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Abstract—As communication networks are growing at a fast
pace, the need for more scalable approaches to operate such
networks is pressing. Decentralization and locality are key
concepts to provide scalability. Existing models for which local
algorithms are designed fail to model an important aspect of
many modern communication networks such as software-defined
networks: the possibility to precompute distributed network state.
We take this as an opportunity to study the fundamental question
of how and to what extent local algorithms can benefit from
preprocessing. In particular, we show that preprocessing allows
for significant speedups of various networking problems. A main
benefit is the precomputation of structural primitives, where
purely distributed algorithms have to start from scratch. Maybe
surprisingly, we also show that there are strict limitations on how
much preprocessing can help in different scenarios. To this end,
we provide approximation bounds for the maximum independent
set problem—which however show that our obtained speedups
are asymptotically optimal. Even though we show that physical
link failures in general hinder the power of preprocessing, we can
still facilitate the precomputation of symmetry breaking processes
to bypass various runtime barriers. We believe that our model
and results are of interest beyond the scope of this paper and
apply to other dynamic networks as well.

Index Terms—Decentralization, Local algorithms, Software-
defined networks

I. INTRODUCTION

A. Context: Decentralization for Scalability
Locality, the idea of avoiding global collection of distributed

network state and decentralizing the operation of networked
systems, is a fundamental design principle for scalability.
A more local operation cannot only reduce communication
overheads but also allow to react faster to local events—an
important aspect given the increasingly stringent latency and
dependability requirements in future communication networks.
Given the quickly increasing scale of communication networks,
also due to the advent of new applications such as the Internet-
of-Things, the importance of local approaches to networking
is likely to increase.

Designing local (i.e., decentralized) algorithms however
can be challenging and face a tradeoff: while a more local
network operation requires less coordination (and less overhead)
between neighboring domains, hence improving scalability,
a more limited local view may lead to suboptimal decision
making: compared to a global approach to network optimization,
a decentralized architecture may be subject to a “price of
locality”.

Local algorithms have been studied intensively over the last
decades, and today, we have a fairly good understanding of
their opportunities and limitations [1]–[3]. Highly efficient dis-
tributed algorithms are known for many network optimization
problems, sometimes even achieving an “ideal scalability”:
their performance, i.e., runtime, is constant, independently of
the network size (which could even be infinite) [2]. However, it
is also known that for many fundamental network optimization
problems, e.g., related to spanning tree [4] or shortest path [5]
computations, or minimizing congestion [6], designing good
decentralized optimization algorithms is impossible [7]: in order
to achieve non-trivial approximations of the global optimum,
non-local coordination is required.

B. Motivation: Improving Scalability with Preprocessing

Our work is motivated by the observation that existing
models for the design of distributed network algorithms,
originally developed for ad-hoc and sensor networks, do not
account for a key aspect of modern, large wired communication
networks: the possibility to preprocess distributed network
state. In ad-hoc networks, the network topology is typically
assumed to be unknown in the beginning, and depend, e.g.,
on the (unknown) node locations and wireless communication
channels. The network topology hence needs to be discovered
in addition to performing optimizations. In contrast, most wired
networks today have a fairly static and known (to the operator)
network topology, which can hence be assumed to be given.
Network optimization algorithms here are mainly concerned
with the fast reaction to new events, e.g., finding optimal routes
based on the current traffic patterns. While the topology of
wired networks may change as well, especially link additions
but also link failures happen less frequently and at different
time scales.

This introduces an opportunity for preprocessing and calls
for a radically new model: decentralized and local algorithms
reacting to changes of the demand, network flows, or even
failures, may rely on certain knowledge of the physical
network topology, based on which distributed network state
can be precomputed: this information can later “support” local
algorithms during their local optimizations.

Indeed, enhancing classic, most basic local coordination
problems with preprocessing appears to be a game changer:
distributed algorithms in traditional models often require



symmetry breaking mechanisms whose complexity alone is in
the same order as solving the entire optimization problem [8].
With preprocessing, such symmetries can trivially be broken
ahead of time.

C. Case Study: Scalable SDNs

As an example and case study, let us consider emerging
Software-Defined Networks (SDNs). While there is now a
wide consensus on the benefits of moving toward more
software-defined communication networks, which are increas-
ingly adopted not only in datacenters [9] but also in wide-
area networks [10], [11], one question becomes increasingly
pressing [12]: how to deploy SDNs at scale? In the near
future, large-scale SDNs may carry millions of flows and span
thousands of switches and routers distributed across a large
geographic area.

A canonical solution to support large-scale deployments
while ensuring fast control plane reaction to dataplane events
(close to their origin), is to partition the control plane [12]
and leverage locality: different controller instances are made
responsible for a separate portion of the topology. These
controllers may then exchange e.g. routing information with
each other to ensure consistent decisions. However, SDN
controllers face more general problems than just routing, as
they also need to support advanced controller applications,
including involving distributed state management.

Clearly, SDNs are very different from the models usually
studied in the context of ad-hoc networks: an operator usually
has full knowledge of the physical connectivity of its networks,
but needs clever algorithms that allow distributed controllers
to locally react to new demands. In principle, these distributed
controllers can leverage such additional knowledge on the
topology and precompute distributed network state.

D. Contributions

Our work is motivated by the observation that existing
algorithmic locality models in the literature are not a good fit
for modern large-scale wired networks such as SDNs whose dis-
tributed control plane may leverage precomputed network state.
Accordingly, we investigate a novel model in which distributed
decision making can be supported by centralized preprocessing,
present and discuss different algorithmic techniques, and derive
lower bounds.

Indeed, we find several most fundamental problems where
significantly faster and hence more scalable network algorithms
can be devised than in traditional models. In particular, we
show that preprocessing allows us to run many centralized
algorithms efficiently in a distributed setting: e.g., compared to
existing work, we can achieve an almost exponential speedup
for problems such as maximal independent set, as well as for
approximation schemes of its optimization variant. Furthermore,
we can show that for locally checkable labellings, all symmetry
breaking problems collapse to constant time complexity.

However, surprisingly, we also identify inherent limitations
of the usefulness of precomputations; even seemingly simple
problems still require linear runtimes. Moreover, we also prove

that our provided approximation schemes are essentially the
best one can hope for: faster algorithms come at the price of
worse approximation ratios.

Last in this list, we study the impact of physical link failures
on the power of preprocessing. Unlike prior work, we assume
that the link failures can be arbitrary, i.e., only a small part of
the resulting physical topology could remain, possibly in many
disconnected parts. While we formally prove that this model
inherently limits the general power of precomputation, we can
still speed up various distributed algorithms for restricted graph
classes respectively bounded node degrees.

E. Organization

The remainder of this paper is organized as follows. In
Section II, we begin our investigation by providing a formal
model that captures the capabilities of preprocessing, along
with defining some key notation. Section III then provides
two introductory examples to outline the power respectively
limitations of preprocessing. We next show in Section IV how
a recently introduced problem class of central computation
can be turned distributed with small overhead, by leveraging
preprocessing. Section V investigates the power of preprocess-
ing in an important class of locally verifiable problems, and
Section VI studies approximation of maximum independent
sets. We further prove lower bounds in Section VII, providing
matching bounds for the algorithmic results of the previous
section. Related work is discussed in Section IX, followed by
concluding remarks in Section X.

II. MODEL

Let us first revisit the LOCAL model which is used pre-
dominantly today to design and analyze distributed network
algorithms [1]. In the LOCAL model the communication
structure is given by an undirected graph G = (V,E), where
each node v ∈ V is a computer with a unique identifier. The
nodes can exchange messages between neighbors across edges
in each communication round, where in parallel each node
can send and receive a message to/from each neighbor, and
afterward update its local state. Before the first communication
round, each node is provided with an input that defines the
problem instance. The running time of an algorithm is the
number of rounds needed until all nodes stopped, i.e., they
announce a final output and no longer communicate.

In this paper, we are interested in the benefits of extending
the LOCAL model with an opportunity of preprocessing
the network topology. We will refer to our model as the
SUPPORTED model [8]. In the SUPPORTED model the
communication structure is given by an undirected connected
graph H = (V (H), E(H)) (the support graph), where again
each node1 is a computer with a unique identifier. However, the
problem instance (the logical state) is defined on a subgraph
G ⊆ H , where G is called the input graph G = (V,E)
and inherits the node identifiers of H . Computation in the
SUPPORTED model now proceeds in two steps: (1) As a

1In the context of SDNs (Section I-C), each node in the SUPPORTED
model could correspond to a controller domain.



preprocessing phase, the nodes may compute any function
depending on H and store their output in local memory.
Next, (2) the nodes are tasked to solve a problem on the
input graph G in the LOCAL model, where additionally the
preprocessing from (1) and the communication infrastructure
of H may be used. The running time t of an algorithm in the
SUPPORTED model is measured in the number of rounds
needed in step (2), also denoted as SUPPORTED(t). We will
use analogous notation also for other models, e.g., LOCAL(t).

III. POTENTIAL AND LIMITATIONS

To provide intuition, we first present an example that shows
the potential of the SUPPORTED model to overcome inherent
limitations of the LOCAL model.

a) Fast symmetry breaking: One of the most important
problems [1] in the LOCAL model is coloring, i.e., providing
each node with a color different to its neighbors’, with the
goal of using a small color palette.2 Such symmetry breaking
is often the first step for more advanced problems, but also
has direct applications, such as, e.g., in scheduling. Even in
very simple topologies such as a ring, computing a 3-coloring
in the LOCAL model takes non-constant time [13], and 2-
coloring even requires Ω(n) rounds. By using the power of
precomputation, we can assign an efficient coloring based on
the support graph ahead of time, which is then still valid on the
input graph. As such, the SUPPORTED model can significantly
speed up the computation of many LOCAL algorithms if the
support graph allows for a coloring with few colors. We
note that this is just an introductory example, we cover more
complex cases starting in the following Section IV.

b) Not everything can be precomputed: However, there
are also inherent limitations. For example in leader election,
the task is to provide each connected component with a single
coordinator. In the LOCAL model, a leader can be elected in
time equivalent to the diameter of such a component, assuming
identifiers are present [14]. From a theoretical point of view,
the SUPPORTED model cannot improve this time bound: as
the input graph can be any subgraph of the support graph,
nodes must first discover their connected component. If no
leader exists, a new one must be elected, and if multiple leaders
exist, they must coordinate with each other to declare a unique
leader, possibly over long distances. For an extreme example,
consider a line as a support topology, where the input graph
can consist of many disconnected components of large sizes.

IV. EXPLOITING THE LOCALITY OF GLOBAL PROBLEMS

a) The SLOCAL model: Many networking problems are
slow to solve from scratch in a distributed setting. For example,
the best known algorithm for maximal independent set requires
2O(
√

log n) rounds in the LOCAL model [15], but the problem
is rather trivial in a centralized setting: go through the nodes
sequentially, adding them to the independent set if none of
their neighbors are in it.

2For a fast (inefficient) coloring solution, each node could assign its unique
identifier, e.g., its MAC-address, as its color, requiring n colors in total.

The maximal independent set problem has a low locality
(just the node’s directed neighbors are important), but still
defies fast distributed algorithms. Recent work formalized this
notion of locality from a globalized point of view, coined the
SLOCAL model [16]. In the SLOCAL model, the locality t
is defined as the radius t-neighborhood a node may use to
compute its output—where the nodes are processed sequentially
in an arbitrary order. For example, the maximal independent
set problem is therefore in SLOCAL with locality t = 1.

b) An SLOCAL simulation: Ghaffari et al. [16] provided
an approach to transforming any algorithm from the SLOCAL
model into a purely distributed algorithm by simulating it
in the LOCAL model. This is done by computing a locally
simulatable execution order for the SLOCAL algorithm: each
node v must know on what other nodes’ output does v need
to wait on before computing its output? We can adapt their
techniques to also apply to the SUPPORTED model:

Theorem 1. An SLOCAL algorithm with locality t can be
simulated in the SUPPORTED model in time O(t ·poly log n).

Proof. Ghaffari et al. [16] show how network decompositions
can be leveraged to compute dependencies of bounded depth:
as some graphs, e.g., the complete graph, require dependency
chains of length Ω(n), it can be useful to also incorporate
communication between the nodes. The idea is that the nodes
learn all their nearby dependency chains. For example, in the
complete graph, one round suffices to gather all information.
With this modification, every graph has an ordering of depth
O(poly log n), if the nodes are allowed to communicate within
a distance of O(poly log n) [16].

We start with the case of G = H . After providing such an
ordering, every SLOCAL algorithm with locality t can be run
in time O(t · poly log n) in the LOCAL model, by simulating
executions of lower priority in polylogarithmic distance. We
can provide the ordering in the SUPPORTED model in the
precomputation phase, finishing the case of G = H .

We next cover the remaining case of G 6= H . Observe that
a dependency chain is still valid even if edges are deleted, as
nodes just need to respect the computation of all neighbors
of lower priority — but under edge deletions, a node might
need longer to learn about previously nearby dependency
chains. However, in the SUPPORTED model, the edges are
not physically deleted3, but rather just not part of the problem
graph anymore, still available for communication purposes.
The simulation approach therefore still holds for G 6= H .

Hence, we can obtain a maximum independent set in
time O(poly log n) in the SUPPORTED model, as it had an
SLOCAL locality of 1. Ghaffari et al. [16] define the class
PSLOCAL as SLOCAL(poly log n). We obtain the following
corollary:

Corollary 2. PSLOCAL ⊆ SUPPORTED(poly log n).

c) Separation of SLOCAL and SUPPORTED model:
As we have seen, the SLOCAL model can be simulated in the

3We study this model variant in §VIII, coined passive SUPPORTED model.



SUPPORTED model with polylogarithmic overhead. Under
some additional assumptions, the converse it not true:
• Degree/colorability restrictions of the support graph H:

If we restrict the support graph H to be 2-colorable (or
to be of maximum degree 2), then we can precompute a
2-coloring which is also valid for any subgraph G ⊆ H .
Computing a 2-coloring on G in the SLOCAL model
however has a locality of Ω(n).

• Unknown range of IDs / network size: Computing an upper
bound on the network size requires a locality of Ω(n) in
the SLOCAL model, but is trivial with preprocessing.

• Inputs already known in the preprocessing phase:
Similarly, if some problem inputs are already known ahead
of time in the SUPPORTED model, large speedups can
be obtained in comparison to the SLOCAL model.

However, we leave it as an open question if there is a strict
(e.g., beyond polylogarithmic) separation between the SLOCAL
and SUPPORTED model without the above assumptions.

V. LOCALLY CHECKABLE LABELLINGS

Locally checkable labellings, first introduced by Naor and
Stockmeyer [17], are a family of problems that can be efficiently
verified in a distributed setting. They include fundamental
problems like maximal independent set, maximal matching,
(∆ + 1)-coloring, and (2∆− 1)-edge coloring.

More formally, let Σ and Γ denote a finite sets of input and
output labels, respectively. A graph problem consists of a set
of labelled graphs with some constant maximum degree ∆.
A problem Π is locally checkable if there exists a constant r
and a distributed algorithm A with running time r such that
given a labelling λ : V (G)→ (Σ×Γ), we have that A outputs
yes at every node if and only if (G,λ) ∈ Π. In particular, if
(G,λ) /∈ Π, at least one node outputs no.

Theorem 3. Every LCL in LOCAL(o(log n)) can be solved in
time O(1) in the SUPPORTED model.

The proof follows the idea of Chang et al. [18]: nodes
compute a coloring that locally looks like a unique identifier
assignment, but from a smaller space. Then we simulate a
LOCAL algorithm on this identifier setting and it must terminate
fast.

Proof. Let A be an algorithm for an LCL P with running
time T (n) = o(log∆(G) n) in the LOCAL model (here T (n)
might include functions of ∆(G), i.e., of the maximum degree
of the input graph, but these are constants). Without loss of
generality we assume that P can be checked with radius 1 (this
is a standard transformation—nodes encode also the outputs
of their neighborhood as necessary).

Given an input graph G with maximum degree ∆ = ∆(G),
the ball of radius t around each node holds at most 1+∆(∆−
1)t−1 nodes. We want to find the smallest n0 such that any
nodes of G at distance at most 2T (n0) + 2 can be colored
with different colors from [n0]. By definition of T (n) we can
find a constant n0 such that ∆2T (n0)+2 + 1 ≤ n0, that is, we
can greedily color nodes with locally unique colors.

Given a support H of size N , compute an n0-coloring φ
of distance (2T (n0) + 1) of H . This can be done without
communication given the support. Now we apply A with the
coloring φ on the input graph G. This can be done in time
T (n0) = O(1). As G is a subgraph of H , the coloring φ is
still a proper distance 2T (n0) + 2-coloring of G. Since each
node sees only values from [n0] inside its T (n0)-neighborhood
and each value is unique, the algorithm is well defined on G
with φ representing the identifiers of the nodes. Finally, since
locally in each 1-neighborhood the output of the nodes looks
identical to some execution in a graph of size n0, the output
must be consistent with the legal outputs of P . Since P is an
LCL, an output that is correct everywhere locally is correct
also globally.

In the standard LOCAL model locally checkable labellings
can have three types of complexities: trivial problems solvable
in constant time, symmetry breaking problems with complexity
Θ(log∗ n), and problems with complexity Ω(log n). Theorem 3
implies that all symmetry breaking problems collapse to
constant time in the SUPPORTED model.

We are unable to establish the existence of “intermedi-
ate” LCL problems for the SUPPORTED model [18]–[20],
in particular a lower bound of Ω(log n) for an LCL in
LOCAL(poly log n). We do show that there are problems that
are hard despite the power of the support.

Consider the problem of sinkless orientation: each edge must
be oriented so that every node has an outgoing edge. Usually
this problem is defined so that nodes with degree 2 or less
can be sinks. We consider the variant where every node with
degree at least 2 must not be a sink.

Theorem 4. Finding a sinkless orientation requires Ω(n) time
in the SUPPORTED model.

Proof. Let H be the following support on N = 6n nodes.
Let Pi = (vi,1, vi,2, . . . , vi,n), for i ∈ {1, 2, . . . , 6}, denote
six paths of length n. Add edges {v1,1, v2,1}, {v1,1, v3,1},
{v1,n, v4,1}, {v1,n, v5,1} and edges {v6,1, v2,n}, {v6,1, v3,n},
{v6,n, v4,n}, {v6,n, v5,n} between these paths.

Observe that on a cycle a sinkless orientation is a consistent
orientation: each node must have exactly one incoming and
one outgoing edge.

Now consider the cycles C1 = (v1,1, P2, v6,1, P3) and
C2 = (v1,n, P4, v6,n, P4) and assume that these are maximal
connected components of G. Now both cycles must be oriented
consistently in any valid solution. Without loss of generality
assume that an algorithm A orients path P2 from v1,1 to v6,1,
path P3 from v6,1 to v1,1, path P4 from v1,n to v6,n, and path
P5 from v6,n to v1,n.

Now consider a graph G′ where the cycle (P2, P1, P4, P6)
forms a maximal connected component. If paths P2 and P4 are
oriented as in G, then the solution cannot form a consistent
orientation. Therefore either node v2,dn/2e or node v4,dn/2e
must change its output between G and G′. Since distinguishing
between G and G′ requires dn/2e rounds for these nodes, we



conclude that solving sinkless orientation in the SUPPORTED
model requires Ω(n) rounds.

VI. MAXIMUM INDEPENDENT SET

We show how to find large independent sets in logarithmic
time in the SUPPORTED model. This leads to an approxi-
mation scheme in graphs that have independent sets of linear
size.

Let α(G) denote the fraction of nodes in the maximum
independent set of graph G.

Theorem 5. There is an algorithm that finds an independent
set of size (α(G)− ε)n, for any ε > 0, in time O(log1+ε n) in
the SUPPORTED model.

Proof. To prove this we use a standard ball growing argu-
ment [16], [21] which essentially states that a graph can only
expand for a logarithmic number of hops. We denote by Bt(v)
the t-hop neighborhood of node v. Let H be a graph: for
any ε > 0 and each node v ∈ V (H), there exists a radius
r ≤ log1+ε n such that |Br+1(v)| < (1 + ε)|Br(v)|. To see
this, assume the contrary: since |Bi+1(v)| ≥ (1 + ε)|Bi(v)|,
for i up to r > log1+ε n, we have that |Br(v)| ≥ (1 + ε)r >
(1 + ε)log1+ε n = n, a contradiction.

In the preprocessing phase we decompose the graph into
parts that have logarithmic diameter and a small boundary. Then
the problem can be solved optimally in each such component
and fixed on the boundaries.

Consider an arbitrary node v1 ∈ V (H) and find the smallest
radius r1 such that |Br+1(v1)| < (1 + ε)|Br(v1)| as observed
previously. Define C1 = Br+1(v1) and remove C1 from H .
By definition, at most a fraction of ε′ = ε/(1 + ε) nodes
in Br+1(v1) are connected to G \ Br+1(v1). Continue by
selecting another node v2 and finding the smallest r2 such
that the boundary of Br+1(v2) has an ε′-fraction of the nodes.
Again put these nodes into cluster C2 and remove them from
H \C1. Proceed in this fashion until all nodes (neighborhoods)
have been allocated to a cluster.

Since at each step each cluster has an ε′-fraction of nodes
on the boundary (in Br+1(v) \ Br(v)), we have at least a
(1−ε′)-fraction of nodes strictly inside the clusters (that is, not
on the boundary). Denote by C̄i the inner nodes of cluster Ci.

Now given the input graph G, each node v in cluster Ci

gathers the subgraph of G induced by Ci. Then all nodes use
the same algorithm to find an optimal maximum independent
set of Ci, and put themselves in the (independent) set I if
they are included in this solution. This can be done using local
computation, since the subgraph is known to all nodes.

Finally, there are at most ε′n nodes that are connected to
two clusters. In the worst case all of these are adjacent to
another node in the chosen set I . By removing each such node
that has a neighbor in I with a smaller identifier we make I
independent. Let I∗ denote a maximum independent set of G
and I[S] a set I restricted to a subgraph S. Since I∗[Ci] is an
independent set of Ci, we have that |I[Ci]| ≥ |I∗[Ci]| for all
Ci. Therefore I has size at least |I∗| − ε′n.

Now if the family of graphs from which the support is drawn
has a linear lower bound on the size of the maximum inde-
pendent set, the solution I constitutes a (1 + ε)-approximation
of I∗.

Corollary 6. Maximum independent set can be approximated
to within factor (1 + ε), for any ε > 0, on graphs of constant
maximum degree in time O(log1+ε n) in the SUPPORTED
model.

Note that the proof generalizes to a larger family of
optimization problems: essentially we required that the global
score of a solution is a sum of local scores, and that the nodes
of the boundary constitute only a small fraction of the weight of
the full solution. As an example, maximum cut and maximum
matching are not problems of this type, as the input graph
could only contain edges on the boundaries of the clusters,
making the precomputation unhelpful.

The above results have the best possible running time as
a function of n: finding an independent set of size ω(n log ∆

∆ )
requires logarithmic time, as will be shown in Section VII.
Ghaffari et al. [16] used the same ball growing idea to give
SLOCAL algorithms for computing (1 + ε)-approximations of
covering and packing ILPs in time O(log n/ε). Their algorithm
can be simulated via Theorem 1 in time O(poly log n).

Note that we are abusing the unlimited computational power
of the SUPPORTED model: solving each cluster optimally is
an NP-hard problem.

VII. LOWER BOUNDS

In the previous section, we saw that maximum independent
sets can be approximated well in the SUPPORTED model in
logarithmic time. To complement this result, we now give a
lower bound that shows that any sublogarithmic-time algorithm
in the SUPPORTED model necessarily results in a poor
approximation ratio:

Theorem 7. Maximum independent set cannot be approx-
imated by a factor o(∆/ log ∆) in time o(log∆ n) in the
SUPPORTED model.

This bound is tight in the sense that it can be matched
in triangle-free regular graphs: Shearer [22] noted that the
randomized greedy algorithm finds an independent set of size
O( ln d

d n), and this can be approximated with a small loss in
randomized constant time in the LOCAL model, for example
using the method of random priorities [23].

More precisely, we analyze the expected approximation ratio
here. To prove the result, assume that there is a family of
(randomized) algorithmsAd such that for each even d algorithm
Ad finds a factor αd approximation of a maximum independent
set in any graph for which we have a d-regular support.
Furthermore, assume that Ad runs in time T (n, d) = o(logd n)
in the SUPPORTED model. To reach a contradiction, assume
that αd = o(d/ log d).

Fix a d = 2k. By the probabilistic method, for a sufficiently
large nQ there exists a k-regular graph Q = (VQ, EQ) with
nQ nodes with the following properties [24]–[26]:
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Figure 1. Construction of graphs H , G1, G2, and random graphs G′
1 and

G′
2. In this example, k = 2 and graph Q is a 7-cycle. No matter how we

choose C1, graph G′
1 consists of two disjoint copies of Q, while G′

2 is a
bipartite double cover of Q (which happens to be a 14-cycle). While random
graph G′

1 and G′
2 have a different structure from a global perspective, they

are locally indistinguishable in the sense that each possible local neighborhood
occurs in both graphs with the same probability.

1) the girth of Q is larger than 2T (2nQ, d) + 1,
2) there is no independent set with at least nQ/(2αd) nodes.
We will consider graphs with n = 2nQ nodes: for each

original node v ∈ VQ, we will have two copies v0 and v1. Let
V =

{
vx : v ∈ VQ, x ∈ {0, 1}

}
be the set of all copies. For

each F ⊆ EQ we define

E(F ) =
{
{ux, v1−x} : {u, v} ∈ F, x ∈ {0, 1}

}
∪{

{ux, vx} : {u, v} ∈ EQ \ F, x ∈ {0, 1}
}
.

For each F , the graph G(F ) = (V,E(F )) is a double cover
of Q; intuitively, F tells which pair of edges goes “straight”
and which goes “across”. In particular, we are interested in
the following graphs (see Figure 1):

H = (V,E(∅) ∪ E(EQ)), G1 = G(∅), G2 = G(E).

Here graph G1
∼= 2Q consists of two copies of Q and

graph G2
∼= Q × K2 is the bipartite double cover of Q.

By construction, there is no maximum independent set in
G1 with at least n/(2αd) = nQ/αd nodes. However, the
largest independent set of G2 has at least n/2 = nQ nodes, as
{v0 : v ∈ VQ} is an independent set.

Now we will construct random graphs G′1 and G′2 as follows
(see Figure 1). For each i ∈ {1, 2} and v ∈ VQ, choose a label
Ci(v) ∈ {0, 1} uniformly at random. Then let Xi ⊆ EQ be the
set of edge {u, v} ∈ EQ with Ci(u) 6= Ci(v). That is, Ci is a
uniform random cut of Q, and Xi is the set of cut edges w.r.t.
Ci. Define G′1 = G(F1), where F1 = X1, and G′2 = G(F2),
where F2 = EQ \X2. First, we will argue that from a global
perspective, graphs G′1 and G′2 are different.

Lemma 8. Graph G′1 is isomorphic to G1 and graph G′2 is
isomorphic to G2.

Proof. For each cut Ci of graph Q, define the bijection
φi : V → V as follows:

φi(vx) =

{
vx if Ci(v) = 0,

v1−x if Ci(v) = 1.

That is, φi exchanges the labels of the copies of v ∈ V
whenever Ci(v) = 1. In particular, φi exchanges labels at
exactly one endpoint of e ∈ EQ iff e is a cut edge w.r.t. Ci.
By construction, we have

E(F1) =
{
{φ1(u), φ1(v)} : {u, v} ∈ E(∅)

}
,

E(F2) =
{
{φ2(u), φ2(v)} : {u, v} ∈ E(EQ)

}
.

That is, φ1 is a graph isomorphism from G1 to G′1, and similarly
φ2 is a graph isomorphism from G2 to G′2.

Corollary 9. The maximum independent set of G′1 has fewer
than nQ/αd nodes and the maximum independent set of G′2
has at least nQ nodes.

However, while the random graphs G′1 and G′2 are globally
very different, we will argue that they are locally indistinguish-
able from the perspective of SUPPORTED algorithms, if we
use the same support H .

Let T = T (2nQ, d) = T (n, d) be the running time of
algorithm Ad when we run it in the graph G′i with support H .
Consider a node u ∈ VQ and one of its copies, say, u0 ∈ V .

As Q is a graph of girth larger than 2T + 1, the radius-T
neighborhood of u is a regular tree. Let V T

Q ⊆ VQ be the set
of nodes in the tree. Let HT be the radius-T neighborhood
of u0 in the support H . Note that HT is the subgraph of H
induced by the copies of the nodes in V T

Q . As the running time
of Ad is T , the probability distribution of the output of node
u only depends on the input within HT .

Construct a labelling D : V T
Q → {0, 1} that labels the nodes

of the tree by their distance from u modulo 2, and define a
bijection f : C1 7→ C2 between labellings C1 and C2 as follows.
Given any labelling C1 : VQ → {0, 1}, define a labelling
C2 : VQ → {0, 1} by setting C2(v) = C1(v) + D(v) mod 2
for each v ∈ V T

Q close to u, and let C2(v) = C1(v) for each
v /∈ V T

Q far from u.
This is clearly a bijection. In particular, the following random

processes are indistinguishable: (1) pick C2 uniformly at
random; (2) pick C1 uniformly at random and let C2 = f(C1).

Recall that we used C1 to construct graph G′1 and C2 to
construct graph G′2. The key observation is this: if we set
C2 = f(C1), then the structure of G′1 restricted to HT is
isomorphic to the structure of G′2 restricted to HT . In particular,
the probability that u0 joins the independent set in G′1 is the
same as the probability that u0 joins the independent set in G′2.

Summing over all choices of C1 (and hence summing over
all choices of C2 = f(C1)), we conclude that the probability
that u0 joins the independent set is the same in random graphs
G′1 and G′2. Summing over all choices of u0 (and similarly u1),
we see that the expected size of the independent set produced
by Ad is the same in G′1 and G′2.



By Corollary 9, we see that the expected size of the
independent set produced by Ad in any G′1 has to be less
than nQ/αd, and hence it fails to find an αd-approximation in
expectation in some G′2. This concludes the proof of Theorem 7.

We point out that similar ideas can be used to prove a
lower bound for the maximum cut problem. For example, in
d-regular triangle-free graphs, it is possible to find a factor
1/(1/2 + 1/O(

√
d)) approximation of the maximum cut in

constant time with randomized LOCAL model algorithms [27].
We can show that switching to the SUPPORTED model does
not help: it is not possible to find a factor 1/(1/2 + 1/o(

√
d))

approximation of the maximum cut in sublogarithmic time
with randomized SUPPORTED algorithms.

VIII. LINK FAILURES: THE PASSIVE SUPPORTED MODEL

So far we assumed that all edges in the support topology
H can be used for communication, no matter the input
subgraph G ⊆ H . However, if edges physically fail, then
this assumption is no longer viable. We thus introduce the
passive SUPPORTED model, where after the precomputation
phase, communication is restricted to the input graph G.

For simplicity of presentation, we only consider edge
failures4 and assume the communication graph is G = (V,E).
Note that unlike most prior work, we do not restrict ourselves
to a few failures, but allow any subgraph G of H . We next
provide a brief overview of our results for the passive model.

a) General graphs are problematic: From a very general
point of view, precomputation on general graphs does not help
much in the passive SUPPORTED model. For example, if
H is a complete support graph, then it seems that only few
meaningful information can be prepared against adversarial fail-
ures, such as an upper bound on the network size respectively
obtaining a superset of the ID-space; no meaningful topological
information about the structure of G is known ahead of time.
We will formalize this intuition in Section VIII-A.

b) Restricted graph families are useful: This unsatisfying
situation changes when we consider graph properties that are
retained under edge deletions. To give a prominent example,
a planar graph remains planar, no matter what subgraph G is
selected. Similarly, the genus or chromatic number of a graph
only becomes smaller. We will show in Section VIII-B how
to speed up the runtime of some algorithms in these restricted
graph families, beginning with planar graphs.

c) Weaker SLOCAL simulations: Due to the possible
physical edge failures, our SLOCAL-simulation from Section IV
can no longer be applied. In particular on dense graphs, it relied
extensively on support edges not contained in the input graph,
but those edges are no longer available for communication
purposes. Notwithstanding, we can still provide a weaker
simulation of the SLOCAL model in Section VIII-C.

A. Simulation in the LOCAL Model

We begin by showing that, under certain assumptions,
the passive SUPPORTED model can be simulated in the

4A node failure can be simulated by failing all incident edges.

deterministic LOCAL model. When a passive SUPPORTED
algorithm runs in polylogarithmic time, the overhead is only
a constant factor in the number of rounds, illustrating that in
general the power of preprocessing in the passive case is rather
limited.

Theorem 10. Consider the LOCAL model with identifiers in
{1, 2, . . . , n}. Let Π be a graph problem such that a feasible
solution for each connected component is a feasible solution
for the whole graph. Let A be T (n)-time algorithm for Π in
the passive SUPPORTED model that works for a support with
maximum degree ∆ = O(n1/k). Then A can be simulated in
time O(T (nk)) in the LOCAL model.

Proof. Let A be a T (n)-time algorithm for a problem Π. The
nodes of G agree on a virtual support H as follows: H consists
of a clique Kn on the real vertices in V (G), and of nk − n
virtual nodes. Each real node is connected to one virtual node,
and the remaining virtual nodes form a connected graph of
maximum degree ∆(H) = n. Since all real nodes v also have
degH(v) = n, we have that ∆(H) = n = |V (H)|1/k.

Next nodes start simulating A as if it was run on H , with
the edges failing in a way that produces the observed input
graph G. In particular, the edges between the real and the
virtual nodes are assumed to have failed. Since H contains the
complete graph Kn as its subgraph, all observable graphs G
can be formed from the support H by edge deletions.

Since the support H has size nk, we have that A runs on
H (and thus G) in time T (nk). If T (n) = O(poly log n), then
T (nk) = O(poly log n). Since A produces a feasible output
on H , it produces a feasible output on H restricted to G. By
assumption this is a feasible output on G.

Note that the above result covers in particular the class of
locally checkable labelling problems. The assumption that the
nodes have names from {1, 2, . . . , n} is not usually useful for
algorithm design in the LOCAL model.

We can also consider optimization problems. We consider
problems for which the size of the solution is the sum of the
sizes over all connected components.

Corollary 11. Let A be a T (n)-time algorithm for an opti-
mization problem Π in the passive SUPPORTED model that
produces a solution of size at least αn when ∆(H) = O(n1/k).
Then there exists a LOCAL algorithm that produces a solution
of size αn in time T (nk).

Proof. Without loss of generality we consider a problem where
we want to maximize the target function f . Let N = nk. Let
G0 be the input graph on n nodes in the LOCAL model, and
let H denote the (virtual) support that consists of N cliques
of size n, denoted by H0, H1, H2, . . . ,HN−1, connected by
some subset of edges, at most one per node.

We construct the input graph G as follows, shuffling the
identifiers of the graph as we go. First, remove all edges
between two different cliques Hi and Hj . Then, let G1 equal
the subgraph of H1 and ϕ1 the identifier setting from [N ]
to V (G1) such that the value f(G1) is minimized over all



subgraphs and all identifier settings, when A is run on G1.
Let ϕ(G1) denote the set of identifiers used on G1. Again, let
G2 be the subgraph of H2 with the identifier setting ϕ2 from
[N ] \ ϕ(H1) that minimizes f(H2) over all subgraphs and all
identifier settings. We proceed in this manner until all Hi have
been dealt with, except for H0.

There is a subset S = {s1, s2, . . . , sn} ⊆ [N ] of identifiers
left. We choose the mapping ϕ0 : i 7→ si for the identifiers of
G0. This can be done consistently by all nodes of G0 since
the graphs H1, H2, . . . ,HN−1 can be constructed with the
knowledge of N and A. Now, since regardless of the topology
of G0, it is a subgraph of each Hi and the set S was under
consideration when assigning each ϕi, we must have that
f(G0) ≥ f(GN−1) ≥ f(GN−2) ≥ · · · ≥ f(G1). In addition,
since we have by assumption that

∑N−1
i=0 f(Gi) ≥ αN , we

must have that f(G0) ≥ αn.

B. Breaking Locality Lower Bounds

a) Planar graphs: Maximum independent set, maximum
matching, and minimum dominating set are considered to
be classic networking problems. Already on planar graphs, a
(1 + δ)-approximation is impossible to compute in constant
time for any of the three problems [28]. However, we can
adapt the algorithms of Czygrinow et al. [28] to break these
locality lower bounds in the passive SUPPORTED model:

Theorem 12. Let H be a planar support graph and fix any δ >
0. In the passive SUPPORTED model, a (1+δ)-approximation
can be computed in constant time on any input graph G ⊆ H
for the following three problems: 1) maximum independent set,
2) maximum matching, and 3) minimum dominating set.

Proof. We study the algorithm construction Czygrinow et
al. [28], which solves the three problems in non-constant time,
and show how it can be adapted to the passive SUPPORTED
model. It is based on finding a weight-appropriate pseudo-
forest5 in constant time, which in turn is 3-colored. The coloring
allows to find so-called heavy stars in constant time, which are
used as the base of a constant time clustering algorithm. Due to
the heavy stars having a constant diameter, the approximation
in [28] also runs in constant time.

Hence, the only non-constant time component is to find
a 3-coloring of the pseudo-forest. As planar graphs have a
chromatic number of 4, we can precompute such a 4-coloring
in the passive SUPPORTED model, i.e., it remains to go from
4 to 3 colors in constant time. To this end, we can make use
of [29, Algorithm DPGreedy], which in pseudo-forests reduces
an x-coloring to an x− 1-coloring in two rounds, assuming
that x ≥ 4, which concludes the proof construction.

b) Extensions to bounded genus graphs: Amiri et al. [30]–
[32] show how to adapt the technique of Czygrinow et al. [28]
to graphs of bounded genus6 g ∈ O(1) for the minimum
dominating set problem. By careful analysis of their work,
as in the proof of Theorem 12, it only remains to provide a

5A directed graph with maximum out-degree of one.
6Graphs of genus 0 are the class of planar graphs.

3-coloring of the resulting pseudo-forests in constant time. As
a genus g graph can be colored with O(

√
g) colors [33], we

can obtain such a 3-coloring in O(
√
g) time as well.

Corollary 13. Let H be a support graph of constant genus
g and fix any δ > 0. In the passive SUPPORTED model, a
(1+δ)-approximation can be computed in constant time on any
input graph G ⊆ H for the minimum dominating set problem.

c) Locally checkable labellings: We briefly re-visit graphs
with some constant maximum degree ∆, to investigate LCLs in
the passive SUPPORTED model. The bounded degree property
allows us to efficiently precompute colorings, which we will
also investigate in the next Section VIII-C. In fact, when we
check the proof of our LCL-Theorem 3, we just made use of
the precomputed coloring, not of the (now failed) additional
support edges. As thus, symmetry breaking problems also
collapse to constant time in the passive SUPPORTED model:

Corollary 14. Every LCL in LOCAL(o(log n)) can be solved
in time O(1) in the passive SUPPORTED model.

C. An SLOCAL Simulation in the Passive SUPPORTED
Model

As described earlier in this section, we can no longer rely
on our efficient SLOCAL simulation from Section IV in the
passive SUPPORTED model. Still, we can create another kind
of dependency chain which also works in the passive model.

Theorem 15. An SLOCAL algorithm with locality t can be
simulated in the passive SUPPORTED model in time ∆O(t).

Proof. The following proof is conceptually similar to the proof
of Theorem 1, but will rely on a dependency chain that is given
by a coloring hierarchy, i.e., in the simulation, nodes of color
1 execute first, then color 2 etc. When creating the coloring,
we need to ensure that the resulting execution performs as a
global SLOCAL one. To this end, for every t-neighborhood,
it must hold that at most one node executes its actions at the
same time: then, as the locality t is known, the executing nodes
can gather the states of all nodes of smaller colors according
to the given locality. In other words, any two nodes within
distance 2t of each other need to have distinct colors, which
is satisfied by a distance-(2 + 1) coloring. As the maximum
degree of the support graph being ∆, such a coloring can be
performed with ∆O(t) colors. The execution time for a single
color class is O(t), resulting in O(t)∆O(t) rounds, which can
be simplified to ∆O(t) in the big-O notation for ∆ > 1.

IX. RELATED WORK

Decentralized and local network algorithms have been
studied for almost three decades already [17], often with
applications in ad-hoc networks in mind. More recently,
decentralized approaches are also discussed intensively in the
context of software-defined networks [34]–[38], which serve
us as a case study in this paper, and also motivated Schmid
and Suomela [8] to consider the SUPPORTED model.

To the best of our knowledge, this paper is the first to
systematically explore the novel opportunities and limitations



introduced by enhancing scalable network algorithms with
preprocessing. That said, there are several interesting results
which are relevant in this context as well.

The congested clique [39] can be considered a special case
of the SUPPORTED model, where the support graph H is
the complete graph Kn. However, only speedup without pre-
processing is investigated, and communication is restricted to
messages of logarithmic size, i.e., the so-called CONGEST [1]
model. Korhonen et al. [40, §7] investigate the SUPPORTED
CONGEST model (with support graphs of bounded degeneracy)
and show how preprocessing can be leveraged for faster
subgraph detection in sparse graphs.

X. CONCLUSION

Scalability is a key challenge faced by the quickly growing
communication networks. In this paper, we initiated the study
of how enhancing local and decentralized algorithms with
preprocessing (as it is often easily possible in modern networks)
can help to further improve efficiency and scalability of
such networks. We presented several positive results on how
preprocessing can indeed be exploited, but also pointed out
limitations.

We understand our work as a first step and believe that it
opens many interesting questions for future research. In partic-
ular, there exist several fundamental algorithmic problems for
which the usefulness of preprocessing still needs to be explored.
Furthermore, it will also be interesting to better understand the
relationship between the opportunities introduced by supported
models and the opportunities introduced by randomization.
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J. Suomela, and J. Uitto, “A lower bound for the distributed Lovász local
lemma,” in Proc. STOC, 2016.

[20] M. Ghaffari and H.-H. Su, “Distributed degree splitting, edge coloring,
and orientations,” in Proc. SODA, 2017.

[21] N. Linial and M. Saks, “Low diameter graph decompositions,” Combi-
natorica, vol. 13, no. 4, pp. 441–454, 1993.

[22] J. B. Shearer, “A note on the independence number of triangle-free
graphs,” Discrete Mathematics, vol. 46, no. 1, pp. 83 – 87, 1983.

[23] H. N. Nguyen and K. Onak, “Constant-time approximation algorithms
via local improvements,” in Proc. FOCS, 2008.

[24] A. Frieze and T. Łuczak, “On the independence and chromatic numbers
of random regular graphs,” Journal of Combinatorial Theory, Series B,
vol. 54, no. 1, pp. 123–132, 1992.

[25] N. C. Wormald, Models of Random Regular Graphs. Cambridge
University Press, 1999, pp. 239–298.

[26] N. Alon, “On constant time approximation of parameters of bounded
degree graphs,” in Property Testing: Current Research and Surveys,
O. Goldreich, Ed. Springer Berlin Heidelberg, 2010, pp. 234–239.

[27] J. Hirvonen, J. Rybicki, S. Schmid, and J. Suomela, “Large cuts with
local algorithms on triangle-free graphs,” Electr. J. Comb., vol. 24, no. 4,
2017.

[28] A. Czygrinow, M. Hanckowiak, and W. Wawrzyniak, “Fast distributed
approximations in planar graphs,” in Proc. DISC, 2008.

[29] J. Suomela. (2016, September) Distributed algorithms: Online textbook,
2014–2016. [Online]. Available: https://users.ics.aalto.fi/suomela/da/

[30] S. A. Amiri, S. Schmid, and S. Siebertz, “A local constant factor MDS
approximation for bounded genus graphs,” in Proc. PODC, 2016.

[31] S. A. Amiri and S. Schmid, “Brief announcement: A log*-time local
MDS approximation scheme for bounded genus graphs,” in Proc. DISC,
2016.

[32] S. A. Amiri, S. Schmid, and S. Siebertz, “Distributed dominating set
approximations beyond planar graphs,” 2017, arXiv:1705.09617.

[33] G. Ringel and J. W. T. Youngs, “Solution of the heawood map-coloring
problem,” Proceedings of the National Academy of Sciences, vol. 60,
no. 2, pp. 438–445, 1968.

[34] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent
updates in SDN,” in Proc. SOSR, 2017.

[35] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in Proc. HotSDN, 2014.

[36] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2, pp.
136–141, 2013.

[37] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. HotSDN, 2012.

[38] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust SDN control plane for transactional network updates,” in Proc.
INFOCOM, 2015.

[39] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg, “MST construction
in O(log logn) communication rounds,” in Proc. SPAA, 2003.

[40] J. H. Korhonen and J. Rybicki, “Deterministic subgraph detection in
broadcast CONGEST,” in Proc. OPODIS, ser. LIPIcs, 2017.


