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Abstract—Network traffic demands change all the time, giving
rise to the well-investigated topic of consistent network updates.
We in this paper study the consistent migration of flows, in
particular the avoidance of transient congestion. Most previous
work implemented rather coarse-grained techniques, ignoring the
effect of link latency in their computations. Recent work shows
that, in order to achieve the goal of zero packet loss, earlier
methods need to be adapted to cope with link latency.

However, the current work only considers unsplittable flows,
which are routed along a single path. We present the first study of
splittable flows in this context, where a single flow may be spread
over the network for better throughput and load balancing.

Interestingly, splittable flows seem to be harder to tackle in this
setting from a complexity point of view. Nonetheless, we provide
the first methods and insights to integrate splittable flows into
consistent update frameworks under the aspect of link latencies.

Index Terms—network updates, consistency, congestion, SDN

I. INTRODUCTION

Background. Fast and consistent updates of the data plane
are a frequent challenge in centrally-controlled networks [1].
With the rise of Software-Defined Networking, there is a large
amount of work that deals with the consistency of such updates
in particular [2]. An important consistency property in this
context is congestion-freedom, i.e., avoiding packet loss [3].
Motivation. Recent work [4]–[6] has shown that ignoring
the impact of link latencies can lead to packet loss when
considering consistent flow migration. However, previous work
in the area does not contain mathematical errors, but rather a
conceptional oversight in their (coarse-grained) model: flows do
not just exist in their “old” and “new” states, after respectively
before the update, but can also be present on a link at the same
time. For example, consider the practical scenario that the old
path has high latency and the new path has low latency. Then,
for a time equivalent to the latency delta, the flow will congest
itself, see [6]. As such, previous work is not congestion-free.

The only exceptions we are aware of are [4]–[6], but these
works only consider the migration from/to unsplittable flows
along simple paths. We in this work show how to adapt prior
consistent update frameworks to deal with splittable flows under
link latency, focusing our efforts on the standard dependency
graph [3] approach popularized by Dionysus [1].
Challenge. Dionysus [1] employs a dependency graph ap-
proach, where the old (current) and new (desired) network
states are analyzed, to see in which orderings the consistent

updates can proceed. Dependency graphs do not require the
complete update schedule to be computed in advance, rather,
they can be used to dynamically update on the fly, depending
on how fast the update components progress in different parts
of the network. In order to do so, the individual updates need
to be verified for consistency, i.e., are link capacities violated?

To the best of our knowledge, no current work can handle
such a verification process for splittable flows under the impact
of link latencies. After briefly describing our formal model in
the next paragraph, we show how our different techniques can
be used to adapt dependency graph approaches in general, by
providing algorithms to check the updates for consistency.
Model. A network N is a directed graph G = (V,E), |V | = n,
with link capacities c(e) and a latency function `, assigning non-
negative latencies to every link. The link latency `(e) describes
the time it takes to traverse a link. We focus on splittable
flows F , which are routed from a source s to a destination t,
where the flow links form a directed acyclic graph, respecting
standard flow constraints [7]. For theoretical completeness, we
assume that the flow splitting can be performed exactly, and
refer to [8] for practical considerations. A network update is a
tuple (N,F, F ′), where F describes the old and F ′ the new
flow, performed using 2-phase commits [9]:

In the 2-phase commit technique, packets are tagged s.t. they
can be identified as belonging to F (old) or F ′ (new). Packets
tagged with F ′ may only be used when the appropriate rules
are installed in the switches. Once no more F -tagged packets
exist, the corresponding switch rules can be deleted.

We assume that a node v can change its own forwarding
rules atomically, but different nodes can only updated asyn-
chronously [2]. We also set buffer sizes to zero, as filling
switch buffers negatively impacts the network performance. A
network update is called consistent, if no link capacities are
violated during any time.
Contributions. We present the first study of consistent updates
for splittable flows under the effect of link latencies. Previous
work only considered 1) splittable flows without link latencies
or 2) unsplittable flows with or without link latencies.
• In §II, we present an algorithm to check if a given flow update

is consistent under some given link latencies. However, as a
single flow update can lead to exponentially many different
link utilizations, such an algorithm can have exponential com-
plexity. We thus provide a faster algorithm with almost linear
runtime, which performs a tradeoff between computation
efficiency and covered solution space.978-1-5386-7659-2/18/$31.00 ©2018 IEEE



• In §III, we consider the case of being unaffected by exact
latencies, computing solutions that are valid even if the link
latencies change during the update. In this setting, we can
provide a linear program formulation that makes use of the
concept of preflows [7]. Our methodology, which temporarily
separates a splittable flow into two parts with separate flow
rules, is not only computationally efficient, but also provides
consistent updates in situations where the standard 2-phase
commit techniques are unable to avoid congestion.

II. CHECKING CONSISTENT UPDATES PART I:
HANDLING EXPLICIT LATENCIES

The current state-of-the-art for checking consistent network
updates for splittable flows under link latencies are simulations
respectively so-called time-extended networks [4], [5]: the
effects of a flow network update are considered at discrete
points in time, which capture all different states (from the point
of link utilization) in the continuous time setting. We provide
an adaptation for splittable flows in Algorithm 1, where the
network update is consistent if the calculated ∆max is zero.

Theorem 1. The ∆max calculated by Algorithm 1 is the
minimum time F ′ needs to be delayed s.t. the applied network
update (N,F, F ′) will become consistent for the latencies `.

The correctness arguments for Theorem 1 are analogous to
the considerations for unsplittable flows [4], [5]: by generating
all simple flow paths, we can reduce the splittable to the
unsplittable setting, we omit the details due to space constraints.
Exponential Runtime. However, the runtime of Algorithm 1
can be exponential, if the number of different paths is
exponential, which is already possible in simple directed
acyclic graphs. For example, consider the network at the top of
Figure 1: by extending the “ladder”-construction in the middle,
the number of simple s-t paths reaches 2Θ(n). Even if these
paths were considered from a joint perspective, the number of
different link utilizations can also be exponential, as seen in
the flow size diagram in Figure 1 for the incoming link e of t.
Improved Runtime. As such, we depart from the simulation
approach and aim for polynomial runtimes. To this end, we
propose computing a similar output in almost linear time: How
much does F ′ need to be delayed s.t. F will have completely
departed from all links e with F (e) + F ′(e) > c(e)?

Input: Network N = (G = (V,E), c), latency `, splittable flows F, F ′ induc-
ing subnetworks NF = (GF = (VF , EF )), NF ′ = (GF ′ = (VF ′ , EF ′ )).
1: Recursively generate all simple paths from s to t in NF and NF ′ , denoted

as the sets PF and PF ′ .
2: ∀ paths in PF , for each link e calculate the initial utilization of e and

at what time T the subflow of F will no longer utilize e, and save these
values attached to e.

3: ∀ paths in PF ′ , for each link e calculate at what time T the subflow of
F ′ will arrive and with which utilization, save these values attached to e.

4: ∀ links e ∈ E, calculate the minimum time ∆e that F ′ needs to be
delayed s.t. the capacity of e is not violated.

5: Set ∆max := maxe∈E ∆e

Output: ∆max

Algorithm 1: The algorithm computes for splittable flows F, F ′ how much
(∆max) the new flow F ′ has to be delayed additionally s.t. F ′ will not utilize
an link that F still uses which has not enough capacity to support both F, F ′.
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Fig. 1. In this network, all links have a latency and identical capacity as
depicted next to them (the values for latency and capacity could also differ).
We assume that the flow F uses all links of the network at full capacity, and
is switched off at time T = 0. The flow is not drawn here to not clutter the
picture. The diagram below depicts the utilization of the incoming link e of
t. At time T = 4.15 the flow utilization on e drops to 1.8, then at T = 4.3
to 1.55, then at T = 4.35 to 1.25, and lastly at T = 6.2 to 0. By extending
the network, the amount of different flow utilizations can grow exponentially.

This question is equivalent to calculating the path with the
highest latency (that F uses) to each such link from s and then
comparing it with the lowest latency path from F ′.1

Still, finding a longest path in a general undirected graph is
an NP-complete problem [11], but each single network flow is
directed and acyclic. As such, we can use known algorithms to
first calculate the longest paths with, e.g., a modified topological
sorting of the subgraph used by F in a runtime of O(n+m) [7].

We can then use topological sorting again (with logarithmic
overhead) to find the lengths of the shortest paths from s to all
other nodes in the subgraph induced by F ′. We can then check
all links e = (u, v) with F (e)+F ′(e) > c(e) and calculate the
difference between the complete departure of F at u and the
first arrival of F ′ at u. The maximum such value is the ∆max

that F ′ has to be delayed. We cast our insight into Theorem 2,
omitting the pseudo-code due to space constraints.

Theorem 2. The minimal time ∆max that F ′ has to be delayed
s.t. for every link e with F (e)+F ′(e) > c(e) holds, that F, F ′

do not utilize e at the same time, can be computed in a runtime
of O(n log n+m) using topological sorting.

Next Steps. We provided two algorithms with a tradeoff
between covered solution space and maximum runtime. In
the next section, we show how to obtain a polynomial runtime,
by considering all possible link latencies: as thus, we have the
benefit that updates stay consistent even if latencies change.

III. CHECKING CONSISTENT UPDATES PART II:
CONSISTENCY UNDER ALL POSSIBLE LATENCIES

Before delving directly into consistent updates unaffected
by latencies, let us take a step back and consider Figure 2:
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Fig. 2. In this network, all links have a capacity of two and a latency of one.
The old flow F is depicted with solid blue lines: Starting from s, it diverges
to u and v, but the flow via u is merged at v again. Along each link, the flow
F has a size of one. The new flow F ′, of size two, is depicted as dashed.

1An extreme assumption would be to enforce capacity for both F, F ′ [10].



Congestion occurs. When a network update from the flow F
to F ′ is being applied at time zero in Fig. 2, the following will
occur: From T = 0 on, no new packets from F are pushed
onto e1, e3, while the link e3 is already utilized by the new
flow F ′. From T = 1, F will no longer send packets on e2.

Furthermore, the links e4, e5 now are only utilized by the
part of the flow F which was routed along the top path via
e1, e2. This part of F is split equally along e4 and e5. The
flow F ′ does now utilize e4 as well: This leads to a violation
of capacity on e4, as depicted in Figure 4, since a flow of size
2.5 needs to be routed on e4, but e4 has only a capacity of 2.
Splitting a splittable flow. Is there a way to implement the
network update (N,F, F ′) without violating link capacities?
Consider the splitting of F into two subflows F1, F2 in Figure 3:
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Fig. 3. Splitting F into two subflows of size one: the preflow is marked in
red, the remaining flow of F in black. Even though the amount of flow from
s to t is still two, we can now update consistently to the dashed flow F ′ from
Figure 2 by “adding” the flow difference between the preflow and the new
flow F ′, removing the remaining part of F , and later merging F ′ again.

Instead of splitting the incoming flow of v equally along
the links e4, e5, the flow via e3 is now routed along e4 (called
F1) and the flow via e1, e2 is routed along e5 (called F2). We
will denote the flow composed of F1, F2 by (F1, F2). The flow
(F1, F2) has the same utilization on every link as F , they just
differ in the forwarding rules at the nodes. Observe that F ′ can
be split equally into two subflows F ′1, F

′
2 of size 1, resulting in

the flow (F ′1, F
′
2). Apart from the injection times, F ′1 and F1

are identical. Thus, a network update (N,F1, F
′
1) would not

change the utilization of any link at any time. Therefore, if F ′2
can be added to (F1, F2) without violating capacity constraints,
then the network update (N, (F1, F2), (F

′
1, F

′
2)) will not cause

any link capacity to be violated. As can be seen in Figure 3,
adding F ′2 does not violate any capacity constraints.

Hence, it is possible to implement the network up-
date (N,F, F ′) without violating link capacities by chang-
ing F into (F1, F2), then applying the network update
(N, (F1, F2), (F

′
1, F

′
2)), and lastly changing (F ′1, F

′
2) into F ′.

Note that the first and the last step only involve changing
forwarding rules at the nodes without changing any link
utilization. Furthermore, while in this simple case (F ′1, F

′
2)

and F ′ are essentially the same flow, this is not the case in
more complex examples. Thus, distinguishing between these
two flows is necessary in general. The above considerations
regarding the implementation of the network update (N,F, F ′)
are completely independent of the specific link latencies in the
network. As such, the implementation above is consistent. We
generalize and formalize this concept of a multi-stage network
update with shared subflows in the following under the notion
of preflows. We then show that preflows and consistent network
updates consistent for all latencies are inherently related.

Preflows In the example described above, we were able to find
a common subflow F1 of both F and F ′ s.t. (F (e)− F1(e))+
(F ′(e)− F1(e)) + F1(e) = F (e) + F ′(e)− F1(e) ≤ c(e) for
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Fig. 4. In this plot, the red dashed line depicts the capacity of the link e4.
However, we are going to assume for now that the capacity of e4 is unbounded.
Let the network update from F to F ′ be performed at time T = 0. Then, the
utilization of e4 by F ′ is depicted in purple, while the the utilization of e4
by F is depicted in blue. Together, their utilization is depicted by the black
dashed line. Thus, from time T = 1 to time T = 2, we have congestion on
e4, as c(e4) = 2 (red dashed), but flows of size 2.5 (black dashed) are routed.

all links e in the network. As it turns out, by relaxing the
flow conservation condition of the subflow F1, we can extend
our new concept even further. The intuition is as follows: We
would like to satisfy F (e)+F ′(e)−F1(e) ≤ c(e) for all links
e, but F1 does not necessarily have to be a flow. As long as
we can find a common subpart of F and F ′ that can still
provide correct forwarding rules, we can consider this part F1

as stationary during the network update. As such, the incoming
flow of F1 at every node v has to be at least as large as the
outgoing flow of F1 at v, leading to the following definition:

Definition 1. Let F, F ′ be flows from source s to destination t.
We define an (F, F ′)-preflow as a map φF,F

′
: E → R≥0 s.t.

∀e ∈ E : φF,F
′
(e) ≤ F (e) and φF,F

′
(e) ≤ F ′(e), (1)

∀v ∈ V \ {s} :
∑

e∈out(v)

φF,F
′
(e) ≤

∑
e∈in(v)

φF,F
′
(e). (2)

Note that in general, a preflow φF,F
′

is not unique. As
a preflow φF,F

′
intuitively represents a stationary part of a

network update (N,F, F ′), and as such, is not subject to the
differences in link latencies, it is advantageous to pick a preflow
as large as possible in order to mitigate congestion.

However, we have not yet defined how to actually perform a
network update with preflows; especially the intricate part on
how to define forwarding rules for the flows and their preflow.

Definition 2. Let N be a network, let F, F ′ be flows in N
from s to t, and let φF,F

′
be an (F, F ′)-preflow. Analogously

to the decomposition of a flow into two subflows as performed
above, we can decompose F into its subpreflow φF,F

′
and

the remaining “postflow” F − φF,F ′
. Imagine changing the

forwarding rules of F s.t. they coincide with the forwarding
rules of φF,F

′
when F is restricted to its subpreflow φF,F

′
.

We denote the resulting flow by
(
φF,F

′
, F − φF,F ′

)
.

Observe that changing the forwarding rules in a given flow,
without changing the utilization of any link in the network,
does not violate any link capacity, independent of the actual
latencies. In particular, the following observation holds:

Observation 1. Let N be a network and let F, F ′ be flows in
N from s to t. Furthermore, let φF,F

′
be an (F, F ′)-preflow.

Then the two network updates
(
N,F,

(
φF,F

′
, F − φF,F ′

))
and

(
N,
(
φF,F

′
, F ′ − φF,F ′

)
, F ′
)

are consistent.



To complete the transition from F to F ′, we need a consistent
update from

(
φF,F

′
, F − φF,F ′

)
to
(
φF,F

′
, F ′ − φF,F ′

)
:

Theorem 3. Let F, F ′ be flows in N from s to t, and let
φF,F

′
be an (F, F ′)-preflow. If the condition F (e) + F ′(e)−

φF,F
′
(e) ≤ c(e) holds for all e ∈ E, then the network update(

N,
(
φF,F

′
, F − φF,F ′

)
,
(
φF,F

′
, F − φF,F ′

))
is consistent.

Proof Sketch. Observe that, due to the forwarding rules of the
considered flows, the part of F corresponding to φF,F

′
and

the part of F ′ corresponding to φF,F
′

are never on the same
link at the same point in time. Thus, at each point in time the
utilization of every link e satisfies F (e)− φF,F ′

(e) + F ′(e)−
φF,F

′
(e) + φF,F

′
(e) = F (e) + F ′(e)− φF,F ′

(e) ≤ c(e).

Hence, if a preflow as required by Theorem 3 exists, we
obtain a sequence of consistent updates unaffected by latencies
from F to F ′ by combining Observation 1 and Theorem 3.
Efficiency. Similar to finding a maximum flow, the problem
of finding such a feasible preflow can be solved efficiently in
polynomial time [7] by a linear program as given in Figure 5.

Find (xe)e∈E , s.t.
1) ∀v ∈ V \ {s} :

∑
e∈out(v) xe ≤

∑
e∈in(v) xe

2) ∀e ∈ E : xe ≤ F (e) 3) ∀e ∈ E : xe ≤ F ′(e)

4) ∀e ∈ E : xe ≥ 0 5) ∀e ∈ E : xe ≥ F (e)+F ′(e)− c(e)

Fig. 5. Linear program to find a preflow φF,F ′
for the flows F, F ′ that

satisfies the requirements of Theorem 3.

IV. RELATED WORK

Reitblatt et al. [9] provided one of the standard methods for
consistent flow updates with their 2-phase commit protocol.
Shortly after a first chart of the complexity landscape of
consistent updates was given by Mahajan and Wattenhofer [3],
[12], who also proposed the concept of dependency graphs,
applied to flows by Jin et al. [1]. Even without link latencies,
the consistent migration of unsplittable flows is NP-hard, but
for splittable flows it is in P [13], with Zheng et al. [14]
providing approximation algorithms for NP-hard cases. We
further note that we assumed that the new flow paths are fixed,
but they can also be seen as part of the output [15], [16].

Inspired by the concept of timed updates [17], Zheng et
al. present algorithms for consistent flow migration under link
latencies [4], [5], albeit restricted to unsplittable flows—for
which the concept of considering all link latencies was recently
proposed [6]. Further studies of flow consistency in the so-
called node-ordering model (without 2-phase commit) have
also been performed by Amiri et al. [18], [19], considering un-
splittable flows without link latencies. Even though unsplittable
flows are well-studied, many open questions remain [20].

Lastly, we note that there is also a large set of works
considering further consistency properties, such as waypoint or
policy enforcement [21]. We refer to [2] for a recent survey.

V. CONCLUSION

In this paper we studied consistent updates for splittable
flows, where the goal is to respect link capacities at all times.

We provided the first such study for splittable flows under the
impact of link latencies, where prior work only considered
1) splittable flows in a coarse-grained approach, ignoring link
latencies, leading to packet loss, or 2) unsplittable flows.

We provided two algorithms for given link latencies, provid-
ing a tradeoff between computation speed and solution space.

Additionally, we explored the concept of considering all
latencies for splittable flows, i.e., the updates have to be
consistent for any change in the network link latencies. In
this setting, we provided a new toolkit to check for consistent
updates by applying concepts from so-called preflows, where
appropriate preflows can be computed in polynomial time.

As next steps beyond this short paper, we plan to extend
our work with simulations and technical implementations.
Acknowledgments. The author gratefully acknowledges Sebastian
Brandt for his assistance and comments on an earlier draft, in particular
regarding preflows. The author would also like to thank the anonymous
reviewers for their suggestions which helped clarify parts of this paper.
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