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ABSTRACT
This paper investigates the power of preprocessing in theCONGEST
model. Schmid and Suomela (ACM HotSDN 2013) introduced the

SUPPORTED CONGEST model to study the application of dis-

tributed algorithms in Software-Defined Networks (SDNs). In this

paper, we show that a large class of lower bounds in the CONGEST
model still hold in the SUPPORTEDmodel, highlighting the robust-

ness of these bounds. This also raises the question how much does

preprocessing help in the CONGEST model.
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1 INTRODUCTION
Common models of distributed computation typically consider sce-

narios where the computation always starts from scratch, i.e., in an

unknown communication topology. However, in many practical sce-

narios, the communication topology does not change as frequently

as the problem input. For example, the distributed algorithmmay al-

ways be run in networks whose topology is known in advance, but

∗
This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-Curie grant agreement No

754411.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6217-7/19/07.

https://doi.org/10.1145/3293611.3331581

the input instance may vary. In such cases, it is natural to support
distributed algorithms by allowing preprocessing of the underlying

network topology [11].

With this in mind, Schmid and Suomela [11] proposed two

SUPPORTED models of distributed computation to enhance dis-

tributed algorithms with the power of preprocessing: SUPPORTED
LOCAL and SUPPORTED CONGEST.

Subsequently, Korhonen and Rybicki considered subgraph detec-

tion problems [8] in the SUPPORTED CONGEST model, whereas

Foerster et al. [6] investigated the power of the SUPPORTEDLOCAL
model. In this paper, we focus on SUPPORTED CONGEST.

Contribution. We observe that many lower bounds in the stan-

dard CONGEST model still hold under such preprocessing. Given

that intuitively preprocessing seems to be very powerful, this may

come as a surprise. This raises the question of how much prepro-

cessing actually helps in the CONGEST model. Indeed, it may be

either that the power of preprocessing is very limited or that the

current lower bounds for non-supported CONGEST are not tight.

In the light of this, we propose the following challenge: is there
a separation between supported and non-supported models? If the
answer is no, then there may be a way to easily simulate preprocess-

ing, and thus, simplify algorithm design in the CONGEST model.

In the converse case, preprocessing may offer a practical way to

accelerate current distributed algorithms.

Model. In the SUPPORTED CONGEST model, the communica-

tion topology is an undirected graph H = (V , E) and each node has

a unique identifier of sizeO(logn) bits. The logical state is given by

an undirected subgraph, i.e., the input graphG ⊆ H , which inherits

the identifiers in H . The computation proceeds in two steps: First,

in the preprocessing phase, the nodes may compute any function

on f (H ) and store the result locally. In the second phase, the nodes

are tasked to solve a problem instance on the input graph G in the

CONGESTmodel. To this end, the edges of H may be used for com-

munication and additionally the local outputs of the preprocessing.

Note that the congested clique [9] model is a special case of the

SUPPORTED model: the support H is simply a clique. In addition,

one may also restrict the communication of the SUPPORTEDmodel

to just the input graph G after preprocessing; this model is called

the passive SUPPORTED model.
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Lower bound Problem

Ω(n1/2/logn) 4-cycle [4], 2k-cycle [8], Girth ((2 − ε)-apx.) [7]
Ω(n/logn) (2k + 1)-cycle [4], APSP, Diameter ((3/2 − ε)-apx.) [7]
Ω(n/(logn)2) Diameter on sparse graphs [1]

Ω(n/(logn)3) Diameter and radius ((3/2 − ε)-apx.), eccentricities ((5/3 − ε)-apx.), all on sparse graphs [1]

Ω(n2−1/k/(k logn)) Subgraph detection (for any k) [5]
Ω(n2/(logn)2) Min. vertex cover, max. independent set, chrom. number ((4/3 − ε)-apx.), weighted 8-cycle [3]

Ω(n2) Identical subgraphs (deterministic only) [3]

Table 1: Lower bounds that transfer from the CONGEST to the SUPPORTED CONGESTmodel.

2 LOWER BOUNDS FOR THE SUPPORTED
CONGESTMODEL

We show that CONGEST lower bounds obtained using the now

standard family of lower bound graphs construction [2] easily trans-

late to the SUPPORTEDmodel. To this end, we adapt here the proof

of Abboud et al. [2]. Using existing constructions for families of

lower bound graphs then immediately give the lower bounds shown

in Table 1. We note that this technique does not directly cover the

lower bounds of Das Sarma et al. [10], though we believe they can

be similarly translated.

Two-party communication complexity. Let f : {0, 1}2k → {0, 1}

be a Boolean function. In the two-party communication game on

f , there are two players who receive a private k-bit string x0 and
x1 as input, and the task is to have at least one of the players com-

pute f (x) = f (x0, x1). The deterministic communication complexity
CC(f ) of a function f is the maximum number of bits the two

players need to exchange in the worst case (over all deterministic

protocols and input strings) in order to compute f (x0, x1). Similarly,

the randomised communication complexity RCC(f ) is the worst-case
complexity of protocols, which compute f with probability at least

2/3 on all inputs.

Definition 2.1. Let fn : {0, 1}2k (n) → {0, 1} and C : N → N be

functions and Π a graph predicate. Suppose that there exists a con-

stant n0 such that for all n > n0 and x0, x1 ∈ {0, 1}k (n) there exists

a (weighted) graph G(n, x0, x1) satisfying the following properties:

(1) G(n, x0, x1) satisfies Π if and only if fn (x0, x1) = 1,

(2) G(n, x0, x1) = (V0 ∪V1, E0 ∪ E1 ∪ S), where
– V0 and V1 are disjoint and |V0 ∪V1 | = n,
– Ei ⊆ Vi ×Vi for i ∈ {0, 1},

– S ⊆ V0 ×V1 is a cut and has size at least C(n), and
– the (weighted) subgraph Gi = (Vi , Ei ) only depends on i ,
n and xi , i.e., Gi = Gi (n, xi ).

If G(n) = {G(n, x) : x ∈ {0, 1}2k (n)}, then F = (G(n))n>n0
is a

family of lower bound graphs.

Theorem 2.2. Let F be a family of lower bound graphs. Any
algorithm deciding Π on a graph familyH containing

⋃
G(n) for all

n > n0 in the passive or active SUPPORTED CONGEST model with
bandwidth b(n) needs

Ω

(
CC(fn )
C(n)b(n)

)
and Ω

(
RCC(fn )
C(n)b(n)

)
deterministic and randomised rounds, respectively.

Proof. Suppose A is an algorithm that decides Π on the graph

family H in T (n) communication rounds. We now construct a two-

player protocol π that computes fn (x0, x1) by simulating A. Let

x0, x1 ∈ {0, 1}k (n) be the input, G = G(n, x0, x1), and H =
⋃

G(n).
Given its input xi , player i can locally construct the subgraph

Gi (n, xi ) ⊂ G(n, x0, x1). Note that given Gi (xi ), the support graph
H does not reveal any information about E1−i or x1−i to player i ,

since for any y ∈ {0, 1}k (n) we haveG1−i (y) ⊆ H [V1−i ]. Simulating

any messages sent between vertices ofGi (n, x) can be done without

any communication with player 1−i . Any messages fromVi toV1−i
must go across the cut S and are communicated by player i to player
1 − i . As in each round each player communicates at most b(n) bits
over any edge in S , the total amount of bits communicated during

the course of T rounds is at most 2b(n)|S(x)|T (n) ≥ 2b(n)C(n)T (n),
which must be at least CC(fn ) for deterministic algorithms and

RCC(fn ) for randomised algorithms. Thus, the claim follows by

observing that
CC(fn )

2b(n)C(n) ≤ T (n) and
RCC(fn )
2b(n)C(n) ≤ T (n). �

3 TOWARDS NEW ALGORITHMIC
OPPORTUNITIES?

We saw in Section 2 that many lower bounds from the CONGEST
model translate directly to the SUPPORTED CONGEST model,

even though intuitively, the SUPPORTED model may seem signifi-

cantly more powerful. This raises the question if the SUPPORTED
model is actually a stronger model in a meaningful sense or if the

prior lower bounds were so strong that they easily transferred.

First separation results. Prior work on the SUPPORTED LOCAL
model [6] already pointed out that computing an upper bound

on the network size separates the LOCAL (Ω(D) rounds) and the

SUPPORTED LOCAL model (0 rounds). Analogous results hold if

the support graph is promised to have certain (monotone) properties

that apply to all its subgraphs, e.g., being k-colorable. These results
directly carry over to the SUPPORTED CONGEST model, provid-

ing a 0 vs Ω(D) round separation, even in an identifier-independent

setting. On the other hand, in the SUPPORTED LOCAL model,

all problems can be solved trivially in diameter time, but can the

SUPPORTED CONGEST go further? Observe that the naïve prob-

lem of collecting all identifiers does not provide an Ω(n2) separation
in the SUPPORTED CONGEST model, as the problem may only

depend on the input graph, which may omit nodes present in the

support graph. Notwithstanding, we can alter the problem s.t. each

node has to e.g. output two sets I0, I1 of identifiers with |I0 | = |I1 |,
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where I1 contains a superset of all identifiers in G and none of the

identifiers in I0 appear in G.

Open questions and possibilities. While the separation results for

restricted graph classes can be directly used to accelerate many

specialized algorithms (e.g., coloring when the support graph has a

small chromatic number), we leave it as an open question how the

SUPPORTED model can be leveraged outside the case of collecting

identifiers and providing upper bounds on the graph size, even

though the latter is sometimes needed as an input for some algo-

rithms. We believe that exciting possibilities arise, no matter the

outcome to this open question. For example, if theCONGESTmodel

could simulate the SUPPORTED model with negligible overhead

beyond the previously mentioned exceptions, the SUPPORTED
model could greatly simplify algorithm design by incorporating

preprocessing. On the other hand, even a strong separation could

lead to significantly faster algorithms in neighboring research areas,

e.g. for Software Defined Networks [11].
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