
Bonsai: Efficient Fast Failover Routing

Using Small Arborescences
Klaus-Tycho Foerster∗ Andrzej Kamisiński∗∗

Yvonne-Anne Pignolet‡ Stefan Schmid∗ Gilles Tredan⋄

∗∗AGH University of Science and Technology, Poland ‡DFINITY, Switzerland
⋄LAAS-CNRS, France ∗Faculty of Computer Science, University of Vienna, Austria

Abstract—To provide high availability despite link failures,
many modern communication networks feature fast failover
mechanisms in the data plane, which operates orders of mag-
nitude faster than the control plane. While the configuration of
highly resilient data planes using the shortest possible back-up
routes is known to be a difficult combinatorial problem, over
the last years, much progress has been made in the design of
algorithms which provably guarantee connectivity even under
many concurrent link failures. However, while these algorithms
provide connectivity, the resulting routes after failures can be
very long, which in turn can harm performance.

In this paper, we propose, analyze, and evaluate methods for
fast failover algorithms which account for the quality of the routes
after failures, in addition to connectivity. In particular, we revisit
the existing approach to cover the to-be-protected network with
arc-disjoint spanning arborescences to define alternative routes to
the destination, aiming to keep the stretch imposed by these trees
low (hence the name of our method: Bonsai). We show that the
underlying problem is NP-hard on general topologies and present
lower bound results that are tight for various topologies, for any
class of fast failover algorithms. We also present heuristics for
general networks and demonstrate their performance benefits in
extensive simulations. Finally, we show that failover algorithms
using low-stretch arborescences, as a side effect, can provide
connectivity under more general failure models than usually
considered in the literature.

I. INTRODUCTION

Communication networks have become mission critical and

reliability is one of the main concerns of network operators

today [1]. Ensuring a high network availability however is

often non-trivial, especially under frequent and concurrent link

failures, which are becoming more likely with the increasing

scale of communication networks including datacenters [2],

backbones [3], [4] or enterprise [5] networks, but also due to

virtualization and shared risk link groups [6].

Fast rerouting in the data plane is an important mechanism

to meet availability guarantees: as reaction times to failures

in the data plane are several orders of magnitude shorter than

in the control plane [7], many communication networks today

support statically precomputed conditional failover paths [8]

(e.g., using IP Fast Reroute [9], [10], MPLS Fast Reroute [11],

or OpenFlow fast-failover groups [12]), along which traffic

can be rerouted in case failures are encountered. Interestingly,

allocating such conditional failover paths introduces a chal-

lenging combinatorial problem: as the forwarding rules on

the switches or routers need to be installed beforehand and

without knowledge of the actual failures which may occur, the

forwarding decisions must be robust to all possible additional

failures which may occur downstream.

The underlying algorithmic problem is related to distributed

computing problems (due to the switch or router’s local view

on failures) [13]. Over the last years, much progress has been

made (e.g., [4], [14], [15], [16], [17]) toward the design of

polynomial-time algorithms to precompute failover rules which

provide optimal connectivity [18]: failover routes are guaranteed

as long as the underlying network remains physically connected.

However, while connectivity is important, connectivity alone

is not sufficient to meet performance requirements, also the

quality of the resulting failover routes matters [8]. In particular,

long failover routes may introduce additional delays: if the

length of the old and the new path differ, this can temporarily

lead to packet reorderings and an overestimation of the

congestion of the network, harming TCP throughput [19].

More importantly, long routes also increase the likelihood

of congestion, as bandwidth needs to be allocated on a per-hop

basis and longer flows may interfere with more other flows.

Thus we focus in this paper on minimizing the maximal stretch

which can be introduced by rerouting.

Contributions. We investigate deterministic fast failover mech-

anisms which not only provide provable connectivity under

multiple link failures, but also account for the quality in terms of

the resulting route lengths, namely the stretch: the actual length

of the failover route, minus the shortest originally possible

distance. At the same time, previous fast failover works focused

mostly on connectivity alone and they often required dynamic

routing tables or modifications of packet headers. Reducing

the route length and stretch, compared to earlier work, has a

positive impact on latency and jitter.

We consider the state-of-the-art approach to resilient routing,

which protects a network by covering it with arc-disjoint

spanning arborescences [18] (arborescences are used to define

alternative routes to the destination in the case of failed links).

We motivate our approach with the fact that focusing only

on the connectivity can lead to very long failover paths,

where we also give some appropriate lower bounds. We thus

investigate algorithms which compute an arc-disjoint spanning

arborescence packing, where each arborescence provides low

stretch, hence optimizing the maximum stretch: the idea is

that this results in shorter failover routes, without sacrificing

connectivity. Since we keep failover arborescences (“trees”)

small, we call our approach Bonsai.

1

t

x u

w v

T1
t

x u

w v

T2

Fig. 1. Example of a five node graph with two different choices of failover
routes T1, T2, depicted in blue (dashed) and red (dotted). In both T1, T2,
routing can switch to a second arc-disjoint arborescence if a failure is
encountered. T1 is inspired by routing along a Hamiltonian cycle, either
clock- or counter-clockwise. The arborescences in T2 optimize for short paths.

As we prove the problem to be NP-hard for general

network topologies, we present a fast and flexible heuristic

that takes stretch optimization criteria into account. We report

on extensive experiments of this heuristic, for different random

and real-world networks. Our results show that we can signif-

icantly improve the stretch for many scenarios, in particular

when the network size increases, in comparison to currently

used methods. Moreover, our techniques also provide good

performance gains in other aspects, such as the computation

time or stretch in relation to network connectivity. Finally, we

demonstrate the benefits of low-stretch failover algorithms to

support more general failure models than usually studied in the

literature: when the failures are appropriately clustered, low-

stretch arborescences greatly increase network survivability.

Example. To illustrate our problem and show the need for

route length-aware arborescences, we consider the network

with five nodes in Fig. 1. In this simple example, we consider

flows that need to be routed to the destination t, in the top of

the figure. In the absence of link failures, the flows could be

routed along e.g. the dotted red paths. In the case of incident

link failures, any node y will apply conditional rules which

have been pre-installed. These rules can only be conditioned on

the availability of links incident to the node y and the in-port,

i.e., rerouting decisions are purely local. We refer to Sec. II

(and related work [13], [14], [16], [20]) for a detailed model.

We are interested in strategies to pre-compute such condi-

tional failover rules which ensure that one is still able to route

to t, even in the presence of multiple failures. In the example

in Fig. 1, node x has a conditional failover rule which reroutes

traffic if the dotted red arc (x, t) is not available. In the case of

the T1 tree, traffic might be rerouted to node w via the dashed

blue arc (x,w). If w would not match on the incoming port,

then the packet might be forwarded again to x, resulting in a

forwarding loop.

Prior work provided important insights in how failover rules

should be defined in order to avoid such loops, even under

multiple link failures, for example, relying on Hamiltonian

cycles [15, §B.6]. However, in the worst case, these schemes

can result in very long paths: if x resorts to the alternative

counter-clockwise route indicated by dashed blue arcs in T1,

the stretch is on the order of the number of nodes, which is

especially harmful when larger examples are considered. On the

other hand, the routing as described in T2 on the right side just

induces a stretch of one extra hop. Thus, we aim to ensure that

failover paths “preserve locality”, without sacrificing resiliency.

As such, we are interested in algorithms to compute static

failover rules which result in paths like the one indicated in T2.

A large body of work on routing schemes resilient to

single failures as well as routing schemes resilient to multiple

failures with dynamic failover tables (where link reversal

approaches [21] can be used) exists, as we will discuss in

more details in the related work section. However, much

less is known about the design of resilient static forwarding

tables, especially for scenarios where packet-header rewriting

or packet-duplication is impossible or undesired (the former

consumes header space and the latter introduces additional

loads). The most closely related works to ours are by Chiesa et

al. [14], [15], [18], [22], Stephens et al. [16], [17], and Pignolet

et al. [13], [23], who developed robust failover schemes using

static forwarding tables. These approaches provide very high

resilience. However, they do not guarantee any non-trivial

deterministic bounds on the resulting path lengths. The work

of Foerster et al. [8] provides bounds on the resulting path

lengths, however just for specialized regular topologies such

as the 2d-torus, grids, and data center topologies based on

complete bipartite graphs—these constructions are specialized

and cannot be extended to more general graph classes.

This paper aims to fill this gap, by considering the study

of deterministic local algorithms for short failover paths on

general network topologies. We build upon the concepts of arc-

disjoint spanning arborescences, which were also exploited

in prior work [8], [14], [15], [18], [22], [24], [25] and are

reminiscent of work on homotopic routing problems [26].

Organization. We present our formal model in Section II,

followed by Section III, where we introduce the concepts of arc-

disjoint spanning arborescences and derive lower bounds on the

possible stretch, along with proving optimal stretch computation

to be NP-hard. Section IV investigates the construction of

stretch-aware arborescences, where we first introduce prior

methods and then present our own round-robin approach, which

can efficiently swap links for optimization purposes. In the next

Section V, we also provide positive evaluation results which

showcase that our new approach performs well in practice,

in comparison to prior work. We furthermore show that low-

stretch arborescences also have a positive influence on the

resiliency, by investigating theoretical guarantees for distributed

failure clusters in Section VI. We then discuss related work in

Section VII and lastly conclude in Section VIII.

II. NETWORK AND ROUTING MODEL

We model the network as a graph G = (V,E), connecting

n nodes in set V (switches, routers, hosts) using bidirected

links E (i.e., a full-duplex symmetric digraph). That is, if there

is a link (u, v), then there is also always a link (v, u) in the

opposite direction. When focusing on the directed nature of a

link, we often use the term arc to emphasize this.

We assume that forwarding rules can match the destination

field from the packet header as well as the in-port (the port

2

from which a packet arrives at v)1, and depending on this

match, define the outgoing port to which a packet is forwarded

at v. In other words, the focus of this paper is on oblivious

routing algorithms which do not rely on any dynamic state

at nodes (e.g., no counters), nor in packets: we do not allow

packet tagging. While marking packets is known to improve

the robustness of routing [14], [27], it may not be possible

in practice to add additional header fields or to reuse existing

fields, as they are needed by other protocols.

The failover mechanisms needs to be statically pre-

configured: at the time the failover rules are installed, the

set of link failures F is not known yet. The mechanism must

be configured such that for any possible set of local link

failures, a failover action is taken which provides connectivity

and stretch guarantees, independently of the additional failures

that may be encountered down-stream.

More precisely, we say that a failover algorithm A has a

resiliency of |F |, if for any source-destination pair s, t ∈ V it

holds: the route taken by packets from s according to algorithm

A leads to t despite any |F | link failures.

Note that statically preconfigured failover allows a network

to react seamlessly to local failures, whether they are transient

or permanent. In case of permanent link problems, the recon-

struction of routes can be triggered in addition, if necessary.

The focus of this work is on the properties of such local failover

algorithms and not on the reconstruction of permanent failures.

III. ROOTED SPANNING ARBORESCENCES

In order to obtain efficient local fast failover algorithms, we

leverage a known approach for resilient routing [14], [18], [22],

[25], based on rooted arc-disjoing spanning arborescences2:

routing is performed along arborescences, where upon hitting a

failure, the packet switches to another arborescence and follows

it—without modifying the packet header.

A. Arborescence Preliminaries and Prior Work

We now formally define the concept of rooted arc-disjoint

spanning arborescences and how to use them for failover routing

as discussed in prior work, e.g., by switching between them

in a circular order [14], [15], [18], [22].

Arborescence properties. Let (u, v) denote a directed arc from

node u to v. A directed subgraph T is an r-rooted spanning

arborescence of G if (i) r ∈ V (G), (ii) V (T) = V (G), (iii) r
is the only node without outgoing arcs and (iv), for each v ∈
V \ {r}, there exists a single directed path from v to r. When

it is clear from the context, we use the term ”arborescence“

to refer to a t-rooted spanning arborescence, where t is the

destination node.

Generating arc-disjoint arborescences. A packing (set) of

arborescences T = {T1, . . . Tk} is arc-disjoint if no pair of

1The in-port is crucial for resiliency. E.g., consider a network with a dead-
end, e.g., a node v which can only be reached via a link from u after the
failures. As packets are forced to return back to u along link (v, u), i.e., the
same link from which they arrived, matching the in-port is needed to facilitate
a different routing decision at v, avoiding a loop.

2Also denoted as branchings or directed rooted trees in the literature.

arborescences in T shares common arcs, i.e., if (u, v) ∈ E(Ti)
then (u, v) /∈ E(Tj) for all i 6= j. It is known that k arc-disjoint

arborescences exist in any k-connected graph [28] and that they

can be computed efficiently [29], with a runtime of O(|E|+
nk3 log2 n). In a simpler (and slower) version, one creates a

spanning arborescence s.t. the remaining graph remains k − 1
connected, and repeating this process k − 2, k − 3, . . . , until

k arc-disjoint arborescences are obtained [30]. A conceptually

different approach is proposed by Chiesa et al. [15], using

link-disjoint Hamiltonian cycles: given k/2 such cycles, they

can be turned into k arc-disjoint arborescences, two for each

cycle, in opposite directions. However, k-connectedness does

not imply k/2 disjoint Hamiltonian cycles.

Resilient routing on arc-disjoint arborescences. Elhourani et

al. [24] and Chiesa et al. [15] showed how decompositions of G
into T can be used to define failover routes for packets destined

to t. These packets are routed according to an arborescence

Ti by forwarding them along the unique directed path of Ti

towards the root t. If a link (u, v) ∈ E(Ti) that should be

used for the next hop is not available, the affected packets

are forwarded along a different arborescence Tj at u, i.e., the

packet switches from Ti to Tj at u.

When arborescences are arc-disjoint, a failed arc only

disconnects one arborescence, i.e., in a k-connected graph, k−1
failures leave at least one arborescence intact. On the other

hand, k failures can physically disconnect the destination from

parts of the network. Elhourani et al. [25] obtain a resilience of

k−1 by indexing the arborescences from 1 to k, with all packets

starting in arborescence 1, switching to the arborescence with

the next higher index after a failure.

Chiesa et al. [14], [15], [18], [22] propose to generalize

this concept by defining a circular order on the arborescences.

As such, packets may start in any arborescence, and may

also be forwarded after hitting k failures, though without any

theoretical guarantees in the latter case.3 Chiesa et al. also

provided other failover strategies, some of them probabilistic.

Instead of defining a fixed circular order on the arborescences,

the next arborescence may be chosen uniformly at random,

hopefully breaking out of forwarding loops. As an extension,

motivated by bidirectional link failures, packets can bounce on

the failed link e with some fixed probability, picking the other

arborescence that was also impacted by failing link e.

Arborescence quality. A defining quality of routing on an

arborescence is its stretch, which we now define formally. Let

ℓopt(v, t) denote the minimum distance packets have to travel

from v to t without failures (shortest path routing) and let

ℓT (v, t) denote the route length along arborescence T . The

stretch of a node v in T is defined as the difference between

routing optimally and on T , i.e., ℓT (v, t)− ℓopt(v, t), whereas

the stretch of an arborescence T is defined as the maximum

stretch over all v ∈ V . Similarly, the stretch of an arborescence

packing T is defined as the maximum stretch over all T ∈ T .

3We show how to extend the theoretical guarantees beyond k failures in
Section VI for failure distributions where the failures are clustered [31].

3

When it is clear from the context, we will just use the term

stretch, without specifying v, T , or T .

However, prior work does not provide theoretical guarantees

on the stretch when using arborescences, except on how often

one might switch the arborescences [14], [15], [18], or for some

specialized regular topologies [8]. In extreme cases, the stretch

might even be worst possible. For example, using arc-disjoint

arborescences generated from disjoint Hamiltonian cycles [15],

can induce a stretch of up to Ω(n), as indicated in Fig. 1. Still,

sometimes very low stretch arborescences are not possible, as

we investigate in the next section.

B. Lower Bounds on Arborescence Stretch

We start with the observation that once we have more than

one arborescence in T , its stretch is at least 1. Consider any

neighbor v of the destination t: its distance to t is 1, but the

corresponding arc may only be used in a single arborescence.

Matching bounds on complete graphs. Already this simple

lower bound allows the optimal stretch to be obtained for

complete graphs: we can directly decompose a complete graph

into n− 1 arc-disjoint arborescences of depth 2, where each

arborescence uses a different arc (v, t) to the destination t as

their first link followed by all arcs from nodes in V \ {v, t} to

node v. Hence, each node has a stretch of at most 1 in every

arborescence.

Arc-disjoint paths and lower bounds. We can broaden our

initial idea to a more general setting. As all the arborescences

need to be arc-disjoint, not all can take the shortest path to the

root, but rather need to take k different paths, which gives first

stretch bounds: some arborescences must take longer detours.

Observation 1: Let T be any packing of k arc-disjoint

arborescences rooted in t ∈ V . Consider the set of all k arc-

disjoint v − t-paths, denote ℓk(v, t) as the minimum length of

the kth-shortest (i.e., longest) path from this set. The stretch

of T is at least maxv∈V ℓk(v, t)− ℓopt(v, t).

Girth bounds. The network girth is the length of the graph’s

shortest undirected cycle. Again, we pick any neighbor u
of the root t, and note that the girth can be used to derive

a lower bound on maxv∈V ℓk(v, t)− ℓopt(v, t): if an alternate

arc-disjoint route is to be taken, instead of the direct link (u, v),
this alternate path has at least the length of the graph’s girth

minus 1 for (u, v). For example, in the case of complete graphs,

the girth is 3, hence the alternate path has at least a length of

2. As the stretch is computed by subtracting the shortest path,

we obtain a lower bound of girth minus 2.

Corollary 1: The network’s girth minus 2 is a lower bound

for the stretch of an arborescence packing T , for |T | > 1.

Optimality for regular topologies. For regular graphs, this

bound can suffice for optimality, as seen above on complete

graphs. Further examples are e.g. torus graphs, grids, hyper-

cubes, and topologies that can be decomposed into trees of

connected complete bipartite graphs [8], all examples where the

girth based bound is tight. For general topologies, the situation

is more difficult, as discussed in the next section.

u r b

v1 v2 v3 v4

e1 e2

V

E

G′ = (V ′, E′)H = (V,E)

v1

v2

v3

v4

e1

e2

Fig. 2. G′ graph construction for a hypergraph H = (V =
{v1, v2, v3, v4}, E = {e1, e2}), e1 = {v1, v2, v3}, e2 = {v2, v3, v4},
using the ideas from [32]. The nodes r1, r2 and b1, b2 are merged, respectively,
to make the figure less cluttered. In this example, we provide two arborescences
of depth 2, in red (dotted) and blue (dashed), corresponding to a 2-coloring
of the hypergraph with v1, v3 in red and v2, v4 in blue.

C. Arborescence Decomposition Complexity

Even though computing a maximum amount of arc-disjoint

arborescences can be done efficiently, optimizing them regard-

ing stretch is intractable. Hence, due to the NP-completeness

result stated next, we will focus on heuristics in the following

Section IV and compare them to each other.

Theorem 1: Let G = (V,E) be a k-connected symmetric

digraph with a root r ∈ V . Computing k r-rooted arc-disjoint

spanning arborescences, s.t. the maximum stretch is minimized,

is NP-complete for all k ≥ 2, k ∈ N.

From depth to stretch. Alon, Bermond, and Fraigniaud [32]

showed that minimizing the maximum depth for more than

one disjoint arborescence is NP-hard, via reduction from

hypergraph4 colorability. However, their result does not suffice

to show hardness for the stretch: in fact, in their construction

the optimal stretch is easy to compute. Notwithstanding, we

adapt their ideas to show NP-hardness for optimal stretch.

Proof of Theorem 1: As the stretch problem is clearly in

NP, it remains to show NP-hardness. To this end, we utilize

and extend [32, Theorem 2] and subsequent comments.

The authors in [32] perform a reduction from the NP-

complete problem of hypergraph colorability [33]: given a

hypergraph H = (V,E), can its node set be 2-colored (e.g.,

red and blue), s.t. every hyperedge e ∈ E is incident to nodes of

both colors? They construct the following graph G′ = (V ′, E′),
showing that finding two undirected link-disjoint u-spanning

arborescences of depth at most 2 is NP-hard: V ′ consists of

V , each hyperedge e ∈ E is represented as a node, and the

five nodes u, r1, r2 (red), and b1, b2 (blue). The undirected

link set is constructed in four steps: 1) the nodes v ∈ V are

connected to those representing e ∈ E if v is incident to e in

H , 2) all nodes in V are connected to all nodes u, r1, r2, b1, b2
and 3) u is connected to r1, r2, b1, b2. Lastly, 4) r1 and r2 are

connected to b1, b2 as well. We provide an example in Fig. 2.

We briefly note at this point that their and our following

proof construction directly translate to bidirected graphs, by

replacing every undirected link with two directed opposite arcs:

4Hypergraphs are a generalization of graphs, where the edges are replaced
by hyperedges, which in turn can join any number of nodes, not just two.

4

essentially, using the “back”-direction of a link is not useful

at all. For ease of readability, we will use undirected links as

well, just denoting them as links in the remainder of the proof.

We analyze the depth and stretch properties of the nodes in

V ′, when they are contained in two arborescences of depth 2.

Herein, the depth of a node in an arborescence is denoted

w.r.t. the root u, and the stretch w.r.t. the shortest path to u:

• for nodes in E to have a depth of 2 in an arborescence,

the stretch must be 0, i.e., only two hops to u;

• subsequently, the nodes in V , connected to the nodes in

E, must have a depth of 1 and a stretch of 0;

• as the only option for nodes in V to have a depth of 1 is

to be connected (via the arborescence links) directly to

the root u, which only provides |V | of the 2|V | necessary

links, at least half the nodes in V have a depth of 2 and

stretch of 1 in some arborescence — no higher depth or

stretch is needed, as the detour via r1, r2, b1, b2 provides

ample connectivity;

• the remaining nodes r1, r2, b1, b2 can be connected to the

root with a depth of at most 2 and a stretch of at most 1.

If no arborescences with depth 2 are possible, then some

node has at least depth 3. Note that a depth of 3 is always

possible. To this end, we first connect all nodes in V via r1
(red arborescence) and b1 (blue arborescence) resulting in a

depth of 2 and stretch of 1 so far. Next, we connect the nodes

in E to those nodes in V , resulting in a depth of 3 and stretch

of 1 for both arborescences. However, this construction, while

increasing the depth, maintains the stretch of 1: the maximum

stretch in V is still 1, but nodes in E have a stretch of at most

1 as well now. If we could enforce that some node were to

have a stretch of 2 with depth 3, then we would have shown

NP-hardness for the stretch of 2 arborescences. We will next

show how to achieve this feat.

We take the graph G′, clone it |E| times, and in each of those

|E| clones G′
i, 1 ≤ i ≤ |E|, we merge the node ei with ui,

denoting the (polynomially created) graph by G′′ = (V ′′, E′′).
We obtain new node sets V ′

i (distance to u: 3) and E′
i (distance

to u: 4). If the original graph G′ had two u-rooted link-disjoint

arborescences of depth 2, then the new graph G′′ has two such

arborescences of depth 4 as well. Firstly, the nodes in V ′
i (and

the four extra nodes r1,i, . . .) have a depth of 3, 4 and a stretch

of 0, 1. Secondly, the nodes in E′′
i have a depth of 4 and as

thus a stretch of 0. Observe that in this case of depth 4, all

nodes have a stretch of 0 or 1 in the two arborescences.

We now assume that the original graph G′ does not allow

for two arborescences of depth 2, i.e., following the previous

arguments, at least one node in E has a depth of 3 with stretch

of 1, w.l.o.g. ej ∈ E. However, then at least one node in E′
j

has a depth of 5 in some arborescence, with a stretch of 2.

Hence, minimizing the maximum stretch is NP-hard, as it is

NP-hard to decide if two rooted disjoint arborescences with

stretch 1 exist. The above NP-hardness construction can be

directly extended to any k ∈ N number of arborescences for

k-connected graphs, applying the ideas from [32, p.5].

IV. BONSAI: HOW TO BUILD BETTER ARBORESCENCES

FOR ARBITRARY NETWORKS

A crucial question studied in this paper is how to avoid the

black-box modeling of arborescences, which does not provide

any stretch properties. We therefore analyze the complexity of

general arborescence decompositions for arbitrary networks,

with the goal of obtaining minimum stretch.

Since the problem was shown to be NP-complete in

Section III-C, we now describe polynomial-time heuristics

to decompose arbitrary graphs into “Bonsai” arborescences

efficiently while striving to keep their stretch low. The simplest

way to decompose a k-connected graph into k arc-disjoint

arborescences constructs one arborescence after each other, as

in the two approaches described next.

Random decomposition. When building the ith arborescence

Ti, the following method ensures that the graph with all the

arcs belonging to the trees T1, . . . , Ti are removed is still k− i
connected. We start at the root and insert a random unused

arc (not belonging to any Tj , j < i) towards the root into

Ti. Now a recursive procedure is used to add new arcs (u, v)
to Ti which extend Ti (i.e. v ∈ Ti) while maintaining the

arborescence structure (i.e., v /∈ Ti). For each edge to be added

we test whether there are still k − i arc-disjoint paths from

u to the root on the unused arc (excluding (u, v)). If yes the

arc is added to Ti and we proceed recursively. Otherwise the

next arc is tested. This algorithm always succeeds to construct

k arc-disjoint arborescences and serves as our baseline in

the comparison with construction that take the depth of the

resulting arborescences into account.

Greedy decomposition. The following greedy approach en-

sures that Ti has the lowest depth of all possible arborescences

on the arcs that have not been used yet. As in the random

decomposition, we start at the root and insert one of the unused

arcs (not belonging to any Tj , j < i) towards the root into

Ti. All candidate arcs (u, v) are tested until a suitable one is

found, ordered by the depth the arborescences would exhibit

with (u, v). Analogously to the above, we test whether there are

still k − i arc-disjoint paths from u to the root on the unused

arc. This approach is used for the experimental evaluation

in [14]. This algorithm also always succeeds to construct k
arc-disjoint arborescences. The depth of the first arborescence

is the smallest of all arborescences and the depth of the other

arborescences increases monotonically. For networks with very

few failures, this construction combined with circular routing

starting with the first arborescence is a very good practical

choice. However, a bad combination of failures might lead to

long detours on Ti, i > 1.

Round-robin approach. Instead of building one arborescence

after the other, the round-robin approach constructs all of them

in parallel. After the jth edge has been added to the first

arborescence, chosen from all the unused edges, the second

arborescence obtains its jth edge and so on. To make the

procedure simpler, we may omit the connectivity test described

5

t

v1

v2

v3

v4

v5

v6

v7

Fig. 3. Example: 3-connected graph. The Round-Robin approach performed
two rounds for the first blue (dash-dotted) and second green (dashed)
arborescences, and one round for the third red (dotted) arborescence. Even
though the graph remains k − 1 = 2-connected when removing any single
arborescence, the red (dotted) arborescence cannot reach the nodes v1 to v4.

for the greedy approach5. By increasing the depth in each

of these decisions only if strictly necessary, this leads to a

much more balanced arborescence packing with respect to

the length of the detours they entail. Unfortunately, however,

this procedure does not always succeed for general graphs. In

some cases, there is no unused arc left that can be added to

arborescence Ti even though it is i’s turn, we reached a dead-

end. An example of such a situation for three arborescences is

provided in Fig. 3.

Refined connectivity test. In some cases, such dead-ends

can be avoided by the following connectivity test. Before

adding an unused arc (u, v) to Ti, we count the number of arc-

disjoint paths from u to the root in the graph H = (V ′, E′),
which represents the unused arcs in case of i failures, i.e.,

V ′ = V and E′ = {(v, w)|(v, w) /∈ ∪j≤iTi}. This represents

the number of potentially usable arc-disjoint paths left for the

arborescences after i failures. If this number is not at least

k − i, the corresponding edge is not added to Ti.

Swapping arcs when growing arborescences. Even with this

refined connectivity test, we might end up in a dead-end. To

get out of it, we can try if exchanging arcs already chosen

by an arborescence might mitigate the problem. For example

in Fig. 3, when we swap the blue arc (v1, t) to the unused

arc (v1, v2), the red arborescence may now take over (v1, t),
removing the current deadlock situation. In general, when we

cannot add an arc to Ti in the normal round-robin fashion,

we can check for candidate arc pairs e = (u, v), e′ = (u, v′)
leaving node u if we could perform a swapping operation.

To this end, the following conditions must hold.

1) u has a neighbor v′ ∈ V (Ti)
2) (u, v) does not belong to any arborescence yet, e /∈
∪ρ=1..kE(Tρ)

3) u /∈ V (Ti)
4) ∃j, s.t. (u, v′) ∈ E(Tj)
5) v ∈ V (Tj)
6) v′ is not on the path to from v to the root in Tj .

These conditions are sufficient and necessary to obtain valid

arborescences by assigning e to E(Tj) and e′ to E(Ti). When

testing if a set of arcs forms an arborescence, there must be

exactly one directed path from every involved node to the

root. (4) ensures that no arc leaving the root can be added to

5For two arborescences, it is easy to show that this connectivity test suffices
to always finish the construction on ≥ 2-connected graphs: the remaining
subgraph always contains a rooted spanning tree, i.e., the arborescences can
continue to add arcs until all nodes are in them.

an arborescence, while (3,5,6) ensure that valid paths to the

root exist in both involved arborescences afterwards, i.e., v
and v′ have the necessary outgoing links in the appropriate

arborescence and no cycles can be created by the swap. We

can address the case where e and e′ do not originate from the

same node analogously by adjusting the conditions above.

When adding the lth edge, each arborescence Tj , j < i
contains l nodes and all arborescences Tj , j ≥ i contain

l − 1 nodes. As a consequence, the above procedure can be

implemented with time complexity O(l2δ) on average, for a

graph of maximum degree δ and an implementation of set

operations of O(1) on average. Thus, testing for swapping

possibilities takes more and more time as the arborescences

grow. Observe, however, that this approach is much more

efficient than the naive approach, which checks for all pairs of

edges if the involved graphs Ti, Tj are still valid arborescences

after the swap (O(ln2δ2)).
For many graphs, the extension of the round-robin approach

with the refined connectivity test and swapping arcs finds an arc-

disjoint arborescence packing with very low depth. However,

there are still cases when the approach reaches a dead-end.

V. DECOMPOSITION COMPARISON

In this section we compare the properties of the approaches

described above in Section IV. We construct arc-disjoint

arborescence packings using (1) a random decomposition, (2)

a greedy decomposition, (3) our round-robin (RR) approach,

and (4) our RR aproach using swapping (RR-swap). We then

compare their (a) success rate, (b) stretch, and (c) running time.

In our evaluation, we use random regular graphs of varying size

and connectivity and the well-connected cores of various ASes.

We refer to [34] for further details concerning reproducibility.

A. Experiments on Random Regular Graphs

Our first set of experiments was on random graphs, which

were used for the experimental evaluation of the greedy method

in [14], [22]. More precisely, we generate random k-regular

graphs, sampled in an asymptotically uniform way [35], which

are almost surely k-connected [36, p. 195ff.]. In all generated

graphs, the degree and connectivity matched. We pick seven

different graph sizes (up to 1000 nodes) and six different

connectivities (from 5 to 30) to simulate a wide spectrum

of parameters, where each combination is generated 100

times, picking a random node as the root. We then generate

arborescence packings T of size k with the random, greedy,

RR, and RR-swap method.

Construction success on random regular graphs. As dis-

played in Fig. 4, all three of the random, greedy, and swapping

approaches succeed in 100% of the experiments, whereas the

success rate of the round-robin approach greatly drops, failing

completely beyond ≈ 200 nodes.

Such behavior is to be expected from the random and greedy

approaches, as both utilize sequential constructions, maintaining

connectivity for the following arborescences. The swapping

numbers are more interesting — while the algorithm can fail

in theory, it did not do so over the course of our experiments.

6

●● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Graph Size

C
o

n
s

tr
u

c
ti

o
n

 S
u

c
c

e
s

s
 R

a
te

Algorithm ● Greedy RR−swap Random RR

Fig. 4. Success rate for the arborescence packings T of the different algorithms
on random k-regular graphs, aiming for k disjoint arborescences in each trial.
Each data point represents the average success rate over 100 attempts.

●

●

●

●

●

●

●

0

25

50

75

0 250 500 750 1000
Graph Size

M
e

d
ia

n
 S

tr
e

tc
h

Algorithm ● Greedy RR−swap Random RR

Fig. 5. Median stretch for the arborescence packings T (100 each) of the
different algorithms in random regular graphs, plotted over the number of
nodes of the graphs. The shaded areas display the 5th to 95th percentile.

We thus believe that on random regular graphs, our swapping

method nearly always finds alternatives, with deadlocks being

extremely rare.

Stretch on random regular graphs. The stretch performance

on random regular graphs is shown in the Figs. 5 (plotted over

different graph sizes) and 6 (for various connectivities). In

both cases, RR and RR-swap perform quite similarly, in Fig. 6

their results overlap. However, RR without swapping fails early

to finish its constructions. Both algorithms vastly outperform

the random and greedy approaches in the median stretch, as

well as the 5th to 95th percentile, of the arborescences T , in

particular when considering larger graph sizes where, e.g.,

not even the percentiles for RR-swap and greedy overlap.

While the performance of RR-swap stays similar for larger

random regular graphs, it degrades for greedy and random.

As the connectivity increases, the median performance of all

four algorithms improves slightly, but random and greedy still

always stay far behind the RR versions. The situation is similar

for the 5th to 95th percentile, with the exception of the random

method: here, the performance does not change much with

varying connectivity.

Computation time for random regular graphs. The com-

putation time (in seconds) of the arborescence packings T
is shown in the Figs. 7 (different sizes) and 8 (different

connectivities). We used an Intel i5-4570 @3.2 GHz with

●

●

●

●

●

●

10

20

10 20 30
Connectivity

M
e

d
ia

n
 S

tr
e

tc
h

Algorithm ● Greedy RR−swap Random RR

Fig. 6. Median stretch for the arborescence packings T (100 each) of the
different algorithms in random regular graphs, plotted over the connectivity of
the graphs. The shaded areas display the 5th to 95th percentile.

●● ● ●
●

●

●

0

20

40

60

80

0 250 500 750 1000
Graph Size

M
e

d
ia

n
 T

im
e

Algorithm ● Greedy RR−swap Random RR

Fig. 7. Median computation time (seconds) for the arborescence packings T
(100 each) of the different algorithms in random regular graphs, plotted over
the graph size. The (small) shaded areas display the 5th to 95th percentile.

8GB ram for the experiments. In general, the median and

5th to 95th percentile values barely differ for each individual

algorithm. For RR and RR-swap, the dominating factor is

picking the next arc, which increases linearly with the number

of arcs. Their computation time overlap, though RR fails to find

solutions beyond 200 nodes. In general, RR-swap only needed

to utilize very few swaps to resolve deadlocks, meaning that

the computation time does not change much due to swapping in

most cases. For greedy and random, the dominating factor was

the ongoing connectivity checks, which result in much slower

runtime than RR-swap, the plotted values grow quadratically.

As such, their time values are essentially identical as well, with

random being slightly faster for larger connectivities.

B. Experiments on Well-Connected Cores of ASes

Our second set of experiments was on the well-connected

cores of various ASes, taken from the commonly used Rocket-

fuel data set [37]. We trim the AS graphs s.t. only the well-

connected cores remain, as follows. We first contract nodes

of bidirected degree 2 into a single bidirected link. Next, we

remove nodes that have a degree less than 4/5/6/7, contracting

the graph again later. This process is repeated until no more

nodes can be contracted or removed. If the trimming resulted

in less than 20 nodes, we omit them. For each such topology

(ranging from 20 to roughly 700 nodes), we pick 20 different

7

●

●

●

●

●

●

0

10

20

10 20 30
Connectivity

M
e

d
ia

n
 T

im
e

Algorithm ● Greedy RR−swap Random RR

Fig. 8. Median computation time (seconds) for the arborescence packings T
(100 each) of the different algorithms in random regular graphs, plotted over
the connectivity. The (small) shaded areas display the 5th to 95th percentile.

AS6461 AS7018

AS3967 AS4755

AS3257 AS3356

AS1755 AS2914

AS1221 AS1239

4 5 4 5 6 7

4 5 4 5

4 5 4 5 6 7

4 5 5 6 7

4 5 7 4 5 6 7
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Connectivity

S
u

c
c

e
s

s
 R

a
te

Fig. 9. Success rates for the arborescence packings T for RR-swap, aiming
for 4 to 7 disjoint arborescences Each item represents the average success rate
over 20 attempts, picking a random root each time. Greedy always succeeds.

nodes uniformly at random, selecting them as a root for the

arborescence packings. We generate arborescence packings T
of size k ∈ {4, 5, 6, 7} with the greedy and RR-swap methods.

Construction success on AS graphs. Greedy always finishes,

meaning that our trimming operation generated 4/5/6/7-

connected graphs. Different to the random regular graphs, RR-

swap struggles to complete some arborescence constructions,

as seen in Fig. 9: in total, RR-swap succeeds 61% of the

time. Upon further further investigation, we saw that RR-swap

created partial arborescences that could not be fixed locally,

i.e., which would require a non-trivial amount of restructuring.

Stretch on AS graphs. The stretch of the arborescence

packings T generated by greedy and RR-swap is shown in

Fig. 10, where we depict the median stretch for the different

connectivities, along with the 5th to 95th percentiles. As can

be seen, RR-swap performs clearly better than greedy, where in

many cases not even the 5th to 95th percentile ranges overlap.

On the other hand, the differences are not as prominent as for

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

AS6461 AS7018

AS3967 AS4755

AS3257 AS3356

AS1755 AS2914

AS1221 AS1239

90 120 150 180 300 400 500

200 220 240 260 28020 25 30 35 40

30 40 50 400 450 500 550 600 650

20 40 60 80 100 300 330 360 390

50 100 150 200 500 600 700

10

20

30

10

20

30

10

20

30

10

20

30

10

20

30

Number of Nodes

M
e

d
ia

n
 S

tr
e

tc
h

Algorithm ● Greedy RR−swap

Fig. 10. Median stretch (and 5th to 95 percentiles) for the arborescence
packings T (up to 20 each) of the different algorithms on the well-connected
cores of different ASes, plotted over the size of the graphs.

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

A
S

1
2

2
1

A
S

1
2

3
9

A
S

1
7

5
5

A
S

2
9

1
4

A
S

3
2

5
7

A
S

3
3

5
6

A
S

3
9

6
7

A
S

4
7

5
5

A
S

6
4

6
1

A
S

7
0

1
8

5

10

20

40

60

80

100

120

0 200 400 600
size

M
e
d

ia
n

 T
im

e

Algorithm ●a aGreedy RR−swap

Fig. 11. Median computation time for the arborescence packings T (up to
20 each) of the different algorithms on the well-connected cores of different
ASes, plotted over the size of the graphs. The (very small) bars display the
5th to 95th percentile. For each AS and algorithm, we have up to four data
points, representing the different sizes for |T | ∈ {4, 5, 6, 7}.

random regular graphs, and in some cases, the RR-swap results

are missing. Another interesting observation is that higher

connectivity not always implies better stretch. For example in

AS1221, the stretch goes up with lower connectivity whereas

in AS1239, lower connectivity implies lower stretch.

Computation time for AS graphs. The computation time (in

seconds) of the arborescence packings T is shown in Fig. 11.

We used the machine employed for the random regular graphs.

We note that for better visibility, the y-axis (the computation

time) is depicted on a logarithmic scale. Similar as for random

regular graphs, the RR-swap method greatly outperforms the

greedy method: the reason is (again) that the runtime of greedy

is dominated by the connectivity computations, whereas RR-

swap needs to perform relatively few swaps, as swaps are

heavily optimized as well, recall the end of Section IV.

8

C. Concluding Remarks

While the round robin approach can still get stuck despite

swapping, it reaches much better stretch than the random and

greedy approach. Consequently, it makes sense to combine them

in practice: if round robin with swapping returns k complete

arborescences, they are taken (this is also the fastest algorithm

without the connectivity condition); otherwise greedy is run,

which in turn outperforms the random approach.

VI. GUARANTEES BEYOND k − 1 FAILURES

In the first few sections, we implicitly restricted ourselves to

a resiliency of at most k− 1 failures in in k-connected graphs.

For a general adversarial failure model this is a natural choice,

as no more than k disjoint arborescences can be used if the

graph is not (k+1)-connected, along with the observation that

k failures might disconnect the graph.

In this section, we will theoretically analyze how good stretch

properties can allow us to cope with situations that go beyond

k − 1 failures, by assuming that these failures are distributed

over the network, in the sense that they are clustered [31],

respectively only few appear locally.6 This will allow us to

leverage the locality properties of our failover schemes, as, in

some sense, past failures stop to matter after a certain point.

To this end, we will next first define a parametrized spatial

failure distribution in Section VI-A, followed by its application

to circular arborescence routing schemes in Section VI-B.

A. Failure Ball Distribution

We begin by introducing so-called b-balls, which will contain

at most b failed links, also defining their pairwise distance.

Definition 1: Let G = (V,E) be a graph with a set of failed

links F ⊂ E. We call a set of at most b ≤ |F | links from F a

b-ball. The distance dist(B,B′) between two b-balls B,B′ is

defined as mine∈B,e′∈B′ dist(e, e′).

We now use these b-balls to cover all failures of a graph,

where the existence of such a cover requires that the balls can

be chosen in such a way that they maintain a minimum specified

distance to each other. The idea is to parametrize the spatial

distribution of failures over the graph, so only a pre-defined

amount of failures may be locally clustered.

Definition 2: Let G = (V,E) be a graph with a set of failed

links F ⊂ E. We say that G has a (b, c)-failure cover, if there

exists a set B of b-balls, with ∪B∈BB = F , such that for any

two b−balls B,B′ ∈ B, B 6= B′, the following two conditions

hold: 1) B ∩B′ = ∅, 2) dist(B,B′) ≥ c.

In other words, the b-balls in B cover all failures, are pairwise

disjoint, and have minimum distance of c from each other. An

example is shown in Figure 12. Furthermore, if c > 0, then

Condition 2) also includes Condition 1), i.e., B ∩B′ = ∅.
Note that so far, we only specified the term resiliency for

arbitrary link failures. In addition, we can also define resiliency

of an algorithm to a specific set of failures on a given graph.

6For example in data centers, “Corruption has weak spatial locality” [38].

B2← c→B1 ← c→ B3

G

Fig. 12. Illustration of a (b, c)-failure cover with b = 2 and {B1, B2, B3} =
B. Only the failed links (dotted) and their incident nodes are depicted. All
remaining links in the graph G are free from failures.

Definition 3: Let A be a routing scheme with default and

(conditional) failover flow rules, as specified in Section II. Let

G = (V,E) be a graph with a set of failed links F ⊂ E. If

A successfully routes packets on G under link failure set F ,

then we say A is F -resilient for G.

We now apply these definitions to circular arborescence

routing schemes to be resilient to arbitrarily many failures

under certain conditions.

B. Usage in Circular Arborescence Routing

To cope with spatially distributed failures, we need routing

schemes that do not deviate too much from the shortest

path after encountering a failed link. An illustration for the

contrary is the Hamiltonian cycle technique described in [15,

§B.6]. Consider that packets follow Hamiltonian cycles. When

encountering the first failure on the current cycle, they start

traversing it in the opposite direction. This approach can induce

an additive stretch of Ω(n) after a single failure, as a single

failure close to the destination can lead to touring nearly the

entire graph.

Instead, we desire circular arborescence techniques that

impose a small additive stretch of x ∈ N, i.e., for each

arborescence it holds that routing from a node v to t along an

arborescence leads to the traversal of at most dist(v, t)+x hops,

if no failures occur. We now show that circular arborescence

routing with small stretch is resilient to arbitrarily many failures,

as long as we can partition the failures into balls of large enough

distance. Conceptually, our ideas take some inspiration from

geometric ad-hoc/local routing paradigms [39], [40]

Theorem 2: Let A be a r-resilient circular arc-disjoint

arborescence routing scheme for a graph family G, where

each of its r′ > r arborescences imposes an additive stretch of

at most x. Let G ∈ G with a link failure set F . If there exists

an (r, xr + x+ r + 1)-failure cover for G w.r.t. F , then A is

F -resilient for G.

The proof idea can be roughly summarized as follows: each

hit failure can derail a packet only by a certain amount from its

course to the destination, namely at most the additive stretch of

the next arborescence picked. Thus, if there exists a failure ball

coverage s.t. the failure balls have a distance slightly greater

than the total detour possible by a single ball, the packet will

not return to a previous failure.

At first glance, it might seem as if a distance between balls

that is only slightly larger than the detour caused by a single

arborescence would be a sufficient distance between two failure

balls. However, note that the Definition 1 of failure balls did

9

B1

B2

B2

� c �

Fig. 13. Visual representation of a (b, c)-failure cover where a b-ball B2

surrounds another b-ball B1. A valid routing, going from top to bottom for
example, might hit errors in B2, then route towards B1 where additional
failures are encountered, and then hit failures in B2 again. If the routing
scheme and the (b, c)-failure cover are improperly specified, this could result
in an infinite loop where packets bounce between failures inside of B1, B2.

not include any convexity structure, only an upper limit on the

number of contained failures. Hence, one failure ball B1 could

surround a link failure from another failure ball B2, inducing

a loop where the packet bounces between failure sequences

in B1 and B2, see Figure 13 for an example. Similarly, we

would like to point out that Theorem 2 holds as long as any

such specified failure cover exists.

Proof of Theorem 2: We prove in the following that A
is F -resilient for G. To this end, we show that A cannot loop

indefinitely on G if an (r, xr + x+ r + 1)-failure cover exists

for F . Observe that if G is finite, the only way to prevent a

packet from looping is allowing it to reach its destination. We

now consider for contradictory purposes the last loop that a

packet ends up in, that is, the shortest closed walk W that is

eventually repeated indefinitely. As A is deterministic, such

a walk W must exist. If the packet never hits a failed link

in W , triggering a conditional failover flow rule, then the

packet must reach the destination: as no failure is hit, the

packet never changes its arborescence, but that implies that the

arborescence has a loop, a contradiction. Thus, the remaining

case to be analyzed concerns a packet hitting failures, and

changing arborescences accordingly. Should the walk W be

confined to only hitting failures from a single r-ball, then we

arrive at a contradiction again: the ball has at most r failures,

i.e., by starting appropriately at one of these failures, we must

either reach the destination or hit a failure from another r-ball.

Recall that we have r′ > r arc-disjoint arborescences.

Hence, if a packet loops, it must hit failures from different

r-balls, where W may hit at most r failures, possibly once

from each of the up to 2r incident nodes, in a single ball

before encountering a failure in another ball. For each such

r-ball traversal, we can define the (node, in-port7)-pair where

the last error is hit before a change to another ball occurs.

Note that such a pair is unique in W , as A is deterministic. So

far, we may have many of these pairs for a single ball, as W
could traverse a single ball multiple times, especially since we

did not require the r-balls to form some sort of local cluster.

From this pair set, pick w1 where the contained node, w.l.o.g.

v1 ∈ B1 ∈ B
8 is of minimum distance to the destination, and

7When starting at a node emitting a packet, we assume the in-port to belong
to the initially chosen arborescence.

8We slightly abuse notation here, by also including incident nodes.

denote the next such pair when following W by w2, where its

contained node is v2 ∈ B1 ∈ B (not necessarily of minimum

distance to t).

After w1, let the next pair along W which contains a node

v′
2
∈ B2 be denoted by w′

2
. As B2 has at most ℓ failures,

where each may be hit once from each incident node, we

obtain dist(v2, t) ≤ dist(v′
2
, t) + 2xr, due to the fact that

every arborescence change can increase the distance to the

destination by at most x. We can improve this bound. While

each failure hit can detour the packet by x, summing up these

hops is only important for the stretch (see the later Corollary 2),

not for the distance from v′
2
. When a failed link (u1, v1) = e1

is hit from u1, and we later hit it again from v1, we increased

the distance at most by one. Hence, we achieve the following

improved bound: dist(v2, t) ≤ dist(v′
2
, t) + xr + r. A will

route (uninterrupted by hitting failures) along an arborescence

between w1 and w′
2
, with dist(v1, v

′
2
) ≥ xr + x+ r + 1. As

each arborescence has a stretch of at most x it holds that:

dist(v′
2
, t) ≤ dist(v1, t)− (xr+x+ r+1)+x = dist(v1, t)−

xr − r − 1.

Combining the inequalities yields: dist(v2, t) ≤ dist(v1, t)−
xr − r − 1 + xr + r = dist(v1, t)− 1.

However, we chose w1 s.t. dist(v1, t) ≤ dist(v2, t), a

contradiction to earlier inequalities. Hence, we have shown

that A cannot loop as w1 is the last (node,in-port)-pair visited

where a failure is hit, i.e., we obtained F -resiliency for G.

As such, circular arborescence routing can tolerate arbitrarily

many failures, assuming that the failure distribution is spatially

appropriate. The total additive stretch remains bounded by the

product of the total number of possible failure hits and the

additive stretch of the arborescences:

Corollary 2: Let A be a F -resilient circular arc-disjoint

arborescence routing scheme for G, where each arborescence

imposes an additive stretch of at most x. The additive stretch

of A on G under F is at most 2x|F |.

Proof: As circular arborescence routing changes the

arborescence after each failure hit, A incurs only an additive

stretch of at most x each time. Note that the combination of

node and in-port results in a unique next routing decision, for

a given set of failures. Assume that we change arborescences

more than 2|F | times. Then, due to the pigeonhole principle,

we hit some link failure twice with the same (node,in-port)

combination, which results in a forwarding loop. However,

we showed in Theorem 2 that A is F -resilient for G, a

contradiction which completes the proof of Corollary 2.

We would like to note that the circular property is crucial

to the results of this section, as it properly defines how the

routing scheme reacts after r failures were hit. Observe that

by just following the definition of resilience, no proper routing

has to be defined after r failures were encountered. As such,

we can envision to extend the resiliency beyond r failures for

other routing schemes, by appropriately specifying the routing

behavior after r failures.

10

VII. RELATED WORK

Failures are common. Many network outages have been

attributed to link failures and are well-documented in the

literature, e.g., [41], [42], [43], [44], and there is also much

literature on the empirical characterization of failures, e.g., in

backbone networks [3], [45], [46], [47].

Fast failover. A key challenge in designing resilient networks

is that ensuring connectivity via the control plane can be

slow [7], [48]. Hence, many networks (additionally) provide

data plane mechanisms to preserve connectivity [9], [11], [12]

and allowing the definition of planned backup paths. The

preferred mechanism depends on the network: datacenters often

rely on the ECMP data plane algorithm (see also [49] for a

recent study of datacenter network reliability) while many

WAN networks rely on MPLS Fast Reroute [7]; supporting a

faster failover was one of the main reasons for Google’s move

to SDN [50].

Single vs multiple failures. Much existing fault-tolerant and

robust routing solutions revolve around single failures [51],

[52], [53], [54], which however may be insufficient to provide

high availability in more complex scenarios, e.g., shared risk

link groups [55], attacks [56], node failures [2], [5], [9], [24].

A well-known example in the literature is the Internet outage

in Pakistan in 2011 which was due to a failure in both a link

and its backup [41].

Dynamic tables. A classic approach to deal with multiple

failures, which has been studied intensively in the literature,

is to use Gafni and Bertsekas’ link reversal algorithm [21], or

one of its extensions [57], [58], [59]. However, link reversal

algorithms require dynamic tables which are not always

supported; furthermore, the approach can introduce non-trivial

delays [60]. An interesting recent contribution in this area is

by Liu et al. [7] who proposed a link reversal algorithm suited

for the data plane: DCC provides provable connectivity and

can tolerate arbitrary delays and losses.

Alternative approaches: duplication, header modification,

scaling. Other approaches to deal with multiple link failures

require packet header rewriting [25], [61] (e.g., packets relay

failure information [62], [63]) or packet-duplication [64], which

however consumes header space or introduces additional loads,

respectively. Yet another approach is to pre-compute multiple

flow paths s.t. even in the event of multiple failures, the

ingress switches can rescale the traffic load efficiently without

additional computational overhead [65].

What-if analysis tools. Not only the design of robust al-

gorithms has been studied intensively in the literature, but

also the question how to efficiently verify the robustness of a

given algorithm or configuration. Recently, polynomial-time

verification algorithms have been presented for MPLS networks,

based on automata theory [4], [66], and supporting arbitrarily

large header sizes as they may result from header rewriting

during failover (see above).

Ideal resilience. Our paper is motivated by robust routing

algorithms which provide static resiliency in the data plane

without requiring header rewriting, initially proposed in [48]

and [20] and subsequently studied intensively by Stephens et

al. [16], [17], Chiesa et al. [14], [15], [18], [22], Elhourani et

al. [25], and Pignolet et al. [8], [13], among others. Feigenbaum

et al. [48] raised the question of whether it is possible to achieve

an “ideal (static) resilience”: Is it always possible to define

failover rules such that connectivity is preserved as long as the

network is physically connected? The authors already proved

that this is not possible. Simultaneously, Borokhovich and

Schmid showed that this is not even possible in an initially

completely connected network which is still highly connected

after the failures [20]. Chiesa et al. [15] then raised the

interesting (and so far only partially answered) question whether

it is at least always possible to preserve connectivity in a k-

(edge-)connected network if there are at most k−1 link failures.

Pignolet et al. [13], [23] observed and exploited a connection

of fast rerouting problems to combinatorial block designs, in

order to minimize congestion on failover routes.

Approaches going beyond connectivity. Most of the existing

literature on fast rerouting under multiple link failures focuses

on connectivity, which alone however is insufficient to meet the

availability and performance guarantees of emerging communi-

cation networks. The study of the quality of failover paths has

been stated as an open problem in the literature [7], and except

for some notable first studies on the load on failover paths in

very dense networks [13], the space is largely unexplored. In

particular, not only the arborescence based solutions in [14],

[15], [18], [22], without further optimizations, may result in

long failover paths, but also many other algorithms, e.g., based

on graph search which rely on packet header rewriting [27].

To the best of our knowledge, the work by Foerster et al. [8]

is the only one that generates arborescences with small stretch,

however only for the special cases of torus, hypercube, and grid

graphs, as well as trees of complete bipartite graphs. Unlike

in our work, no approaches for (more) general graphs are

provided nor practical evaluations or complexity results.

Arborescences with good depth and other application

domains. We note that the problem of finding arborescences

also arises in other domains, e.g., in broadcast applications [67].

There also already exists work on arborescences of improved

depth, either by reducing the number of arborescences [68] or

by considering restricted topologies, such as hypercubes [69]

or tori [70]. We refer to the surveys in [67], [71], [72] for

further references.

VIII. CONCLUSION

In this paper, we studied local fast failover algorithms which

guarantee not only resiliency but also provide routes with

bounded stretch. In addition to analytical results regarding

the complexity of the problem and the impact of failure

distributions on the resilience and stretch, we proposed and

evaluated arc-selection methods to create suitable arborescences.

Our solutions can lead to significantly shorter failover routes

than with state of the art methods, without modifying the packet

headers and without incurring rule convergence delays.

11

Other costs or capacities could be included in the balanced

arc-selection algorithm with a vector instead of scalar based

approach. To keep the evaluation simple, we focus on scalar

values, yet the algorithm can be extended to further constraints

and multi-objective scenarios.

Our work opens several interesting avenues for future

research. For example, this paper has focused on a hop

distance metric, which is natural to capture resource allocations;

however, it would be interesting to generalize our results to

arbitrary link weights (e.g., representing latencies). Another

open question in terms of algorithms concerns provably low-

stretch failover algorithms for further special graph classes.

Along the same lines, the study of rerouting techniques with

header re-writing constitutes another interesting direction for

future research on low stretch failover algorithms.

In order to guarantee reproducibility and facilitate other

researchers to build upon our algorithms, we will make source

code and simulation results publicly available at [34].

Acknowledgements. We would like to thank the anonymous

reviewers and our shepherd Elias P. Duarte Jr.

REFERENCES

[1] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R.
Yang, “R3: Resilient routing reconfiguration,” ACM SIGCOMM CCR,
vol. 40, no. 4, pp. 291–302, Aug. 2010.

[2] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” ACM SIGCOMM

CCR, vol. 41, pp. 350–361, 2011.
[3] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and

C. Diot, “Characterization of failures in an ip backbone,” in Proc. IEEE

INFOCOM, 2004.
[4] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-

manipulating mpls networks,” in Proc. IEE INFOCOM, 2018.
[5] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A case

study of ospf behavior in a large enterprise network,” in Proc. ACM

IMW, 2002.
[6] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure protection in layered

networks with shared risk link groups,” IEEE network, vol. 18, no. 3,
pp. 26–41, 2004.

[7] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in Proc. 10th USENIX

NSDI, 2013, pp. 113–126.
[8] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Local fast

failover routing with low stretch,” ACM SIGCOMM CCR, vol. 1, pp.
35–41, Jan. 2018.

[9] A. K. Atlas and A. Zinin, “Basic specification for ip fast-reroute: loop-free
alternates,” IETF RFC 5286, 2008.

[10] A. Kamisiński, “Evolution of ip fast-reroute strategies,” in Proc. Interna-

tional Workshop on Resilient Networks Design and Modeling (RNDM),
2018.

[11] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” in Request for Comments (RFC) 4090, 2005.

[12] Switch Specification 1.3.1, “OpenFlow,” in https://

www.opennetworking.org/wp-content/uploads/2013/04/openflow-

spec-v1.3.1.pdf , 2012, (last accessed in April 2019).
[13] Y.-A. Pignolet, S. Schmid, and G. Tredan, “Load-optimal local fast

rerouting for dependable networks,” in Proc. DSN, 2017.
[14] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,

M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.

[15] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevkiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static failover
routing (v4),” arXiv:1409.0034 [cs.NI], 2016.

[16] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in Proc. ACM HotNets, 2013.

[17] ——, “Scalable multi-failure fast failover via forwarding table compres-
sion,” in Proc ACM SOSR, 2016.

[18] M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in Proc. ICALP, 2016.

[19] E. Blanton and M. Allman, “On making tcp more robust to packet
reordering,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 1, pp. 20–30, 2002.

[20] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
sdn local fast failover: A load-connectivity tradeoff,” in Proc. OPODIS,
2013.

[21] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” Trans.

Commun., vol. 29, no. 1, pp. 11–18, 1981.
[22] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry,

M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in Proc. IEEE INFOCOM, 2016.

[23] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “CASA:
congestion and stretch aware static fast rerouting,” in Proc. IEEE

INFOCOM, 2019.
[24] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting

for multi-link failures,” in Proc. IEEE INFOCOM, 2014.
[25] ——, “IP fast rerouting for multi-link failures,” IEEE/ACM Trans. Netw.,

vol. 24, no. 5, pp. 3014–3025, 2016.
[26] M. Kaufmann and K. Mehlhorn, “A linear-time algorithm for the

homotopic routing problem in grid graphs,” SIAM J. on Computing,
vol. 23, no. 2, pp. 227–246, 1994.

[27] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proc. ACM SIGCOMM HotSDN, 2014.

[28] J. Edmonds, “Edge-disjoint branchings,” Combinatorial algorithms, vol. 9,
no. 91-96, p. 2, 1973.

[29] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, “Fast edge
splitting and edmonds’ arborescence construction for unweighted graphs,”
in Proc. SODA, 2008.

[30] H. N. Gabow, “Efficient splitting off algorithms for graphs,” in Proc.

ACM STOC, 1994.
[31] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimothi, “List of shared risk

link groups representing regional failures with limited size,” in Proc.

IEEE INFOCOM, 2017.
[32] J.-C. Bermond and P. Fraigniaud, “Broadcasting and np-completeness,”

Graph Theory Notes of New York, no. XXII, pp. 8–14, 1992.
[33] L. Lovász, “Covering and coloring of hypergraphs,” in Proc. 4th

Southeastern Conf. on Combinatorics, Graph Theory, and Computing,

Utilitas Mathematica, 1973.
[34] https://gitlab.cs.univie.ac.at/ct-papers/2019-dsn.
[35] NetworkX 2.2, “Random regular graph generation,”

https://networkx.github.io/documentation/stable/reference/
generated/networkx.generators.random graphs.random regular
graph.html#networkx.generators.random graphs.random regular
graph, 2018, (last accessed in April 2019).

[36] B. Bollobás, Random Graphs, ser. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2001, no. 73.

[37] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp.
2–16, 2004.

[38] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Foerster, A. Krishnamurthy,
and T. E. Anderson, “Understanding and mitigating packet corruption in
data center networks,” in Proc. ACM SIGCOMM, 2017.

[39] H. Abelson and A. A. DiSessa, Turtle geometry. MIT press, 1986.
[40] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc

routing: of theory and practice,” in Proc. ACM PODC, 2003.
[41] D. Madory, “Renesys blog: Large outage in pakistan,” https://dyn.com/

blog/large-outage-in-pakistan/, (last accessed in April 2019).
[42] R. Singel, “Fiber optic cable cuts isolate millions from internet, future

cuts likely,” https://www.wired.com/2008/01/fiber-optic-cab/, 2008, (last
accessed in April 2019).

[43] Wikitech, “Site issue aug 6 2012,” http://wikitech.wikimedia.org/view/
Site issue Aug 6 2012, 2012, (last accessed in April 2019).

[44] C. Wilson, “’dual’ fiber cut causes sprint outage,” https:
//web.archive.org/web/20080906210432/http://telephonyonline.com/
access/news/Sprint service outage 011006/, 2006, (last accessed in
April 2019).

[45] G. Iannaccone, C.-n. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an ip backbone,” in Proc. ACM SIGCOMM

Workshop on Internet Measurment, 2002.

12

[46] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Transactions on Networking, vol. 16,
no. 4, pp. 749–762, Aug 2008.

[47] A. J. González and B. E. Helvik, “Analysis of failures characteristics in the
uninett ip backbone network,” in 2011 IEEE Workshops of International

Conference on Advanced Information Networking and Applications, 2011.
[48] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and

A. Singla, “Brief announcement: On the resilience of routing tables,” in
Proc. ACM PODC, 2012.

[49] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A large scale study
of data center network reliability,” in Proc. ACM IMC, 2018.

[50] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network:
Google’s move to sdn,” Commun. ACM, vol. 59, no. 3, pp. 46–54, Feb.
2016.

[51] G. Enyedi, G. Rétvári, and T. Cinkler, “A novel loop-free ip fast reroute
algorithm,” in Proc. EUNICE, 2007.

[52] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions

on Networking (ToN), vol. 15, no. 2, pp. 359–372, 2007.
[53] J. Wang and S. Nelakuditi, “Ip fast reroute with failure inferencing,”

in Proc. ACM SIGCOMM Workshop on Internet Network Management,
2007.

[54] B. Zhang, J. Wu, and J. Bi, “Rpfp: Ip fast reroute with providing complete
protection and without using tunnels,” in Proc. IEEE IWQoS, 2013.

[55] L. Shen, X. Yang, and B. Ramamurthy, “Shared risk link group (srlg)-
diverse path provisioning under hybrid service level agreements in
wavelength-routed optical mesh networks,” IEEE/ACM Transactions

on Networking, vol. 13, no. 4, pp. 918–931, 2005.
[56] J. Tapolcai, B. Vass, Z. Heszberger, J. Bıró, D. Hay, F. A. Kuipers,

and L. Rónyai, “A tractable stochastic model of correlated link failures
caused by disasters,” in Proc. IEEE INFOCOM, 2018.

[57] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless networks, vol. 1, no. 1, pp. 61–81,
1995.

[58] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. IEEE INFOCOM,
1997.

[59] J. L. Welch and J. E. Walter, “Link reversal algorithms,” Synthesis

Lectures on Distributed Computing Theory, vol. 2, no. 3, pp. 1–103,
2011.

[60] C. Busch, S. Surapaneni, and S. Tirthapura, “Analysis of link reversal
routing algorithms for mobile ad hoc networks,” in Proc. SPAA, 2003.

[61] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A Distributed and
Robust SDN Control Plane for Transactional Network Updates,” in Proc.

IEEE INFOCOM, 2015.
[62] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,

and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets,” in Proc. ACM SIGCOMM, 2007.

[63] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “Ti-mfa: Keep calm
and reroute segments fast,” in Proc. IEEE Global Internet Symposium

(GI), 2018.
[64] P. Hande, M. Chiang, R. Calderbank, and S. Rangan, “Network pricing

and rate allocation with content-provider participation,” in Proc. IEEE

INFOCOM, 2010.
[65] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic

engineering with forward fault correction,” in Proc. ACM SIGCOMM,
2014.

[66] J. S. Jensen, T. B. Krogh, J. S. Madsen, S. Schmid, J. Srba, and M. T.
Thorgersen, “P-rex: Fast verification of mpls networks with multiple link
failures,” in Proc. ACM CoNEXT, 2018.

[67] P. Fraigniaud and E. Lazard, “Methods and problems of communication
in usual networks,” Discrete Applied Mathematics, vol. 53, no. 1-3, pp.
79–133, 1994.

[68] T. Hasunuma, “On edge-disjoint spanning trees with small depths,” Inf.

Process. Lett., vol. 75, no. 1-2, pp. 71–74, 2000.
[69] S. L. Johnsson and C. Ho, “Optimum broadcasting and personalized

communication in hypercubes,” IEEE Trans. Computers, vol. 38, no. 9,
pp. 1249–1268, 1989.

[70] J. G. Peters, C. Rapine, and D. Trystram, “Small depth arc-disjoint
spanning trees in two-dimensional torodial meshes,” Technical Report
SFU-CMPT-TR-2002-10, School of Computing Science, Simon Fraser
University, Tech. Rep., 2002.

[71] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
vol. 18, no. 4, pp. 319–349, 1988.

[72] A. Pelc, “Fault-tolerant broadcasting and gossiping in communication
networks,” Networks, vol. 28, no. 3, pp. 143–156, 1996.

13

