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Abstract
Modern communication networks support fast path restoration mechanisms which allow to reroute
traffic in case of (possibly multiple) link failures, in a completely decentralized manner and without
requiring global route reconvergence. However, devising resilient path restoration algorithms is
challenging as these algorithms need to be inherently local. Furthermore, the resulting failover paths
often have to fulfill additional requirements related to the policy and function implemented by the
network, such as the traversal of certain waypoints (e.g., a firewall).

This paper presents local algorithms which ensure a maximally resilient path restoration for a
large family of product graphs, including the widely used tori and generalized hypercube topologies.
Our algorithms provably ensure that even under multiple link failures, traffic is rerouted to the other
endpoint of every failed link whenever possible (i.e. detouring failed links), enforcing waypoints and
hence accounting for the network policy. The algorithms are particularly well-suited for emerging
segment routing networks based on label stacks.
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1 Introduction

Communication networks have become a critical infrastructure of our society. With the
increasing size of these networks, however, link failures are more common [2, 10], which
emphasizes the need for networks that provide a reliable connectivity even in failure scenarios,
by quickly rerouting traffic. As a global re-computation (and distribution) of routes after
failures is slow [21], most modern communication networks come with fast local path
restoration mechanisms: conditional failover rules are pre-computed, and take effect in case
of link failures incident to a given router.
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Devising algorithms for such path restoration mechanisms is challenging, as the failover
rules need to be (statically) pre-defined and can only depend on the local failures; at the
same time, the mechanism should tolerate multiple or ideally, a maximal number of failures
(as long as the underlying network is still connected), no matter where these failures may
occur. Furthermore, besides merely re-establishing connectivity, reliable networks often must
also account for additional network properties when rerouting traffic: unintended failover
routes may disrupt network services or even violate network policies. In particular, it is often
important that a flow, along its route from s to t, visits certain policy and network function
critical “waypoints”, e.g., a firewall or an intrusion detection system, even if failures occur.

Today, little is known about how to provably ensure a high resiliency under multiple
failures while preserving visits to waypoints. This paper is motivated by this gap. In
particular, we investigate local path restoration algorithms which do not only provide a
maximal resilience to link failures, but also never “skip” nodes: rather, traffic is rerouted
around failed links individually, hence enforcing waypoints [1].

1.1 Related Work

Motivation. Resilient routing is a common feature of most modern communications net-
works [6], and the topic has already received much interest in the literature. However, most
prior research on static fast rerouting aims at restoring connectivity to the final destination,
without considering waypoint properties as in our work. Such waypoint preservation is
motivated by the advent of (virtualized [11]) middleboxes [4], respectively local protection
schemes in Multiprotocol Label Switching (MPLS) terminology [26], and by the recent
emergence of Segment Routing (SR), where routing is based off label stacks – more precisely
by the label on top of the stack [24], which is treated as the next routing destination.

Path restoration. Only little is known today about static fast rerouting under multiple
failures, while preserving waypoints. In TI-MFA [16], it has been shown that existing solutions
for SR fast failover, based on TI-LFA [20], do not work in the presence of two or more failures.
However, TI-MFA [16] and non-SR predecessors [22] rely on failure-carrying packets, which
is undesirable as discussed before and we overcome in the current paper.

For the case of two failures, heuristics [9] exist, but they do not provide any formal
protection guarantees, except for torus graphs [23]. Beyond a single failure [20] in general
and two failures on the torus [23], we are not aware of any approaches that work in our
model, except for a recent work on binary hypercubes [17]. However, it is not clear how to
extend [17] to e.g. generalized hypercubes, and the approach followed in this paper presents
a more generic scheme for the Cartesian product of any set of base graphs, as long as
“well-structured” base graph schemes are provided.

Connectivity restoration without waypoints. Static fast failover mechanisms without way-
points are investigated by Chiesa et al. [5,7,8] leveraging arc-disjoint network decompositions,
also by Elhourani et al. [10], Stephens et al. [27,28], and Schmid et al. [3,14,15,18,19,25]. Bey-
ond that, the concept of perfect resilience (any number of failures) is investigated in [12,13,29].
Even though it is possible to provide Ω(k)-resilience in k-connected graphs, this guarantee
pertains only to reaching the destination, and does not transfer to link protection.
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1.2 Contributions
We initiate the study of local (i.e., immediate) path restoration algorithms on product graphs,
an important class of network topologies. More specifically, our algorithms are 1) resilient to
a maximum number of failures (i.e., are maximally robust), 2) respect the (waypoint) path
traversal of the original route (by detouring failed links), and 3) are compatible with current
technologies, and in particular with emerging segment routing networks [24]: our algorithms
do not require packets to carry failure information, routing tables are static, and forwarding
just depends on the packet’s top-of-the-stack destination label and the incident link failures.

Our main result is an efficient scheme that can provide maximally resilient backup paths
for arbitrary Cartesian product of given base graphs, as long as “well-structured” schemes
are provided for the base graphs. Using complete graphs, paths, and cycles as base graphs,
we can generate maximally resilient schemes for additional important network topologies
such as grids, tori, and generalized hypercubes.

1.3 Organization
The remainder of this paper is organized as follows. We first introduce necessary model
preliminaries in Section 2, followed by our main result in Section 3, where we provide a
general scheme to compute maximally resilient path restoration schemes for product graphs.
We then show how our scheme can be leveraged for specific graph classes in Section 4, for
the selected examples of complete graphs, generalized hypercubes, grids, and torus graphs.
We conclude our study in Section 5 with a few open questions.

2 Preliminaries

We consider undirected graphs G = (V, E) where V is the set of nodes and E is the set of
links connecting nodes.

I Definition 1. A backup path (a.k.a. replacement path) for a link ` ∈ E is a simple path
that connects the endpoint of the link `. Let P be the set of all backup paths in a graph. An
injective function BPG : E → P that maps each link to one of its backup paths is a backup
path scheme.

We may drop the subscript when the graph G is clear from the context. When a packet
arrives at a node and the next link on its path is some failed link `1, the node (i.e., router)
immediately reroutes the packet along the backup path of `1, given by BP(`1). The packet
may encounter a second failed link `2 ∈ BP (`1). Now assume `1 ∈ BP(`2). The packet
loops between the two links indefinitely as one link lies on the BP of the other. To this
end, we need to characterize backup paths that do not induce such infinite forwarding loops
under any subset of simultaneous link failures restricted only in cardinality. Before that, we
formalize the actual route that a packet takes under the “failure scenario” L.

I Definition 2. Given any subset of links L ⊂ E, a detour route around a link ` ∈ L,
denoted by RG(`, L), is obtained by recursively replacing each link in BPG(`) ∩ L with its
respective detour route. Precisely,

RG(`, L) = (BPG(`) \ L) ∪
⋃

`′∈BPG(`)∩L

RG(`′, L). (1)

Moreover, 1) BPG is resilient under the failure scenario L if and only if ∀` ∈ L, the detour
RG(`, L) exists, i.e., the recursion terminates, and
2) BPG is f -resilient if and only if it is resilient under every L ⊂ E s.t. |L| ≤ f .

OPODIS 2020
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In words, when a packet’s next hop is across the failed link ` ∈ L, it gets rerouted along the
route RG(`, L) which ends at the other endpoint of ` hence evading all failed links. A BP
scheme is f -resilient if for every subset of up to f failed links, replacing each failed link with
its backup path produces a route that excludes failed links. The replacement process from a
packet’s perspective occurs recursively as in (1). A packet ends up in a loop permanently
when it encounters a failed link for which the detour (1) does not exist. Then, the scheme is
f -resilient if a packet that encounters a failed link reaches the other endpoint of the link by
traversing the BP of that link and the BP of any consequent failed link that it encounters
along the way.

Definition 2 implies that we cannot have a resiliency higher than graph connectivity, since
L may simply consist of all links incident to one node which makes a detour impossible.

I Definition 3. An f -resilient backup path scheme BPG is maximally resilient if and only if
there is no (f + 1)-resilient scheme.

Next, we introduce the notion of “dependency” on which we establish some key definitions
used widely in the analysis of resiliency in our proofs.

I Definition 4. We say there is a dependency relation `→ `′ if and only if the link ` includes
the link `′ on its backup path, i.e., `′ ∈ BPG(`). We represent all dependency relations as a
directed dependency graph D(BPG) with vertices {v` | ` ∈ G} and arcs {(v`1 , v`2) | `1 → `2}).
BPG induces the dependency graph D(BPG).

We denote a dependency arc (v`1 , v`2) by (`1, `2) for simplicity. Any backup path scheme
BPG induces cycles in D(BPG), as otherwise there is a link without any BP assigned to it.
We refer to one such cycle as cycle of dependencies or CoD for short. Similarly, we define
path of dependency or PoD for short.

Observe that a CoD captures a failure scenario that leads to a permanent loop. Rewording
Definition 2, BPG is f -resilient if and only if every CoD is longer than f , i.e., it consists of at
least f + 1 dependency arcs. Hence, CoDs with the shortest length determine the resiliency
and we refer to them as min-CoDs.

Next, we introduce some additional notations and definitions based on Definition 4. Let
CoD(v) denote the CoD over links incident to v ∈ V . We consider maximally resilient
schemes for special regular graphs which implies CoD(v) is unique. Note that non-incident
links may induce (min-)CoDs as well. We focus on special regular graphs and resiliency
thresholds that are maximal for the connectivity (or the degree) of the those graphs. Then,
a min-CoD cannot be shorter that the degree of the respective regular graph, which implies
CoD(v) is unique for every node v.

In Section 3, we present a backup path scheme for certain k-dimensional product graphs,
by generalizing the solution presented in [17] on binary hypercubes (BHC ). A k-dimensional
BHC is the Cartesian product of any set of BHCs where dimensions add up to k. A product
graph G is the Cartesian product of base graphs in {g1, . . . , gk}. That is, G =

∏
d∈[k] gd

where
∏

denotes the Cartesian product and each gd is the base graph in dimension d.
Let nd := |V [gd]|, d ∈ [k] denote the order of gd. Nodes in a product graph are repres-
ented as k-tuples (ak, . . . , a1) where ∀d ∈ [k] : 0 ≤ ad < nd. Likewise, we assume labels
(ak, . . . , ad−1, ∗, ad+1, . . . , a1) for links where their endpoint nodes differ in their dth digit
(i.e., dth component) which is represented by the ‘*’.
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3 Resiliency for Cartesian Product

We now introduce an algorithm to compute a maximally resilient scheme for special product
graphs. More specifically, the algorithm takes the scheme of each base graph and combines
them in a way that yields a scheme for the Cartesian product of those base graphs. However,
it requires each individual scheme to possess some structural properties. We begin with the
characterization of these properties.

We can break a CoD open into a PoD by removing one of its arcs, which is achieved by
removing the head link of an arc from the BP of its tail link.

I Definition 5. An r-resilient backup path scheme BPG is well-structured if and only if
there is a set of boundary links L∗ that for every node v contains a unique link incident to
v, satisfying the following conditions.
1. There is a unique CoD C∗ that consists only of links in L∗.
2. The following procedure breaks all CoDs.

a. For every link ` 6∈ L∗ s.t. BPG(`) ∩ L∗ 6= ∅;
i. There are exactly two nodes x1 and x2 on BP (`),
s.t. L∗(x1), L∗(x2) ∈ BP (`).

ii. Remove every link of BP (`) between x1 and x2, i.e. the subpath BP (`)[x1, x2].
b. To break C∗, pick one arc (`′, `∗) ∈ C∗ arbitrarily and remove `∗ from BPG(`′).

3. At least r arcs are left in every CoD (not removed at 2(a)ii).

Intuitively, these conditions mandate a choice of L∗ that for every CoD, the packet that
realizes the CoD traverses a boundary link. Removing the arc headed at such link breaks the
CoD open into a PoD. We refer to such arc as a feedback arc. Later, we close the PoD into a
new CoD that is induced by the scheme of a product graph for which G is a “base graph”.

Concretely, Definition 5 constrains the set L∗ in a way that for every CoD one of the
following two cases must apply. Case 1. The CoD may contain an arc headed to a link in L∗.
Then removing the head link from the BP of the tail link is sufficient to break the CoD. Case
2. The CoD may not contain any link in L∗ as the tail or head of some arc, but it contains
an arc (`1, `2), `2 6∈ L∗ that the packet departing from either endpoints of `1, traversing
BPG(`1), has to traverse some link in L∗ before reaching `2. The procedure (at line 5.2(a)ii),
removes not only links of L∗ from the BP but also the link `2, since it lies between x1 and
x2. Note that Case 1 applies also to the unique CoD C∗ which is handled separately at 5.2b.

Next, we establish a lemma that constructs a walk on all nodes of G, using a given BP
scheme and the corresponding set of boundary links.

I Lemma 6. Assume a well-structured scheme BPG and a set of links L∗ satisfying Definition
5 are given. There exists a closed walk W on all nodes of G that 1) visits each node v ∈ G

immediately before traversing the link L∗(v), and 2) links in L∗ are traversed in the same
order they are traversed by C∗.

Proof. The following procedure marks every node in G with FINISHED as soon as a visit
to v is followed by walking the link L∗(v).
1. W = ∅.
2. Let w0 := v. Initialize with the last traversed boundary link `∗ = L∗(w0). Let {w0, w1} :=

`∗, then initialize the walk W = [w0, w1].
3. Repeat:

a. Assume W = [w0, w1, . . . , wt] is the current walk, L∗(wt) = {wt, u} and let `′wt
:=

{wt, u′} ∈ BPG(`∗), u′ 6= wt−1.

OPODIS 2020
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b. If wt−1 = u ∧ wt 6= wt−2 then wt+1 = u.
c. Else, wt+1 = u′.
d. If wt+1 = u then `∗ = `wt and mark wt with FINISHED.
e. If wt = w0 ∧ {w0, w1} ∈ BPG(`∗) then Break.

The walk W begins with the link L∗(w0). Then it proceeds to the next link on the
backup path of the last traversed link `∗ ∈ L∗ at Line 3c (initially `∗ = `w0), or it traverses
the recently walked link {wt−1, wt} in the opposite direction at Line 3b (i.e., from wt to
wt−1). By assumption, any ` ∈ L∗ is on the backup path of some `′ ∈ L∗ and (`′, `) ∈ C∗BPG

.
Therefore, the loop at Line 3 reaches an iteration where the last traversed `∗ ∈ L∗ includes
L∗(w0) on its backup path, which breaks the loop at Line 3e. The last visited node must
be w0 implying W is a closed walk. Whenever W reaches a node wt and L∗(wt) is on the
backup path of the last traversed `∗ ∈ L∗, then it next traverses L∗(wt) for the first time
at Line 3c in one direction, or for the second time at Line 3b in the reverse direction. In
either case, L∗(wt) is walked immediately after a (FINISHED) visit to wt. At the end, both
endpoints of every link in L∗ are marked FINISHED and since

⋃
`∈L∗ ` = V [G], all nodes are

marked FINISHED. J

We will use the walk in the construction of the scheme for a multi-dimensional graph where
G is the base graph in some dimension. The walk is used to guide backup paths of links in
other dimensions when they need to traverse the dimension of G.

3.1 The Construction
For every base graph gd, we assign node labels 0, . . . , nd − 1 such that nodes are ordered as
they are FINISHED in Lemma 6. I.e., the first node FINISHED gets 0, the second one gets 1
and so on. Assume, for each gd ∈ G, a well-structured, rd-resilient backup path scheme BPgd

together with a boundary set L∗BP
gd
⊆ E[gd] is given. Let us fix a circular order over base

graphs, e.g., g1, . . . , gd. A node v := (a1, . . . , ak) ∈ G corresponds to the adth node in the
dth base graph gd, d ∈ [k].

Let incd(1, . . . , ak) denote the (successor) function that takes a node in G, increments the
dth digit, applies any carry flag rightward rotating left, and discards any carry back to the
dth digit. Observe that for a fixed d ∈ [k], the function incd+1 defines a total order over all
instances of gd. We denote the ith instance by gd

i . We write gd
i (instead of gd) only when we

refer to a specific gd-instance. similarly, ` ∈ G is a gd-link if it is an instance of a link in gd.
Let vd

i (x) denote the mapping V [gd] 7→ V [gd
i ] ⊆ V [G], where vd

i (x) is the ith instance
of the node x ∈ gd. Then, vd

i+1(x) = incd+1(vd
i (x)). Similarly, for a path (i.e., subset) of

nodes P , we have vd
i (P ) = ∪v∈P vd

i (v). We use vd
i whenever the node x is not relevant to the

context. Next, we compute a path P ∗(vd
i ) = {vd

i , . . . , vd
i+1}, that connects vd

i and vd
i+1 in G

through the sequence of base graphs gd+1, gd+2, . . . . The intermediate nodes are determined
by digits incremented during the operation incd+1(vd

i ). Algorithm 1 depicts this procedure.
We initialize the scheme for every gd-instance with a copy of BPgd , i.e., ∀i : BPgd

i
= BPgd .

Then, we integrate BPgd
i
into BPG by extending backup paths of links that contain or traverse

a boundary link, i.e., links that are tail of some feedback arc. Consider any feedback arc
(`, `′) ∈ ABP

gd
i

(C). Since `′ ∈ BPgd
i
(`), we can break C by extending BPgd

i
(`) into a backup

path that does not traverse `′ (i.e., detours `′). We detour `′ = {x1, x2} via a pair of walks
through gd+1

i , gd+1
i , . . . that reaches the next instance of gd

i , i.e., the instance given by incd+1.
That is, the paths P ∗(vd

i (x1)) and P ∗(vd
i (x2)). By reconnecting vd

i+1(x1) and vd
i+1(x2)

through gd
i+1, we finish the construction of the extended backup path. In Algorithm 2, we

use notations and constructions defined so far to describe the integration of all BPgd
i
’s into

one scheme BPG .
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Algorithm 1 Construction of P ∗(vd
i ), vd

i = (a0, . . . , ak−1).

1: function P ∗(vd
i )

2: P = {vd
i }, v = vd

i , d′ = d + 1, carry = 1 . initialize
3: while carry > 0 ∧ d′ 6= d do . emulating incd+1(v)
4: if ad′ < nd′ − 1 then
5: v[d′] = v[d′] + 1, carry = 0 . increment the d′th digit
6: else
7: v[d′] = 0, carry = 1
8: d′ = (d′ + 1) (mod k) . move to the next digit, rotating left
9: P = P ∪ {v} . append v to P

return P

Algorithm 2 Construction of BPG .

1: Initialize BPG = ∅
2: for every d ∈ [k] and all instances gd

i do
3: BPgd

i
= ForBaseGraph(d, i)

4: BPG =
⋃

d∈[k],i BPgd
i

5: function ForBaseGraph(d, i)
6: Initialize BPgd

i
= BPgd , relabel all nodes from x ∈ gd to vd

i [x] ∈ gd
i .

7: Let Ld
i := L∗ of BPgd

i
(Definition 5)

8: for every ` ∈ gd
i , 6∈ Ld

i s.t. BPgd
i
(`) ∩ Ld

i 6= ∅ do . Definition 5.2a
9: Let x1 and x2 be nodes as specified in Definition 5.2(a)i. . detour points

10: S := BPgd
i
(`)[x1, x2] . the part of BP to be removed

11: S∗ := incd+1(S) . the copy of S in the next gd-instance gd
i+1

12: Compute P ∗(x1) and P ∗(x2) . Algorithm 1
13: P ′` := (P` \ {S}) ∪ {S∗} ∪ P ∗(x1) ∪ P ∗(x2)
14: BPgd

i
(`) = P ′`

return BPgd
i
(`)

I Definition 7. Let `1 := {u, v} ∈ gd′

i , `2 := {u′, v′} ∈ gd′

j , j 6= i. We say that the dependency
arc (`1, `2) traverses the base graph gd, d 6= d′ if and only if `1 and `2 differ in their dth digits.
Moreover, if the dth digit from `1 to `2 increases by 1 then we say the arc traverses gd in
uphill direction. Otherwise the dth digits resets to zero and the arc traverses gd in downhill
direction.

Restating Definition 7, two packets departing from the two endpoints of `1 traveling on the
backup path of `1 together traverse a pair of links in two gd-instances (symmetrically), before
reaching `2 ∈ BPgd

i
(`1). The pair of gd-links are distinct instances of the same link in gd

and they are traversed in the same direction due to the symmetric construction of the pair
of paths at Line 2.12. That is, either towards their higher endpoint (i.e. larger dth digit),
which we refer to as the uphill direction, or the opposite (downhill) direction.

I Definition 8. We say an arc (`1, `2), `1 ∈ gd′

i `2 ∈ gd
j crosses gd if the two links belong to

different base graphs, i.e. d′ 6= d, or both are in the same gd-instance, i.e. d = d′ and i = j.

OPODIS 2020
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Similarly, we say a PoD (CoD) traverses or crosses gd if it includes an arc that, respectively,
traverses or crosses gd. Therefore, if a PoD does not cross gd-link then it means it does not
contain any gd-link as the head of an arc. We emphasize that by construction, an arc either
crosses or traverses a base graph gd.

I Definition 9. An arc (`1, `2) ∈ C is the contribution of gd in one these cases: it crosses
gd, it traverses gd in the uphill direction, or `2 is a gd-link and the arc traverses all other
dimensions in the downhill direction.

By Definition 9 every arc is the contribution of a unique base graph.

3.2 Analysis of Resiliency
We begin with a series of lemmas that show each base graph contributes its resiliency to the
resiliency of BPG .

I Lemma 10. Let P be a PoD induced by BPG that traverses gd in the uphill direction
at least once and it does not cross gd. Then, there exists a PoD P̃ induced by BPgd that
consists of the links in L∗BP

gd
that are traversed by P s.t. |P | ≥ |P̃ |.

We defer the proof to the appendix due to space constraint.

Proof. We have |C| ≥ |C̃| by applying Lemma 10. Then the claim follows because of the
assumption that BPgd is rd-resilient, which directly implies |C̃| ≥ rd + 1. J

I Lemma 11. Let P := {(`first , `1), . . . , (`s, `last)} be a PoD induced by BPG. Assume
`first ∈ gd

i and `last ∈ gd
j are the only gd-links on P for some i and j. Let `′first, `′last ∈ gd be

the corresponding links in gd. Then there exists a PoD P̃ induced by BPgd that begins with
`′first and ends at `′last s.t. |P | ≥ |P̃ |.

Proof. By assumption, P begins with an arc tailed at `first ∈ gd
i . Let (`first, `′) be the

feedback arc induced by BPgd
i
that is picked at Line 2.9 and then is handled by detouring

a boundary link `′ ∈ L∗
gd

i

via gd
i+1 at Lines 2.9 to 2.14. Let A ⊆ P be the set of arcs in P

that traverse gd in the uphill direction. Note the dth digit changes only along arcs in A and
remains unchanged along arcs P \A. We construct a PoD P̃ over a subset of boundary links
in L∗gd , as follows. The first arc in P̃ is (`first, `′). With each arc in A, the dth digit increases
by 1 from its tail to its head. Recall that the value of this digit is a node label in gd, and an
increment by 1 corresponds to traversing a boundary link of gd. Consider arcs in A sorted
in the order they appear in P . Let `∗ ∈ L∗BP

gd
be the boundary link traversed by the first

arc in A (possibly, `∗ = `′). Let P ′ := P \ {(`first , `1), (`s, `last}. By assumption, P ′ does not
cross gd and therefore it begins at `∗ and ends at `∗∗, the boundary link traversed by the
last arc in A. we consider two cases.

Case i) `last is a boundary link, i.e., `last ∈ L∗gd , then we apply Lemma 10 to P ′ and
we obtain a PoD P ′′, |P ′′| ≤ |P ′|, over the boundary links traversed by A. (1) Due to
Line 2.12 and Lemma 6.2, arcs in A traverse boundary links of BPgd in the same order
they appear in C∗BP

gd
. (2) The dth digit does not change, from the head of the last arc

in A until the arc headed at `s. Combining (1) and (2) implies that `last succeeds `∗∗

in this ordering and therefore (`∗∗, `last) ∈ C∗BP
gd

is an arc induced by BPgd . Thus, P̃ :=
{(`first , `∗)}∪P ′′∪{(`∗∗, `last)} is a PoD (induced by BPgd) and |P | = |P ′|+2 ≥ |P ′′|+2 = |P̃ |,
which satisfies the lemma.
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Case ii) `last is not a boundary link, i.e., `last 6∈ L∗gd . Let wt the value of the dth digit at
`s. The walk WBP

gd
from Lemma 6 visits the node wt ∈ gd immediately before traversing

the incident boundary link `∗∗ := L∗gd(wt) (Line 6.3d). The pair of paths computed at Line
2.12 traverse nodes of gd (i.e., values of the dth digits along the paths) in the same order
as they are walked on by WBP

gd
. This means that BPG(`s) traverses (some two instances

of) `∗∗ before any other link in gd, in particular, before `last . Therefore `∗∗ ∈ BPG(`s) and
(`s, `∗∗) is an arc induced by BPG . Then, P ′ := P \ {(`s, `last)} ∪ {(`s, `∗∗)} is a PoD as well.
By Lemma 6.3, the walk WBP

gd
, after traversing `∗∗, walks on BPgd(`∗∗) until the next

boundary link is reached. Hence, `last is on this backup path and (`∗∗, `last) is an arc induced
by BPgd . is a PoD induced by gd. Now, similarly to the case (i), we remove the first and the
last arcs in P ′ and obtain a PoD P ′′ that does not cross gd. By applying Lemma 10 to P ′′, we
obtain a PoD P ∗ induced by gd s.t. |P ∗| ≤ |P ′′|. Thus, P̃ := {(`first , `∗)} ∪P ∗ ∪ {(`∗∗, `last)}
is a PoD induced by gd and |P | = |P ′| = |P ′′| + 2 ≥ |P ∗| + 2 = |P̃ |, which concludes the
lemma. J

I Theorem 12. The backup path scheme BPG is (∆− 1)-resilient where ∆ =
∑

d∈[k](rd + 1).

Proof of Theorem 12. Consider any CoD C induced by BPG . We shrink G down to a single
instance of gd denoted by g̃d. To this end, we map all nodes in G with equal dth digit, to
one node s ∈ g̃d. As a result, links between nodes with equal dth digits merge into a single
node, which transforms them into loop links. We remove all arcs having a loop link as an
endpoint and denote the remaining arcs by C′. Since gd is rd-resilient, gd contributes up to
rd + 1 arcs to C; we argue that the contribution is exactly rd + 1 arcs.

If C consists of gd-links only (i.e., endpoints of every arc in C have different dth digits),
then all arcs in C are preserved (i.e. not removed) after the transformation, which implies
C′ is a CoD in g̃d and |C| ≥ |C′| ≥ rd + 1. However, some arcs in C′ are projection of arcs
in C that are not the contribution of gd (Definition 9). They traverse some gd′ , d′ 6= d in
the uphill direction and hence are exclusively the contribution of gd′ . These are the same
arcs eliminated at Line 5.2(a)ii. Definition 5.3 guarantees at least rd non-eliminated arcs left
which implies at least rd + 1 arcs in C′ cross gd and are its contribution. There must be one
arc that traverses all dimensions except d in the downhill direction, which means in total
there are at least rd + 1 arcs contributed from gd.

Else, if C does not contain cross gd-link, then it only traverses gd. Recall that traversing
gd is guided by the closed walk constructed in Lemma 6 and with each (FINISHED) visit
to nodes there is an increment, i.e. an uphill traversal. Hence, gd in this case contributes a
number of arcs equal to the number of FINISHED visits, which in turn is the number of its
nodes, or |V [gd]| ≥ rd + 1.

Else, C both traverses and crosses gd. Then there are links with equal dth digits at their
endpoints which shrink into loop links. We remove all arcs (`′, `′′) ∈ C′ where `′ or `′′ is a
loop link, as well as loop arcs. As a result, parts of C′ along which the dth digit does not
change, is eliminated and C′ is segmented into separate PoDs. Let S ⊂ C′ denote the set of
remaining arcs (tails and heads of which in g̃d). Notice that arcs in S form disconnected
PoDs. Moreover, for each PoD P ⊆ S, the tail of the first arc and the head of the last arc
belongs to g̃d. The remaining arcs (which do not include any gd-link) are in S := C \ S. Due
to the segmentation of C, S forms disconnected PoDs, each beginning with an arc tailed at a
link in g̃d and ends at an arc headed at link in g̃d. Since these PoDs cross gd only at their
end links, we apply Lemma 11 to each PoD P ′ ⊆ S and we obtain a PoD P̃ induced by
BPgd . Then, by adding each obtained P̃ to C, we reconnect all consecutive PoDs in S and
join them into a CoD C̃ induced by BPgd , which means |C̃| ≥ rd + 1. Due to proof of Lemma
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Figure 1 Maximally resilient schemes for K4 and K5. The numbers on each link are the internal
nodes of the link’s backup path.

11, every arc in C̃ is either projected from an arc in C that has gd-links as endpoints, i.e.,
crossing gd, or is projected from some arc in C that traverses gd in the uphill direction. Thus
by definition 9, every arc in C̃ is the contribution of gd. J

4 Generalized Hypercubes and Tori

We have described above how to construct a maximally resilient scheme for Cartesian
products of given base graphs using their well-structured schemes. In this section, we
showcase examples of these base graphs and apply our results to their products. In particular,
we will present efficient and robust path restoration schemes for generalized hypercube graphs
and tori.

4.1 Complete Graphs and Generalized Hypercubes
A complete graph over n nodes is defined as Kn = (V, E) where V = {0, . . . , n− 1} and the
links E = {{i, j}|i, j ∈ V, i 6= j}. We present a (n− 2)-resilient scheme for Kn denoted by
BPKn

, which we later leverage for generalized hypercubes. In the following assume every
increment (+1) is performed in modulo n and it skips 0. That is, i + 1 ≡ i (mod n− 1) + 1
We generate all backup paths in two simple cases as described in Algorithm 3.

Algorithm 3 Construction of BPKn .

1: for each link ` ∈ E[Kn] do
2: if 0 ∈ ` then . i.e. ` = {0, i}
3: BPKn(`) = [0, i + 1, i]
4: else . i.e. ` = {i, j}, i, j 6= 0
5: BPKn(`) = [i, j + 1, 0, i + 1, j]

I Theorem 13. The backup path scheme BPKn
is (n− 2)-resilient.

Proof. The dependencies from a link {i, j} where i, j 6= 0, to other links can be observed in
four distinct types: {i, j} A→ {i, j + 1}, {0, j} B→ {0, j + 1}, {i, j} C→ {0, j + 1} and {0, j} D→
{j, j + 1}. Note that with each type, i and j are interchangeable due to the symmetry of BP
produced at Line 3.5. In Figure 1 (right), an exemplary CoD that consists of all the four types
can be: {1, 2} → {1, 3} → {0, 4} → {0, 1} → {1, 2}. Next, we show that any CoD consists of
at least n− 1 arcs, implying n− 2 resiliency. If C consists of links all incident to some node
i 6= 0, then C = {i, j} A→ {i, j + 1} A→ {i, j + 2} . . . {i, n− 1} C→ {i, 0} D→ {i, i + 1} A→ . . . {i, j}.
Clearly C consists of n− 1 arcs and therefore in the remainder we focus on CoDs over links
non-incident to the same node.
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Given a CoD C, we construct a sequence of node ids S = (v0, v1, . . . , n− 1, . . . , v0) such
that for every 0 ≤ t < |S|, it holds St+1 ≤ St + 1, and the tail of the t-th arc in C is a link
{St, ∗}. Observe that such sequence implies there are |S| ≥ n− 1 arcs in C. We construct S

as follows.
1. All dependencies in C are of type A. Assume the packet p that realizes the CoD is

currently at node i and hits the failed link {i, j} 63 0. Let S be the sequence of nodes
that p visits until it arrives back to i. The next failure (by type A) is either {i + 1, j}
or {i, j + 1}. Therefore p either is rerouted to the node i + 1 or it stays at i. That is, p

visits all nodes contiguously before it arrives back to i. After applying type A to either
of the outcomes and repeating on each consequent link in a similar way, the packet visits
all nodes contiguously.

2. All dependencies in C are of type B. We take the sequence of non-zero endpoints. I.e.,
S[t] = v ∈ Ct, v 6= 0.

3. C contains multiple arc types. We refer to a path of arcs all in type X as type X-PoD.
We split C into maximal dependency paths of types A and B, which are concatenated by
dependency arcs of type C and D. We extract a sub-sequence from each maximal PoDs
and patch them into a single sequence S as follows. Initially, let S = ∅ and start with a
maximal A-PoD {i0, j0}

A→, . . . chosen arbitrarily.
a. Given a A-PoD, say {i, j} A→, . . . ,

A→ {i′, j′}, the packet that realizes the PoD visits
two sub-sequences depending on whether it starts at i or j. Let S1 and S2 be the
produced sub-sequences ending with i′ and j′ respectively. The A-PoD is followed by
a type C arc, that is {i′, j′} C→ {i′ + 1, 0} or {i′, j′} C→ {0, j′ + 1}. With the first case,
pick the sequence S1, otherwise pick S2. Append to S the chosen sequence and then
the incremented node id at the head of the C-arc (i.e. i′ + 1 or j′ + 1).

b. If C proceeds with a B-PoD then append to S the sequence of non-zero node ids.
c. After the C-arc and possibly a B-PoD, there must be a D-arc. E.g., {0, j′′} D→
{j′′, j′′ + 1}. The D-arc is then followed by a A-PoD (possibly the first one). If we
are back to the first A-PoD, i.e., {j′′, j′′ + 1} = {i0, j0}, then S is already a circular
sequence. Else, we continue the construction by repeating from step (a)

It is easy to see that the current sequence is contiguous after (a), (b) and (d). In particular,
after (d), S ends with j′′ and any sub-sequence chosen next in (a) begins with j′′ or j′′ + 1.
In either case the claim is preserved. J

In the following lemmata, we show that this scheme is well-structured. First, we need to
determine the boundary links.

I Lemma 14. Every CoD induced by the scheme from Theorem 13 includes a link in
BKn

:= {{1, i} | 0 ≤ i ≤ n−1} and the subset of arcs {{i, n−1} → {i, 1} | i ∈ {0, 2, 3, . . . , n−
2}} ∪ {{1, n− 1} → {0, 1}} are feedback arcs.

Proof. The sequence S constructed in the Proof 13 contains every non-zero node id regardless
of the given CoD. This means that for any node v ∈ {1, . . . , n− 1}, every CoD includes some
link incident to v. We pick v = 1 w.l.o.g. We identify feedback arcs as those that head to a
boundary link which is a unique arc in every CoD except the one induced by BKn . For this
case (i.e. CoD(1)), we designate {1, n− 1} → {0, 1} as the feedback arc. J

Next, we observe the properties required by Definition 5.

I Lemma 15. The scheme BPKn
(Theorem 13) is well-structured.
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Figure 2 A (6, 2)-cube. Each dashed blue line is a K2-instance. They connect the two K6-
instances. They admit (respectively) 0- and 4-resilient schemes. The dotted line traces BPG({2, 5}) =
[2, 2′, 1′, 0′, 0, 3, 5]. On K6, Lemma 6 gives the walk 0, 1, 0, 2, 1, 3, 1, 4, 1, 5, 1 over the boundary links
of K6, which are all the links incident to 1. The FINISHED order is 0, 1, 2, 3, 4, 5. In turn, Algorithm 2
generates backup paths such as BPG({0, 0′}) = [0, 1, 1′, 0′] and BPG({1, 1′}) = [1, 0, 2, 2′, 0′, 1′].
Hence, K2-instances induce the CoD: {0, 0′} → {1, 1′} → {2, 2′} → {3, 3′} . . . {0, 0′}. Observe in
example CoDs {2, 5} ∗→ {2′, 1′} → {0′, 3′} → {0′, 4′} → {0′, 5′} → {1, 5} → {2, 5} and {2, 5} ∗→
{2, 2′} → {2, 1} → {2, 0} → {2, 3} → {2, 4} → {2, 5}, the starred arcs are counted as the contribution
of K2 (0 + 1 arcs), while the rest are the contribution of K6 (4 + 1 arcs).

Proof. We observe the conditions in Definition 5 as follows. The set of boundary links in
Lemma 14 form a single CoD. Moreover, for every v ∈ V [Kn], v 6= 1, we have BKn

(v) = {1, v}
and BKn(1) = {1, 0}, which means every CoD has some link in L∗BPKn

as the endpoint of
some arcs. Therefore the procedure 5.2 can break all CoDs. Definition 5.3 can be observed
in the proof of Theorem 13. J

Next, we formally define the generalized hypercube (GHC) as a special product graph.
Given ri > 0, i ∈ [k], nodes in (rk, . . . , r1)-cube are represented as k-tuples (ak, . . . , a1),∀i ∈
[k] : 0 ≤ ai < ri (Figure 2). Therefore there are

∏
i∈[k] ri nodes in a k-GHC. Every two nodes

(ak, . . . , a1) and (bk, . . . , b1) that differ only at their ith digit, say ai and bi, are connected by
an i-dim link. The degree of each node is ∆ =

∑
i∈[k](ri − 1) and the graph is ∆-connected.

Observe that i-dim links form cliques of ri nodes. More precisely, there are
∏

j 6=d rj instances
of Krd

for every 1 ≤ d ≤ k. Thus, Algorithm 2 integrates individual complete graph’s
schemes into one scheme BPGHC . See Figure 2 for an example.

I Corollary 16. The backup path scheme BPGHC is (∆− 1)-resilient.

Proof. By Lemma 15, the scheme from Theorem 13 is well-structured. Due to the fact that
a GHC is the Cartesian product of complete graphs, we can apply Theorem 12 which directly
implies the claim. J

Observe that ∆ failures can disconnect generalized hypercubes, i.e., (∆− 1)-resiliency is
the best we can hope for.

4.2 Torus and Grid
Let B := {Cn1 , . . . , Cnk

} be a given set of base graphs where each Cnd
, d ∈ [k] is a cycle on nd

nodes. A k-dimensional torus T is the Cartesian Product of k cycles. That is, T =
∏

d∈[k] Cnd
.

Consider a cycle Cn ∈ B and its links `0, `1, . . . , `|n|−1 as they appear on the cycle. Any
cycle is 1-resilient since simply every link includes every other link on its backup path:
∀` ∈ E[Cn] : BPCn

(`) = E[Cn] \ {`}. Clearly, BPCn
induces

(
n
2
)
CoDs, each on two arcs.

The set B = E[Cn] \ {`0} includes a link from every CoD, therefore it is a (minimal) set of
boundary links. We choose the set of feedback arcs to be F := {(`i, `j) | 0 ≤ i < j ≤ |n| − 1}.
Observe that it includes one of the two links in every min-CoD.
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Figure 3 Solid lines are links of the cycle graph Cn+1. Dotted lines perpendicular to the cycle
represent incident links that belong to a base graph in another dimension. Dashed lines follow
backup paths in BPG where G is the Cartesian product of Cn+1 and some other base graphs. The
walk constructed in Lemma 6 is 0, 1, 2, . . . , n− 1, n, n− 1, n− 2, . . . , 2, 1, 0. By Lemma 17, in order
to break all CoDs, the backup path of `0 (dashed green) detours every other link in Cn+1 using the
next dimension base graph. The backup path of `1 (dashed blue) takes `0, but detours every other
link. Similarly, `2 (not shown here) takes `0, `1 on its backup path and detours `3 to `n+1. This
goes on until `n+1 which uses only links on the Cn+1.

I Lemma 17. The scheme BPCn is well-structured.

Proof. Every link `j ∈ E[Cn] has a non-feedback arc to every link `i ∈ E[Cn], i < j

(i.e. (`j , `i) 6∈ F ). Any CoD includes at least one arc (`j′ , `i′) where j′ > i′. Hence it includes
at least one non-feedback arc, which satisfies Definition 5 trivially. J

Now that we know BPCn
is well-structured, we construct BPT using Algorithm 2 and

apply Theorem 12 directly. (See Figure 3 and Figure 4 for an illustration, in the appendix)

I Corollary 18. The backup path scheme BPT is (2k − 1)-resilient on the k-dimensional
torus T .

As a k-dimensional torus can be disconnected by 2k failures, our scheme is maximally resilient.

Next, we address k-dimensional grids via a reduction to torus. By the construction
of BPT , only the link `0 ∈ Cn has a feedback arc to every other link in Cn. Let `d

0 ∈
Cnd

be the link that corresponds to `0 in the base graph Cnd
, for every d ∈ [k]. Let

B′ = {Pn1 , . . . , Pnk
} be the set of paths where each Pnd

is obtained by removing `d
0 from

Cnd
∈ B (i.e. Pnd

= Cnd
\ `d

0). We construct a scheme for the grid M =
∏

d∈[k] Pnd
as

follows. Consider the scheme BPT from Corollary 18. For every d ∈ [k] and every backup
path that uses (an instance of) `d

0 ∈ Cnd
, we replace `d

0 with its backup path. Formally,
∀d ∈ [k], ` ∈ E[T ], 6= `d

0 : BPM(`) = (BPT (`) \ `d
0) ∪ BPT (`d

0). Since every ` ∈ E[T ], 6= `d
0

includes `d
0 on its backup path, (after short-cutting wherever applies) we have a backup path

BPM(`) for every ` ∈ E[M]. Each dependency to or from `d
0, d ∈ [k] is now replaced by a

dependency to a link on BPT (`d
0). Hence, we have replaced PoDs of two arcs with one arc,

which in turn reduces the length of some min-CoDs by one. Hence, the (2k − 1)-resilient
scheme is reduced to a (2k − 1 − k) = (k − 1)-resilient scheme BPM. As a k-dimensional
grid can be disconnected by k failures, we obtain a maximally resilient scheme:

I Theorem 19. The backup path scheme BPM is (k − 1)-resilient on the k-dimensional
gridM.
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Figure 4 Each solid line is a link of the 2-dimensional m × n torus T , which is the Cartesian
product of Cm and Cn. Horizontal cycles are Cm-instances and vertical cycles are Cn-instances.
Dashed lines depict example backup paths in BPT . In the left picture, backup path of four instances
of `0 ∈ Cm are shown. Notice how all instances of `0 use each other sequentially on their backup
paths. The backup path of `0 in the nth instance (in green, thick) has to detour all the other `0’s in
order to use the `0-instance at row 0. This is imposed by the walk on Cn constructed in Lemma 6
(Figure 3). Also notice backup paths of `1’s on the right picture. The only difference backup paths
of `′0s is that they use the `0 in the same instance before proceeding to the next Cm-instance. In a
similar fashion, each `2-instance uses `0, `1 in the same Cm-instance and so on, up to `m which uses
only the links on the same Cm-instance.

5 Conclusion and Future Work

This paper studied the design of algorithms for local fast failover in the setting that requires
guaranteed (policy and function preserving) visits to every waypoint along the original
path, under multiple link failures. Our main result is a maximally resilient backup path
scheme for the Cartesian product of any set of base graphs, as long as for each base graph
a well-structured scheme is provisioned. We showcased applications of this result using
complete graphs, cycles, and paths by providing a well-structured scheme for each base
graph separately. This allowed us to devise algorithms for important network topologies,
such as generalized hypercubes and tori. In general, the result applies to the product of any
combination of these base graphs as well.

We see our work as a first step and believe that it opens several promising directions
for future research. From a dependability perspective, the main open question is whether
k-connectivity is always sufficient for (k − 1)-resiliency w.r.t. backup paths. It might be
insightful to understand the logic behind schemes formulated by Definition 5.
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