⌧ -reconfiguration problem on hybrid switch

networks (HSNs). Due space constraints, we only provide an

informal analysis for the following Theorem 3 in this paper.

Theorem 3. Algorithm 1 solves the {US,SS,SN}-recon-
figuration problem optimally on HSNs in O

(
n
4
log n

)
.

Let a hybrid switch network N = (V,E, E , C) be recon-

figured by an optimal matching M ✓ E , then each reconfig-

urable link {vi, vj} 2 M introduces a triangle Gij that is a

subgraph of N(M) induced by three nodes Vij = {c, vi, vj , },
where c is the central node (packet switch). Clearly, the

center c is the unique cutting vertex to disconnect Gij from

N (M). We can define local demands Dij only for nodes of

Gij (lines 4-9 in Algorithm 1). Then, for each {vi, vj} 2 M ,

we can compute a load-optimization flow fij serving Dij

in Gij in a constant time, which also determines the lo-

cally maximum load Lmax (fij) for Gij . Let fopt be a load-

optimization flow serving D in N (M). It is easy to know

that each edge e in Gij has fopt (e) = fij (e). Let fold be a

flow serving D in the static network (V,E) of N before re-

configuration. We note that the minimized maximum load

Lmax (fopt) can occur at one edge inside a triangle or a static

link not in any triangle. Thus, Lmax (fopt) can be deter-

mined by a binary search for the locally maximum load of

each triangle and each link load of fold.

Performance Evaluation Review, Vol. 48, No. 3, December 2020 41

Algorithm 1: Algorithm for Hybrid Switch Net-

works

Input : A hybrid switch network N = (V,E, E , C),

where the static network (V,E) is a star

with the center c 2 V , demands D, and a

routing model ⌧ 2 {US, SS, SN};
Output: A reconfiguration M and a

load-optimization flow fopt of N(M) or

“null”;

1 let fold :
−!
E 7! R+

be a flow serving D on (V,E);

2 let T :=

n
L (fold (e)) : e 2 −!

E

o
and S = ;;

3 for each reconfigurable link {vi, vj} 2 E do
4 let Gij be a triangle on nodes Vij = {vi, vj , c},

where {c, vi}, {c, vj} 2 E and {vi, vj} 2 E ;
5 8u 2 {vi, vj} define local demands Dij for Gij :

6 Dij (u, c) =
P

v2V \{Vij} D (u, v);

7 Dij (c, u) =
P

v2V \{Vij} D (v, u);

8 Dij (vi, vj) = D (vi, vj);

9 Dij (vj , vi) = D (vj , vi);

10 compute a load-optimization flow fij for Dij and

⌧ in the triangle Gij in O(1) time;

11 T = T
S
{Lmax (fij)};

12 S = S
S

{({vi, vj} , Lmax (fij))};
13 foreach threshold t 2 T do
14 create a graph G

?
= (V,E

?
), where E

?
= ;;

15 for each static link e = {vi, c} 2 E do
16 if its load L (fold (e)) > t then
17 mark the node vi 2 V ”red” in G

?
;

18 for each pair ({vi, vj} , Lmax (fij)) 2 S do
19 if the value Lmax (fij)  t then
20 add the edge {vi, vj} into G

?
;

21 if a RTM matching M exists in G
? then

22 obtain a load-optimization flow ffinal on the

reconfigured network N(M) for D and ⌧ ;

23 return a matching M and fopt;

24 return “null”;

When Lmax (fopt) is known, we know that a leaf node

vi 2 V must be included in a triangle in N (M) if its static

link {vi, c} has fold ({vi, c}) > Lmax (fopt), otherwise the op-

timum Lmax (fopt) cannot be satisfied. Therefore, we mark

such nodes vi as ”red”, which means that each node must

be covered by a reconfigurable link. Any reconfigurable link

{vi, vj} 2 E would be selected into M if the locally maxi-

mum load of its triangle no larger than Lmax (fopt). Now, the

remaining task becomes solving the problem of Red-Target

Matching (RTM) to find an optimal matching (reconfigura-

tion) M , where we employ a maximum-weight matching.

Definition 1 (Red-Target Matching (RTM)).
Given a graph G = (V,E) and a coloring l : V 7! {r, b}, to
find a matching M of G such that each node v 2 V having
the color l(v) = r is contained in an edge of M .

Improvement bounds. As we can see, in hybrid switch

network N , for any two nodes vi and vj , there is a unique

path before reconfiguration; and there are at most two edge-

disjoint paths between vi and vj in any reconfigured network

N (M). Therefore, given a hybrid switch network N , de-

mands D and a routing model ⌧ 2 {US, UN, SS, SN}, by
leveraging e.g. an OCS, the maximum load can at most be

decreased by a factor of two after reconfiguration.

Competitivity of matching algorithms. We next inves-

tigate the theoretical performance of a maximum matching

algorithm, as e.g. utilized in [37]. The heuristic idea based

on a maximum matching is that for each reconfigurable link

{u, v} 2 E , we send all flows of demands D(u, v) and D(v, u)

on links (u, v) and (v, u) respectively, then to find a max-

imum matching to maximize total size of flows on a set of

configured links M . As it turns out, such an optimization

might yield nearly no benefit, even though an optimal algo-

rithm could hit the theoretical lower bound of
1
2
.

5. EVALUATIONS
In order to study the performance of our algorithms un-

der realistic workloads, we conducted extensive experiments

with a simulator, which we will release together with this

paper (as open source code). In particular, we benchmark

our hybrid switch algorithms against several state of the

art maximum matching and greedy baselines, considering a

spectrum of packet traces on hybrid switch topologies as in

Fig. 2. We first describe our methodology in §5.1 and then

discuss our results in §5.2.

5.1 Methodology
Baselines. We consider the following baselines and imple-

mented the corresponding algorithms for comparison. First,

we compare our hybrid switch network algorithms (denoted

by HSN-US/SN) with a Maximum Weight Matching al-

gorithm as a baseline, where routing occurs either on di-

rect reconfigurable links or via the central packet switch.

The matching algorithm is employed, e.g., by [13, 37] and

is also optimal with respect to the average weighted path

length [15] in this instance. Second, we also compare to a

Greedy approach used by, e.g., Halperin et al. [21] and Zheng

et al. [42]. For the link e that currently has the highest load,

we check for the largest flow that can be rerouted on a direct

connection, and o✏oad it from the electrically switched net-

work parts. This process is iterated until the load cannot be

reduced further, where di↵erent links e can be chosen in each

iteration. Lastly, we additionally plot the maximum load on

the network before reconfiguration (labelled as Oblivious).

Tra�c Workloads. Traffic traces in di↵erent networks and

running di↵erent applications can di↵er significantly [5,9,19,

23,31]. We collected real-world and synthetic datasets from

which we generate traffic matrices to evaluate and compare

the performance of our algorithms. In particular, Datacen-

ter traces from Facebook [31], HPC traces from the CESAR

backbone [1], and synthetic pFabric traces [4].

Experimental Setup. All considered topologies, ranging

from 40 to 3000 nodes, employ hybrid switch networks as

in Fig. 2b. We repeat each setting by running it 5 times

and display the averaged results, normalizing the workload

in the static topology. For the runtime, we plot the average

values in seconds, but also display minimum and maximum

values by shading. Our simulations were run on a machine

with two Intel Xeons E5-2697V3 SR1XF with 2.6 GHz, 14

cores
5
each and a total of 128 GB RAM. The host machine

5
However, each algorithm only utilized a single core.

42 Performance Evaluation Review, Vol. 48, No. 3, December 2020

(a) Database Cluster: Max Load (b) Database Cluster: Runtime (c) Hadoop Cluster: Max Load (d) Hadoop Cluster: Runtime

Figure 3: Algorithmic comparison of the maximum load and runtime for di↵erent Facebook clusters

was running Ubuntu 18.04.3 LTS. We implemented the al-

gorithms in Python (3.7.3) leveraging the NetworkX library

(2.3). For the implementation of the maximum matching

algorithm we used the algorithm provided by NetworkX.

5.2 Results and Discussion
We discuss all results in text, but only plot the results for

Facebook traces up to 1000 nodes, due to space constraints.

Potential for Load Optimization. All algorithms sig-

nificantly improve the load over the Oblivious baseline and

provide relatively stable benefits throughout all scenarios

investigated. Among these algorithms, the HSN algorithms

typically clearly outperform the others.

More specifically, for the database clusters, the reduction

in the maximum load provided by the HSN-SN algorithm

is almost a factor of two throughout the spectrum. For the

Hadoop clusters, the performance of HSN-SN slightly de-

creases, but still achieves ⇡ 60% of the original Oblivious

load up until a network size of 1000 and then stays stable

at ⇡ 70% beyond. The three remaining algorithms (Greedy,

Max. Weight Matching, and our HSN-US) achieve nearly

identical values, with Greedy and HSN-US being slightly

better. Above 1000 nodes, we observe that their capability

to further reduce the load is quite restricted. Notwithstand-

ing, they always perform significantly worse than HSN-SN,

resulting in a comparatively load-increase of ⇡ 60%.

Regarding the HPC traces, we can observe similar results

as in the Database Cluster, in terms of maximum load re-

duction. Also for the pFabric traces, our HSN-US algorithm

achieves a lower maximum load compared to the Greedy or

Max. Weight Matching. Here, the variance is slightly higher

than in the other experiments; this matches empirical obser-

vations on the complexity of the traces produced by these

synthetic traces [5].

In regard to the maximum load reduction, we conclude

that our HSN-SN algorithm is quite stable w.r.t. to the

number of nodes in the network. In contrast to that, Max.

Weight Matching and the Greedy algorithm asymptotically

approach the maximum load of the unconfigured network.

Runtime Performance. The best runtime is generally

achieved by the Greedy algorithm, due to its early termina-

tion when no link can be added anymore. Our experiments

show that in the case of the Greedy algorithm, this is unfor-

tunately happening very early on. Regarding the runtime of

the the Max. Weight Matching, we want to emphasize that

the algorithm is unaware of the underlying problem of re-

ducing the maximum link load. Therefore, a lot of runtime

is actually wasted without achieving any further load reduc-

tion. In comparison to Max. Weight Matching, our HSN-US

has a similar runtime, while spending all of it searching for

the best load reduction matching.

HSN-US is consistently faster than HSN-SN, and the lat-

ter features quite a high variance in runtime. Notwithstand-

ing, HSN-US has the benefit of only routing along single

paths, which can be beneficial for performance metrics be-

yond load [32, 40]. On the other hand, such issues can be

alleviated with specialised multipath procotols [12, 30,38].

Summary. While all algorithms provide load reductions,

the extent of these optimizations and the required runtime

di↵er significantly. Our results suggest that the load opti-

mizations provided by HSN-US might prove beneficial over

other segregated routing strategies, particularly because of

its low runtime which is comparable to that of the Max.

Weight Matching. We conclude that when considering both

potential load reduction and runtime, HSN-SN provides a

better tradeo↵ than HSN-US.

6. SELECTED RELATED WORK
While most related work on flow routing in data center

networks focuses on non-reconfigurable topologies [29], re-

configurable topologies have recently received more atten-

tion. Algorithmic complexity aspects however are still not

well understood, and we refer to [6,17] for an overview. Per-

formance guarantees for scheduling traffic matrices with spe-

cific skew were obtained by Venkatakrishnan et al. [36] lever-

aging submodularity, a condition that does not hold in our

setting. Load-optimization in reconfigurable data centers

was recently studied by Yang et al. [40], who investigated

the impact of wireless interference on cross-layer optimiza-

tion. We see our work as orthogonal, as we only consider

inherently interference-free technologies.

Another interesting line of work is by Zheng et al. [42],

who study how to enhance the design of Diamond, BCube

and VL2 network topologies with small reconfigurable

switches, inspired by Flat-Tree [39]. They target maximum

link load as well, and present intractability results on gen-

eral graphs, although these results do not transfer to specific

data center topologies or trees, respectively. However, they

do not analyze di↵erent routing models and their greedy

Performance Evaluation Review, Vol. 48, No. 3, December 2020 43

algorithms not provide formal performance guarantees.

That being said, even though our work is mostly mo-

tivated by technologies emerging in data center networks,

it also applies to other reconfigurable technologies, as long

as they fulfill our model properties. Fundamentally di↵er-

ent however are reconfigurable optical wide-area networks,

where fiber is fixed, but wavelengths can be adjusted for e.g.

bulk-transfers [11,22,27] and reliability concerns [20,34].

7. CONCLUSION
We investigated load minimization in reconfigurable hy-

brid networks, leveraging the flexibility of emerging pro-

grammable physical layers. We studied the underlying prob-

lem complexity, presented efficient optimizations for special

cases, and complemented our results with simulations.

8. REFERENCES
[1] Characterization of the doe mini-apps.

portal.nersc.gov/project/CAL/doe-miniapps.htm,

2016.

[2] R. K. Ahuja et al. Network flows - theory, algorithms
and applications. Prentice Hall, 1993.

[3] M. Al-Fares et al. A scalable, commodity data center

network architecture. In SIGCOMM, 2008.

[4] M. Alizadeh et al. pfabric: minimal near-optimal

datacenter transport. In SIGCOMM, 2013.

[5] C. Avin et al. On the complexity of traffic traces and

implications. In SIGMETRICS, 2020.

[6] C. Avin and S. Schmid. Toward demand-aware

networking: a theory for self-adjusting networks.

Comput. Commun. Rev., 48(5):31–40, 2018.

[7] C. Avin and S. Schmid. Renets: Statically-optimal

demand-aware networks. In APOCS. SIAM, 2021.

[8] N. H. Azimi et al. Firefly: a reconfigurable wireless

data center fabric using free-space optics. In

SIGCOMM, 2014.

[9] T. Benson et al. Network traffic characteristics of data

centers in the wild. In IMC. ACM, 2010.

[10] C. Clos. A study of non-blocking switching networks.

Bell System Technical Journal, 32(2):406–424, 1953.

[11] M. Dinitz and B. Moseley. Scheduling for weighted

flow and completion times in reconfigurable networks.

In INFOCOM, 2020.

[12] A. A. Dixit et al. On the impact of packet spraying in

data center networks. In INFOCOM, 2013.

[13] N. Farrington et al. Helios: a hybrid electrical/optical

switch architecture for modular data centers. In

SIGCOMM, 2010.

[14] T. Fenz et al. Efficient non-segregated routing for

reconfigurable demand-aware networks. Computer
Communications, 164:138 – 147, 2020.

[15] K.-T. Foerster et al. Characterizing the algorithmic

complexity of reconfigurable data center architectures.

In ANCS, 2018.

[16] K.-T. Foerster et al. On the complexity of

non-segregated routing in reconfigurable data center

architectures. Comput. Comm. Rev., 49(2):2–8, 2019.

[17] K.-T. Foerster and S. Schmid. Survey of reconfigurable

data center networks: Enablers, algorithms,

complexity. SIGACT News, 50(2):62–79, 2019.
[18] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[19] M. Ghobadi et al. Projector: Agile reconfigurable data

center interconnect. In SIGCOMM, 2016.

[20] J. Gossels et al. Robust network design for ip/optical

backbones. J. Opt. Com. Netw., 11(8):478–490, 2019.

[21] D. Halperin et al. Augmenting data center networks

with multi-gigabit wireless links. In SIGCOMM, 2011.

[22] X. Jin et al. Optimizing bulk transfers with

software-defined optical WAN. In SIGCOMM, 2016.

[23] S. Kandula et al. The nature of data center traffic:

measurements & analysis. In IMC, 2009.

[24] J. Kulkarni et al. Scheduling opportunistic links in

two-tiered reconfigurable datacenters. In ArXiv
Technical Report, 2020.

[25] C. E. Leiserson. Fat-trees: Universal networks for

hardware-efficient supercomputing. IEEE Trans.
Computers, 34(10):892–901, 1985.

[26] H. Liu et al. Scheduling techniques for hybrid

circuit/packet networks. In CoNEXT, 2015.

[27] L. Luo et al. Deadline-aware multicast transfers in

software-defined optical wide-area networks. IEEE J.
Sel. Areas Commun., 38(7):1584–1599, 2020.

[28] W. M. Mellette et al. Expanding across time to deliver

bandwidth efficiency and low latency. In NSDI, 2020.

[29] M. Noormohammadpour and C. S. Raghavendra.

Datacenter traffic control: Understanding techniques

and tradeo↵s. IEEE Commun. Surveys Tuts.,
20(2):1492–1525, 2018.

[30] C. Raiciu et al. Improving datacenter performance and

robustness with multipath TCP. In SIGCOMM, 2011.

[31] A. Roy et al. Inside the social network’s (datacenter)

network. In SIGCOMM. ACM, 2015.

[32] S. Sen, D. Shue, S. Ihm, and M. J. Freedman.

Scalable, optimal flow routing in datacenters via local

link balancing. In CoNEXT, 2013.

[33] A. Singh et al. Jupiter rising: a decade of clos

topologies and centralized control in google’s

datacenter network. Comm. ACM, 59(9):88–97, 2016.

[34] R. Singh et al. Radwan: Rate adaptive wide area

network. In SIGCOMM, 2018.

[35] V. V. Vazirani. Approximation Algorithms. Springer,
Berlin, Heidelberg, 2001.

[36] S. B. Venkatakrishnan et al. Costly circuits,

submodular schedules and approximate carathéodory

theorems. Queueing Syst., 88(3-4):311–347, 2018.

[37] G. Wang et al. c-through: part-time optics in data

centers. In SIGCOMM, 2010.

[38] D. Wischik et al. Design, implementation and

evaluation of congestion control for multipath TCP. In

NSDI. USENIX Association, 2011.

[39] Y. Xia et al. A tale of two topologies: Exploring

convertible data center network architectures with

flat-tree. In SIGCOMM, 2017.

[40] Z. Yang et al. Achieving efficient routing in

reconfigurable dcns. ACM POMACS, 3(3), 2019.

[41] X. Yuan. On nonblocking folded-clos networks in

computer communication environments. In IPDPS,
2011.

[42] J. Zheng et al. Dynamic load balancing in hybrid

switching data center networks with converters. In

ICPP, 2019.

44 Performance Evaluation Review, Vol. 48, No. 3, December 2020

