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aETH Zürich, 8092 Zurich, Switzerland
bUniversity of Vienna, 1090 Vienna, Austria

Abstract
We study the online problem of evacuating k robots on m concurrent rays to
a single unknown exit. All k robots start on the same point s, not necessarily
on the junction j of the m rays, move at unit speed, and can communicate
wirelessly. The goal is to minimize the competitive ratio, i.e., the ratio between
the time it takes to evacuate all robots to the exit and the time it would take if
the location of the exit was known in advance, in the worst-case instance.

When k = m, we show that a simple waiting strategy yields a competitive
ratio of 4 and present a lower bound of 2 +

√
7/3 ≈ 3.52753 for all k = m ≥ 3.

For k = 3 robots on m = 3 rays, we give a class of parametrized algorithms with
a nearly matching competitive ratio of 2 +

√
3 ≈ 3.73205.

We also present an algorithm for 1 < k < m, achieving a competitive ratio

of 1 + 2 · m−1
k ·

(
1 + k

m−1

)1+ m−1
k , obtained by parameter optimization on a

geometric search strategy. Interestingly, the robots can be initially oblivious to
the value of m > 2.

Lastly, by using a simple but fundamental argument, we show that for k < m
robots, no algorithm can reach a competitive ratio better than 3 + 2 b(m− 1)/kc,
for every k,m with k < m.
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1. Introduction

Searching for an unknown target is a fundamental problem in computer
science and mathematics, especially in the area of robotics. The standard toolkit
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to analyze this class of problems is competitive analysis [58], i.e., our goal is to
design online algorithms with a small competitive ratio, which compares the
performance of the online algorithm to an optimal offline solution which knows
the target location beforehand.

As pointed out by Hammar et al. [44], “A problem with paradigmatic status
in this framework is searching on m concurrent rays,” which is the focus of this
paper. More precisely, we study the problem of evacuating k ≤ m robots on m
concurrent rays (i.e., semi-infinite lines) to an unknown exit z [45, 49], with the
robots communicating wirelessly [22, 27].

The seminal forefather of this problem is the linear search problem, also
known as the cow path problem, first posed by Beck [8] and Bellman [10]: A
searcher has to find an object of unknown location on the infinite line (i.e., 2
concurrent rays). The optimal online algorithm achieves a competitive ratio
of 9, in each iteration doubling the search depth 1, 2, 4, . . . on each side of the
starting point s [9]. Gal [40] and Baeza-Yates et al. [5] then extended their
results to the model of m concurrent rays, where the optimal strategy is to,
instead of doubling the search depth, use a factor of m/(m − 1), yielding an
optimal competitive ratio of 1 + 2mm/(m− 1)m−1 [54]. If k robots can search
for the exit, and one robot finding it terminates the search, a competitive ratio
of 1 + 2(m/k − 1)/(m/(m− k))m/k is optimal [55].

The concepts of collaborative evacuation and wireless communication are
more recent additions in this field. In the case of the (unit speed) robots only
being able to communicate when they meet, for k = m a competitive ratio of 9 is
again optimal [45] if there is a minimum distance to the exit, else 1+2(p+1)p+1/pp

for p = dlogme is optimal. In the special case of m = 2 and k > m, 9 is optimal
as well [19]. Baeza-Yates and Schott studied wireless communication in this
context. Even though most of their paper “Parallel searching in the plane” [6] is
about searching the plane, they also considered the evacuation problem with two
searchers on the line, pointing out that a competitive ratio of 3 is then optimal
for k ≥ m = 2. Further collaborative robot evacuation studies in geometric
settings have been performed by Czyzowicz et al., by evacuating the circle with
k = 2 [21], the line with faulty robots [26], the disk [22, 25, 23] (see also [16, 56]),
and equilateral triangles and squares [27], with [25, 27] also studying wireless
communication.

Contributions. In this paper, we extend the model of Baeza-Yates and Schott [6]
beyond the infinite line (i.e., m = 2), by examining the problem of evacuating
1 < k ≤ m robots on m rays with wireless communication, which has not been
studied before to the best of our knowledge. We also study the case where the k
robots do not start on the junction j of the m rays.

When starting on the junction with k = m > 2 robots, we show that a
competitive ratio of 3 is still optimal, and starting away from the junction allows
for a 4-competitive algorithm. For the special case of k = m = 3, we present a
class of parametrized algorithms with a competitive ratio of 2 +

√
3 ≈ 3.73205.

We also give lower bounds of 2 +
√

7/3 ≈ 3.52753, for every k = m ≥ 3.
Furthermore, we consider the case with a smaller number of robots than
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rays, i.e., collaborative wireless evacuation with 1 < k < m robots. Even though
the k robots are oblivious to the number of m > 2 rays, our optimization of
parametrized geometric search strategy yields a competitive ratio of at most

1 + 2 · m−1
k ·

(
1 + k

m−1

)1+ m−1
k . Moreover, as we show, even when starting on the

junction, no algorithm can have a better competitive ratio than 3+2 b(m− 1)/kc,
for any k,m with k < m.

Paper Organization. In the following paragraph we discuss further related work,
before introducing the necessary formal preliminaries in Section 2. We then
consider the case of m robots on m rays in Section 3, with an in-depth focus of
3 robots on 3 rays. Afterwards, we study the more general case of 1 < k < m
robots on m rays in Section 4, also detailing a lower bound for k < m with a
simple but fundamental argument. Lastly, we discuss possible future work in
Section 5 and conclude in Section 6.

Further Related Work. Results for the search problem on m rays can be used
for showing competitive bounds for search problems in various classes of simple
polygons, cf. [45, 54], with further applications in hybrid [49] and interrupt-
ible [2] algorithms. The classic linear search or cow path problem has moreover
been studied in a multitude of models, e.g., adding turn costs [13, 32] (also
with multiple searchers on rays [3]), with a single [48] or multiple error prone
robots [26], or a moving target [13]. Bose et al. [14] gave tight bounds on the
competitive ratio with distance bounds to the target, showing that the optimal
search strategy is then unique.

Searching on m rays has furthermore been considered with multiple targets [4],
with only one robot being allowed to move at a time [49], regarding advice
complexity [47], and randomized algorithms [50, 57] – cf. the survey by Tate [59]
for an overview of the latter.

On graphs, the problem of finding a specified node in an online fashion is
also known as treasure hunt or as the node searching problem. [37, 51].

We list further related work in Section 5, where we also discuss possibilities
for future work by considering different (model) extensions.

2. Preliminaries

We consider the problem of collaboratively evacuating k robots R0, . . . , Rk−1
on m concurrent rays a0, . . . , am−1, joined at a common junction j. All robots
start at the same point s, w.l.o.g. on ray a0, where s does not have to be the
junction j. All robots have to reach the single exit z on some ray az; however,
the location and ray of z are unknown until one robot reaches the location of the
exit z. We denote the distance of the junction j to the start s by js. The robots
have a common sense of direction, i.e., they can distinguish between the different
rays and have the same notion of which ray is which. Moreover, they have the
same unit maximum speed and can communicate wirelessly, instantaneously
sharing their information. As thus, we can assume that one central algorithm
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Figure 1: As the robots starting on s are oblivious to the direction of the exit z, both points
of distance 1 need to be explored by at least one robot, meaning that at least one robot takes
a time of t = 3 to reach the exit (in this case all robots can also evacuate the graph at a time
of t = 3).

controls all robots. Unless otherwise noted, we assume that the robots travel at
unit speed when moving.

The goal is to minimize the time needed for all robots to reach the exit,
compared to the minimum time needed if all information about the environment
would be revealed initially. Hence, we study this problem using competitive
analysis. The competitive ratio of an online (evacuation) algorithm is measured
as the supremum of the ratio of the time needed for all robots to reach the exit
and the distance Z from s to z, for all start and exit locations.

If the distance between the start s and the exit z is allowed to be arbitrarily
small, no online algorithm (without infinitesimal steps) can achieve a constant
competitive ratio for k < m. As thus, we use the common assumption of at least
unit distance between start s and exit z, cf. [2].

3. m Robots on m Rays

We start our study of robot evacuation by considering one robot for each ray.
In Subsection 3.1 we gather some basic observations. Note that Observations 1
and 2 can be found with similar arguments for k = 2 in [6]. We further examine
the case of 3 robots on 3 rays in Subsection 3.2.

3.1. The General Case of m Robots on m Rays
If all m robots start on the junction j, then each robot Ri can explore ray ai

at unit speed, with some robot finding z at time t = Z. Then, all other robots
are at distance 2Z from z, inducing a total evacuation time of t = 3Z if they all
directly travel to the exit. Trivially, in the case of k = 1, a single robot starting
on the end of a single ray will find the exit in optimal time.

Observation 1. Let s = j and k = m, with m > 1. There exists an online
algorithm evacuating the m robots with a competitive ratio of 3.

For m > 1, no better ratio than 3 is possible (cf. also Figure 1). Assume all
2 ≤ k ≤ m robots start on the junction j and the exit is at distance Z = 1. In
the worst case, the exit will be on the last ray explored until distance 1 (which
could coincide with the first ray being explored until distance 1), so at least one
robot will need a time of t = 3Z to reach the exit z.

Observation 2. For every 2 ≤ k ≤ m: No online algorithm can achieve a better
competitive ratio than 3 for evacuating the k robots.
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The situation is more difficult when the robots do not start on the junction
j and m > 2.1 If we knew the initial direction of the junction, we could send
m− 1 robots there, again obtaining a competitive ratio of 3 as before.

The following algorithm yields an upper bound of 4 for the competitive ratio
even when the direction of the junction is not known. Send two robots R0, R1
in opposing directions until either the exit z or the junction j is found, with
the remaining m − 2 robots waiting at the start s. If the exit z is found first
(or simultaneously), a competitive ratio of 3 can again be achieved by directly
sending all robots to the exit z. If the junction is found first, we stop the robots
R0, R1 for a duration of js, while the other m− 2 robots travel to the junction.
We then proceed as if s was the point from which all rays emanate and the section
between s and j was actually comprised of the first parts of m− 1 rays that just
happened to be glued together. According to this equivalent consideration, at
time 2js, all robots are on their rays at distance js from s and then continue
to explore their assigned rays. When the exit z is found by one robot at time
js+ Z, all other robots move to the exit z in time 2Z, obtaining a competitive
ratio of (js+ 3Z)/Z < 4.

Observation 3. Let k = m, m > 2. There exists an online algorithm evacuating
the m robots with a competitive ratio of at most 4.

We will later show a lower bound of 2 +
√

7/3 ≈ 3.52753 in Corollary 5, for
all k = m ≥ 3.

3.2. The Case of 3 Robots on 3 Rays
We start with a lower bound for the competitive ratio of evacuating 3 robots

from 3 rays, before giving a nearly matching upper bound in Theorem 6.

Theorem 4 (Lower bound of 2 +
√

7/3 for 3 robots on 3 rays). No online
algorithm can achieve a better competitive ratio than 2 +

√
7/3 ≈ 3.52753 for

evacuating 3 robots on 3 rays.

Proof. As evacuating 3 robots on 3 rays has a competitive ratio of 3 when s = j,
we assume that s 6= j, s ∈ a0, and Z > js. Also, we can assume in a worst-case
fashion that the junction j lies on the side of s that ensures that at time js at
most one of the three robots is closer to j than in the beginning, i.e., closer to j
than js.

It follows that the earliest time when the 2 points of distance 3/2 · js from s
on a1, a2 have been visited is at time 5/2 · js. Only the robot that is (possibly)
closer to j at time js than in the beginning can visit any of these 2 points before
time 5/2 · js; however, since it can visit the first of the two at time 3/2 · js at
the earliest, it cannot visit the other one before time 5/2 · js.

W.l.o.g., let R2 be a robot which is farthest away from the junction on the
starting ray a0 at time t = 5/2 · js. If no robot is on ray a0 at time t = 5/2 · js,

1If m = 2, then a competitive ratio of 3 can be reached again, as every point can be seen as
the junction.
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Figure 2: The robots R1, R2, R3 start on s and have to find the unknown exit z. Points
p and y depict the farthest any robot has been, resp. is, away from the junction on the
starting ray a0 until time 5/2 · js, resp. at time 5/2 · js. Depending on if y is at least js+ b
away from the junction j or not, we give two different arguments in the proof of Theorem 4,
resulting in a (normalized to js) value of b of −1 +

√
21/2 ≈ 1.29129 and a lower bound of

2 +
√

7/3 ≈ 3.52753.

let R2 be a robot closest to the junction. Let y be the point where R2 is at time
5/2 · js, and let p be the point on a0 that has maximal distance to the junction
among all points that have been visited by some robot until time t = 5/2 · js.
We will now prove Theorem 4 by case distinction for y. The case distinction will
depend on a “border”-value 1/2 · js ≤ b ≤ 3/2 · js, later to be optimized. We
refer to Figure 2 for an overview of the construction.

We start with the first case of jy ≥ b + js and y lies on a0. Then, we
place the exit z at one of the points of distance 3/2 · js from s on a1, a2 that
is visited last by the strategy used by the three robots. As the exit cannot
have been found before time 5/2 · js, robot R2 will need (in the best case)
5/2 · js+ sy + 3/2 · js = 4 · js+ sy ≥ 4 · js+ b total time to reach the exit z.
Note that in this case, the optimal time is Z = 3/2 · js.

Next, we consider the second and remaining case of jy < b + js or y not
lying on a0. By the definition of p and y, it holds that ps ≤ 5/4 · js + b/2.
We now place the exit z at one of the three points (called exit candidates) at
distance 5/4 · js + b/2 + ε from the start s which will be reached last. Note
that the earliest time when both of the two exit candidates on a1, a2 can have
been reached is at time t = 9/4 · js + b/2 + ε since, as observed above, it
cannot happen that the two points on a1, a2 at distance 3/2 · js from s are
both visited before time t = 5/2 · js, and since 5/4 · js+ b/2 ≥ 3/2 · js due to
b ≥ 1/2 · js. Note further that the exit candidate on a0 cannot be reached before
time t = 5/2 · js+ 5/4 · js+ b/2 + ε− b = 15/4 · js− b/2 + ε ≥ 9/4 · js+ b/2 + ε,
where for the last inequality, we use that b ≤ 3/2 · js. Now, there are two cases:
either the exit is on ray a0 and the robot finding the later visited of the two exit
candidates on a1, a2 still has to travel a distance of 2 · (5/4 · js+ b/2 + ε) to the
exit afterwards, or the exit is on one of the rays a1, a2 and the robot finding the
exit candidate on a0 still has to travel this distance of 2 · (5/4 · js + b/2 + ε)
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afterwards. Hence, for all robots to evacuate to the exit, a time of at least
9/4 · js+ b/2 + ε+ 2 · (5/4 · js+ b/2 + ε) = 19/4 · js+ 3/2 · b+ 3 · ε is needed,
with the optimal solution taking time Z = 5/4 · js+ b/2 + ε.

To optimize the lower bound with respect to b, we solve 19/4·js+3/2·b+3·ε
5/4·js+b/2+ε =

4·js+b
3/2·js for b. By normalizing js to unit value, solving the above equation gives
us the parameter b = −1 − ε + 1/2 ·

√
21 + 12ε+ 4ε2, which is approximately

1.29129 for ε → 0 for our proof, as the functions defined by the terms on the
individual sides of the equation are monotonically decreasing and increasing,
respectively. Note that the solution for b indeed satisfies the (normalized)
constraint 1/2 ≤ b ≤ 3/2 imposed earlier.

Observe that −1 − ε + 1/2 ·
√

21 + 12ε+ 4ε2 is monotonically decreasing
when considered as a function of ε, i.e., for all values of ε > 0, we obtain the
supremum at −1 +

√
21/2 ≈ 1.29129.

Therefore, we achieve a lower bound of 4−1+
√

21/2
3/2 = 2+

√
7/3 ≈ 3.52753.

We note that the construction from the above proof can be extended to
k = m > 3 robots and rays, as at time t = js, at most bm/2c robots can be
guaranteed to be at the junction j.

Corollary 5. For every k = m ≥ 3 holds: No online algorithm can achieve a
better competitive ratio than 2 +

√
7/3 ≈ 3.52753 for evacuating k = m robots

on m rays.

We now give an algorithm with a nearly matching competitive ratio for 3 robots.

Theorem 6. There exists an online algorithm evacuating 3 robots on 3 rays
with a competitive ratio of 2 +

√
3 ≈ 3.73205.

Proof. We know from Observation 1 that there is an algorithm with a competitive
ratio of 3 when starting on the junction j, so suppose that j 6= s. We prove
Theorem 6 by giving a whole class of algorithms, all reaching the desired
competitive ratio. To describe these strategies, we develop a parametrized
approach by composing an algorithm that moves the robots according to certain
parameters and then optimizing the competitive ratio over the parameter space.
More specifically, the algorithm depends on two parameters α and β which are
constrained by the inequalities 0 ≤ β ≤ α ≤ 1

2 and 2α ≤ β + 1
2 and moves the

three robots R0, R1, R2 as described in the following. We note that if one robot
finds the exit, all the other robots abandon their strategy and take the shortest
path to the exit z.

The later Figure 6 serves as a visual aid to understand the parameters and
the respective strategies. Our parametrized approach is separated into three
consecutive phases, where we also provide some intermediate figures.

1. We send R0 in one direction, R1 in the other, and R2 waits until the
junction j (or the exit) is found. W.l.o.g. suppose R0 reaches the junction
j after js time passed, i.e., R1 is at distance js to s on the other side of
ray a0, and R2 is still on the start s. The situation is depicted in Figure 3.
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R2

R1

R0

jsjs

sj

Figure 3: Situation after 1., i.e., when the junction is found.

2. Next, from time js onwards, R0 moves independently, whereas R1 and R2
are coupled.
(a) R0 moves for α ·js time into one of the two branching rays, w.l.o.g. a1,

returns back to the junction j, and moves into the other ray a2. R0
continues to explore ray a2 until it is at distance js+ β · js to s. The
total movement of robot R0 is shown in Figure 4.

R0

αj
s

βjs
s

Figure 4: Total movement of robot R0 when 2(a) is completed. The parallel movement of the
robots R1, R2, as described in 2(b), is omitted here for better visibility.

(b) R1 starts to move deeper into the ray a0 away from the junction j by
β ·js before turning around and walking backwards until it reaches the
same distance to s as R2, which starts moving towards the junction
at time js. As R1 moves towards the start s and R2 moves away from
s, the condition that both will be at the same distance x to s will be
eventually satisfied. The total movement of both robots R1, R2 until
this condition is satisfied is depicted in Figure 5. Next, R2 moves to
the junction and then explores a1 until it is at distance js + β · js
to s. Similarly, R1 moves away from s until its distance is js+ β · js
to s.

βjs

R2 R1

xx

s

js− x

Figure 5: Situation in 2(b) when R1 and R2 are both at identical distance x to s. Note that
x = js/2 + βjs, as R1 is at distance js to s when R2 is at distance 2 · βjs to s.

8



sjs js βjs

p0 p1

p2

R2

R1R0

αj
s

Figure 6: A depiction of the parameters α and β on the 3-ray and the strategies of the 3 robots
(waiting is not indicated). The three worst case points p0, p1, p2 are also marked.

3. Now, all three robots are at distance js+ β · js to s, with all three rays
a0, a1, a2 being occupied (the robots that arrived earlier waited for the
others). Next, as the last step until the exit is found, all three robots move
outward on their respective rays, maintaining equal distance to the start s.

We will now start analyzing the competitive ratio of the above algorithm.
Until the junction is found, any exit found will lead to a competitive ratio of 3.
Observe that until all three robots move outwards from the start s on the three
rays, the following three points, with additional ε distance to s, are worst case
points regarding the competitive ratio of the algorithm (cf. Figure 6), i.e., the
time when a robot visits them for the first time will determine the competitive
ratio: p2, the point where R0 turns around to go back to the junction, p1, the
point where R1 turns around to go back to the start, and the junction p0 itself.
After that, the competitive ratio of any exit placement can only be lower, as now
any remaining distance of x to the exit will be covered in x time by one robot.

For ease of readability, we are going to omit the additional εs in the following
calculations, as we are later going to consider the supremum of the competitive
ratio anyway.

The three points will be reached at the following times: p0 at time js+2 ·αjs
by R0, p1 at time 2 · js + βjs by R1, and p2 at time 2 · js + αjs. If all other
robots divert directly to the exit z when it is found, they will reach the exit with
the following additional time: p0 with time 2 · js− 2 ·αjs+ 2 · βjs, p1 with time
2 · js+ 2 · βjs, and p2 with time 2 · js+ 2 · αjs.

Hence, the competitive ratio induced by the three points is adding both
times above, divided by the distance of the exit to the start, i.e., 3 + 2 · β for p0,
3 + 1

1+β for p1, and 3 + 1
1+α for p2. Note that 3 + 1

1+α ≤ 3 + 1
1+β due to initially

choosing β ≤ α.
As 3 + 2 · β is strictly monotonically increasing and 3 + 1

1+β strictly mono-
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tonically decreasing, the desired solution can be obtained by equalizing both
terms in the parameter range, with β =

√
3−1
2 . As α can be chosen freely in the

parameter space, we have generated a whole class of algorithms with identical
competitive ratio of minβ max

(
3 + 2 · β, 3 + 1

1+β

)
= 2 +

√
3.

4. 1 < k < m Robots on m Rays

In this section, we continue our study of collaborative robot evacuation by
considering the case of 1 < k < m robots on m rays. Since in this case the
number of robots is not sufficient anymore to assign a ray to each robot, a more
intricate scheme than before is required in order to achieve a good competitive
ratio. In the literature, similar problems have been tackled by using geometric
search. We show that this general idea can also be applied in our setting and
present an upper bound for the competitive ratio where the factor that governs
the exponential growth is chosen in a way that minimizes the bound. We
complement this result with a lower bound for all wireless evacuation algorithms
where k < m.

4.1. An Upper Bound on the Competitive Ratio
We start by developing GeomSearch(α, β), an algorithm for evacuating k

robots from m rays where the robots start in the junction j. The algorithm
depends on two parameters α and β which we will determine later. The algorithm
proceeds as follows.

Each robot explores the m rays in so-called exploration steps where each ex-
ploration step consists of exploring some ray up to some depth and then returning
to the junction. More specifically, robot Ri starts by exploring ray ai up to depth
αβi upon which it returns to the junction. Then it explores ray ai+k (mod m) up
to depth αβi+k, returns to the junction, explores ray ai+2k (mod m) up to depth
αβi+2k, and so on. In other words, robot Ri performs its qth exploration step on
ray ai+(q−1)k (mod m) with a depth of αβi+(q−1)k. Note that in each exploration
step of robot Ri the explored depth increases by a factor of βk and that it always
chooses the ray to be explored next by increasing the ray index by k (modulo
m). If a robot finds the exit z it immediately informs all other robots, upon
which each robot immediately aborts its exploration and heads straight for z.

From the definition of the exploration steps it follows that for any two robots
Rh and Ri with h < i and any positive integer q, the qth exploration step of Ri
takes strictly more time than the qth exploration step of Rh and the (q + 1)th
exploration step of Rh takes strictly more time than the qth exploration step of
Ri. Thus, we obtain the following observation which sheds light on the order in
which the robots take their exploration steps.

Observation 7. Let h, i and q be integers satisfying 0 ≤ h < i ≤ k − 1 and
q ≥ 1. Then robot Rh finishes its qth exploration step before Ri finishes its qth
exploration step, and Ri finishes its qth exploration step before Rh finishes its
(q + 1)th exploration step.
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In order to prove an upper bound on the competitive ratio of Algorithm
GeomSearch(α, β) for suitably chosen α and β, we need a technical lemma as
follows.

Lemma 8. Let β =
(

1 + k
m−1

)1/k
. Then 1 + 2β

m+k−1

βk − 1 ≥ 3 + 2 βm

βk − 1 .

Proof. Assume that the statement is false. We obtain the following series of
implications.

3 + 2 βm

βk − 1 > 1 + 2β
m+k−1

βk − 1
=⇒ βk − 1 > βm(βk−1 − 1)

=⇒ k

m− 1 >

(
1 + k

m− 1

)m/k((
1 + k

m− 1

)(k−1)/k
− 1
)

=⇒ k

m− 1 >

(
1 + m

m− 1

)((
1 + k

m− 1

)(k−1)/k
− 1
)

=⇒ 2m+ k − 1
2m− 1 >

(
m+ k − 1
m− 1

)(k−1)/k

=⇒ 2m− 1
2m+ k − 1 <

(
m− 1

m+ k − 1

)(k−1)/k
=
(

1 + −k
m+ k − 1

)(k−1)/k

=⇒ 2m− 1
2m+ k − 1 < 1 + −(k − 1)

m+ k − 1 = m

m+ k − 1
=⇒ mk + 1 < 2m+ k

For the third and sixth implication we used the generalized version of Bernoulli’s
inequality which says that for any two real numbers b > −1 and c ≥ 0 it holds
that (1+b)c ≥ 1+bc if c ≥ 1, and (1+b)c ≤ 1+bc if 0 ≤ c ≤ 1. Since m > k ≥ 2,
the obtained statement implies k = 2. Going back to the result after the fourth
implication and plugging in k = 2, we obtain the following new implications.

2m+ 1
2m− 1 >

(
m+ 1
m− 1

)1/2
=⇒ (2m+1)2(m−1) > (2m−1)2(m+1) =⇒ −1 > 1 .

Thus we obtain a contradiction, and in turn the proof of the lemma statement.

Now we can finally prove the desired upper bound.

Theorem 9. Let β =
(

1 + k
m−1

)1/k
and let α satisfy αβm−1 < 1. Then the

competitive ratio of Algorithm GeomSearch(α, β) is at most

1 + 2 · m− 1
k
·
(

1 + k

m− 1

)1+ m−1
k

.
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Proof. Let Rh be the robot that finds the exit and assume that Rh finds the exit
in its qth exploration step. It follows from the design of our algorithm that the
exit lies on ray ah+(q−1)k (mod m). Note that since αβm−1 < 1 and the exit has
a distance of at least 1 from the junction, we have that q ≥ 2. Let t0 denote the
point in time at which Rh reaches the point on ah+(q−1)k (mod m) with largest
depth that has been explored before by some robot. Let ∆t denote the time Rh
travels on ah+(q−1)k (mod m) between t0 and finding the exit, i.e., Rh finds the
exit at time t0 + ∆t. Furthermore, for each Ri with i 6= h, let Ei denote the
exploration step Ri is performing at the time when Rh starts its qth exploration
step, and let t1(i) denote the point in time at which Ri finishes exploration step
Ei. We note that at time t0, the distance between Rh and the junction is the
depth of the previous exploration step of a robot on ray ah+(q−1)k (mod m) which
is αβh+(q−1)k−m, by the definition of the exploration steps.2 Now, we consider
two cases for each robot Ri.

First, consider the case where t0 ≥ t1(i). In this case at time t0, Ri has
finished exploration step Ei and has started with its next exploration step. This
implies that the distance between Ri and the junction at time t0 is smaller
than the distance between Rh and the junction at time t0, i.e., smaller than
αβh+(q−1)k−m. Thus, at time t0 + ∆t, the distance between Ri and the junction
is smaller than αβh+(q−1)k−m + ∆t. We conclude that it takes Ri at most
2(αβh+(q−1)k−m + ∆t) time to reach the exit after the exit has been found at
time t0 + ∆t. Since Rh finishes its first q − 1 exploration steps in time

x=q−2∑
x=0

2αβh+xk = 2αβh
x=q−2∑
x=0

(
βk
)x = 2αβh β

(q−1)k − 1
βk − 1

and it takes Rh another αβh+(q−1)k−m + ∆t time to find the exit, we hence
obtain an upper bound of

2αβh β
(q−1)k − 1
βk − 1 + 3(αβh+(q−1)k−m + ∆t)

for the time it takes Ri to reach the exit.
In order to obtain an upper bound for the competitive ratio (for our first

case), we divide by the length Z of the shortest path from s to z. Note that ∆t
appears with a factor of 3 in the numerator whereas it appears with a factor of
1 in the denominator. Since the competitive ratio we obtain is larger than 3,
making ∆t larger decreases the competitive ratio (towards 3). Hence, by setting

2Here we implicitly use that αβm−1 < 1 which ensures that the ray on which Rh finds the
exit, has been previously explored by some robot.
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∆t = 0, we obtain an upper bound of

2αβh β
(q−1)k−1
βk−1 + 3αβh+(q−1)k−m

αβh+(q−1)k−m = 3 + 2 β(q−1)k − 1
(βk − 1)β(q−1)k−m

= 3 + 2 βm

βk − 1 −
2

(βk − 1)β(q−1)k−m

for the competitive ratio, which implies an upper bound of 3 + 2βm/(βk − 1).
Note that the last simplification does not increase the upper bound more than
necessary. The term 2/((βk − 1)β(q−1)k−m) can be made arbitrarily small by
increasing q, i.e., by choosing the exit location accordingly.

Now consider the second case where t0 < t1(i). In this case Ri is still
performing exploration step Ei at time t0. It follows that at the time the exit is
found, Ri is still performing Ei or Ri has distance at most ∆t from the junction.
Thus, we can bound (from above) the total time it takes Ri to reach the exit
by the sum of 1) the time it takes Ri to perform its exploration steps up to
and including Ei, 2) two times ∆t, which bounds the time between reaching the
junction after Ei and reaching the junction possibly again after being told the
location of the exit and 3) αβh+(q−1)k−m + ∆t, the time it takes Ri to reach the
exit from the junction. The first of the three summands in turn can be bounded
by the time it takes Rh−1 (mod m) to perform its exploration steps up to and
including Eh−1 (mod m), by the definition of Ei and Observation 7.3 Hence, we
obtain an upper bound of

x=q−1∑
x=0

2αβh−1+xk + 2∆t+ αβh+(q−1)k−m + ∆t

= 2αβh−1 β
qk − 1
βk − 1 + αβh+(q−1)k−m + 3∆t

for the time it takes Ri to reach the exit. By an argumentation analogous to
the one in the previous case, we obtain an upper bound of 1 + 2βm+k−1/(βk− 1)
for the competitive ratio. By Lemma 8, this upper bound is larger than the
upper bound for the competitive ratio obtained in the first case. Now replacing
β by (1 + k/(m− 1))1/k yields the lemma statement.

We note that the choice of β in Theorem 9 is not arbitrary. The given β
precisely minimizes the obtained upper bound of 1 + 2(βm+k−1)/(βk − 1) as can
be shown by taking the derivative.

Interestingly, for k = 1, our upper bound coincides with the competitive ratio
of 1 + 2mm/(m − 1)m−1 from the optimal search strategy for a single robot,
given in [5, 40].

3For the following calculation of the upper bound, we assume for simplicity that if h = 0,
then Rh−1 (mod m) performs a 0th exploration step of length αβ−1 before its 1st exploration
step. Since this can only increase the upper bound, the given bound also holds if h = 0.
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We now extend GeomSearch(α, β) to the setting where the robots are not
required to start in the junction. As we will prove, even if the robots do not
know the number of rays when they start, they can still achieve a competitive
ratio of at most

1 + 2 · m− 1
k
·
(

1 + k

m− 1

)1+ m−1
k

. (1)

Before describing the extension of GeomSearch(α, β), we present a lemma
claiming that at a certain point in time during Algorithm GeomSearch(α, β),
the distribution of the robots satisfies certain properties that will be of great use
later on.

Lemma 10. Let x be some positive real number. Consider GeomSearch(α, β)
for

β =
(

1 + k

m− 1

)1/k
and α = x(

1 + k
m−1

)2 .

Let t0 denote the time at which R0 is at the tip (i.e., exactly in the middle) of
its third exploration step. Then, at time t0, each robot has a distance of at most
x from the junction and no robot Ri with i ≥ 1 is on the same ray as R0, except
possibly in the junction.

Proof. By the definition of the exploration steps,

t0 = 2αβ0 + 2αβk + αβ2k >
2x(

1 + k
m−1

) + x ≥ 2x .

Moreover, at time t0, robot R0 is exactly at distance x from the junction. By
Observation 7, this implies that the distance of Ri from the junction is at most
x, for any 1 ≤ i ≤ k − 1. The fact that at time t0, R0 is the only robot on the
ray it currently occupies, follows directly from the definition of the exploration
steps in conjunction with Observation 7.

We call the distribution of the robots at time t0 in Lemma 10 the third
distribution. The general idea of our extended algorithm is that the robots
simulate Algorithm GeomSearch(α, β) where they consider s as the junction
and the path between s and j as m− 1 separate paths (that just happen to be
glued together). In order to be able to compute the appropriate β in Algorithm
GeomSearch(α, β), they first have to determine the number of rays, which they
do by exploring the ray they are on in both directions until they find the junction.
At the point in time when the junction is found, the robots have already “wasted”
some time; therefore they do not return to the junction and only then start the
simulation of GeomSearch(α, β), but instead jump into a hypothetical execution
of GeomSearch(α, β), i.e., they move to a configuration of points that will be
reached by GeomSearch(α, β) (for some suitably chosen α) at some point in time.
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From there, they simply follow GeomSearch(α, β). In order to formally describe
the extended version of GeomSearch(α, β) we need some extra notation.

Let a0 be the ray on which s is located and a1, . . . , am−1 the remaining m−1
rays. We denote the path obtained by deleting sj from a0 by a′0 and the paths
obtained by appending a1, . . . , am−1 to js by a′1, . . . , a′m−1, respectively. We may
now consider s as the junction of the m rays a′0, . . . , a′m−1. Therefore, provided
we know m, any m-ray algorithm where the robots start in the junction can be
simulated on our given input where s plays the role of the junction. In particular,
the achieved competitive ratio of the simulation on our input is the same as
the competitive ratio of the simulated m-ray algorithm. In the following, we
describe the extension of GeomSearch(α, β) more formally.

Robots R0 and R1 start by exploring the ray they are located on in opposite
directions until one of the two finds the exit or the junction (while everyone else
simply stays in s). If the exit is found before or at the same time as the junction,
then all robots immediately travel to the exit, which yields a competitive ratio
of 3 (which is clearly smaller than the term given in (1), for any 2 ≤ k < m).
Thus, in the following, assume that the junction is found before the exit. W.l.o.g.
assume that R1 finds the junction (which happens at time sj). From here, the
robots move as quickly as possible to a configuration of points that corresponds
to the third distribution4 in the (hypothetical) execution of GeomSearch(α, β)
on the m rays a′0, . . . , a′m−1 where

β =
(

1 + k

m− 1

)1/k
and α = sj(

1 + k
m−1

)2 .

By Lemma 10 moving to this configuration from the situation where the junction
has just been found takes at most time sj, i.e., the robots reach this configuration
in time bounded by 2sj. By the proof of Lemma 10 the (hypothetical) execution
of GeomSearch(α, β) needs at least time 2sj to reach the third distribution, i.e.,
this configuration. Thus, the robots can just wait in the reached configuration
until time 2sj (if they should have reached their respective points early) and then
simulate the execution of GeomSearch(α, β) mentioned above, thereby reaching
any point at least as fast as the (original) execution of GeomSearch(α, β) and
hence achieving a smaller or equal competitive ratio as the one in Theorem 9.

Here two remarks are in order. First, since we assume that the junction is
closer to s than the exit is to s, the exit can only be found after the robots moved
to the third distribution. Hence, it is indeed enough to consider only the exits
found (and therefore the competitive ratios achieved) during the simulation of
GeomSearch(α, β). Second, so far, for the sake of the exposition, we ignored the
detail that Theorem 9 actually requires αβm−1 < 1. This can be easily remedied
by dividing the current α repeatedly by βk until αβm−1 < 1 holds. Note that

4Here, a detail has to be mentioned. By changing the mapping of the m labels a′0, . . . , a′m−1
to the m actual rays, we can change which robot is on which ray. We assume that the labels
are changed in a way that ensures that R0 is actually on ray a0 in the third distribution.
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Lemma 10 then still holds with an analogous argumentation. Essentially, the only
resulting change in the above considerations is that it takes GeomSearch(α, β)
even longer to get to the configuration of points with which the above simulation
starts.

In conclusion we obtain the following theorem.

Theorem 11. There is an extension of Algorithm GeomSearch(α, β) for the
case where the robots are not required to start in the junction that achieves a
competitive ratio of at most

1 + 2 · m− 1
k
·
(

1 + k

m− 1

)1+ m−1
k

.

4.2. A Lower Bound on the Competitive Ratio
In this section, we use a simple but fundamental technique to bound the

competitive ratio for the general case of k robots on m > k rays from below.

Theorem 12. There is no wireless evacuation algorithm for k robots on m > k
rays that achieves a competitive ratio of less than 3 + 2b(m− 1)/kc.

Proof. Set x = b(m− 1)/kc. Consider any wireless evacuation algorithm A for
k robots on m > k rays. We assume that all robots start in the junction (which
we may choose to be the case as we are going to prove a lower bound). Since A
solves the problem of wireless evacuation, there must be a point in time where all
rays have been explored up to some depth that is strictly larger than 1, provided
that the exit has not been found so far. Consider the last point in time where
at least one ray has not been explored up to some depth > 1, and denote the
point in time one time unit earlier by t0. It follows that at time t0 there must
be some robot Ri at the junction or on a ray which at time t0 + 1 has not been
explored up to some depth > 1.

Let ε > 0. Let P be the set of points in distance t0/(2x)+ε from the junction
and observe that t0/(2x) ≥ 1 since t0 ≥ 2b(m− 1)/kc. We claim that at time
t0 + t0/(2x), robot Ri has explored at most x− 1 points in P . Since Ri starts
in the junction and, at time t0, is again in the junction or on a ray where the
corresponding point from P will not be explored up to and including time t0 + 1,
it must travel a total distance of at least 2y(t0/(2x) + ε) in order to explore y
points from P up to time t0. Thus, we obtain 2y(t0/(2x) + ε) ≤ t0 which implies
y < x and thereby proves the claim. Note that robot Ri cannot explore a point
from P between t0 and t0 + t0/(2x) because of its location at time t0.

Moreover, we claim that at time t0 + t0/(2x), any robot Rh with h 6= i has
explored at most x points in P . Similarly to above, in order to explore y points
from P starting in the junction, robot Rh has to travel a distance of at least
(2y − 1)(t0/(2x) + ε). We obtain (2y − 1)(t0/(2x) + ε) ≤ t0 + t0/(2x) which
implies y < x+ 1 and thereby proves the claim. Hence, at time t0 + t0/(2x), at
most kx− 1 ≤ m− 2 points from P have been explored in total. Thus, there
exist two points p1, p2 ∈ P that have not been explored at time t0 + t0/(2x). Let
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t1 and t2 be the points in time when p1 and p2 are explored (for the first time),
respectively. W.l.o.g. assume that t1 ≤ t2.

Now consider the input instance where the exit is at point p2. Since some
robot is at p1 at time t1 ≥ t0 + t0/(2x), this robot cannot be at p2 before time
t1 + 2(t0/(2x) + ε), by the definition of P . We obtain a lower bound of

t0 + t0
2x + 2( t02x + ε)
t0
2x + ε

= 2 + 2x+ 1
1 + 2εx

t0

for the competitive ratio. By making ε arbitrarily small our lower bound
gets arbitrarily close to 3 + 2x = 3 + 2b(m − 1)/kc which proves the theorem
statement.

5. Future Directions

A rich spectrum of new research directions has emerged since the turn of the
millennium, bringing especially ideas from the area of distributed computing
into the field of the linear search problem. Also inspired by the work referenced
in the beginning of this article, we can envision various (model) extensions for
upcoming work. We list some ideas in the following.

Randomization. While we only studied deterministic strategies, a common tool
in the area of online algorithms is the use of randomized algorithms [59], i.e., to
optimize the expected or average competitive ratio. Furthermore, as pointed out
by López-Ortiz and Schuierer [55], a trade-off theorem between the average and
worst-case ratio for multiple searchers would also be interesting.

Restricting the searcher’s capabilities. In this article, we assumed that the
searchers can communicate wirelessly and that the computational power is not
restricted, though we did not abuse the latter. Both dimensions can be extended.

With respect to communication restrictions, the most extreme case is that
the searchers cannot coordinate at all, as assumed by, e.g., [39, 52] in the context
of Bayesian search problems. Clearly, taking advantage of multiple searchers in
this scenario requires tools such as randomization or strategies that depend on a
unique seed or identifier of the searchers.

In between the two extreme communication models, there are settings where
searchers need to physically meet5 in order to exchange information, where they
can (only) mark the environment, e.g., by leaving pebbles [11], or where they
have range restrictions in their communication [61]. Beyond two searchers, such
models have a resemblance to multi-hop communication, where information can
propagate by relaying.

An often studied approach in the area of agent-based computing is to re-
strict the computational power by assuming that the searchers are controlled

5Also known as a rendezvous [53], or, in our context, face-to-face communication [25] or
communication by meeting [7].
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by (probabilistic [20]) finite state machines [38]. Recently, these studies have
gained (interdisciplinary) popularity as a model for agent behavior in insects, in
particular ants [33, 34]. Except for the work of Emek et al. [33], we are not aware
of strategies specifically aimed at searchers whose behavior is governed by a non-
deterministic pushdown automaton or a linear-bounded non-deterministic Turing
machine, i.e., Type-1 and Type-2 grammars, lying in between in Chomsky’s
hierarchy.

Lastly, one can also assume that the range of the searchers is limited in the
sense that they are powered by a (rechargeable) battery [29].

(Byzantine) faults. A faulty searcher might be oblivious to the exit location, i.e.,
does not recognize it even when being directly on top of it [26]. The problem
is that the faultiness of the searcher can only be detected implicitly, when a
non-faulty robot detects the exit. When the searcher is byzantine [24], it could
also report a non-existing exit, causing the other searchers to gather there,
wasting their time. Should the byzantine searchers be controlled by an external
adversary, they could lack the ability to leave faulty authenticated labels [60].
Moreover, in corporeal models, malicious searchers could also physically block
the progress of the remaining searchers [30, 31].

Terrain and searching costs. We assumed that all searchers have uniform unit
maximum speed on all locations. However, one can also consider that the maxi-
mum speed is different depending on the location and direction of the searcher.
Influence factors could be the incline of the terrain (e.g., up-/downhill [37]) or
different speeds for different directions [28].

Similarly, one can also take into account constant acceleration rates [28] or
that searchers have different individual speed characteristics [7]. Moreover, the
searchers can have turning costs when changing directions [32] or different speeds
depending on whether the terrain was previously explored [28] or scanned [35].
Last in this listing, the searchers could also have the possibility to jump a finite
number of times [43], e.g., from ray to ray.

Further exploration scenarios. Our model assumed that there is a static single
exit for the searchers to evacuate to, starting from the same point. However, there
could also be multiple exits [12] or the searchers do not start together, needing to
synchronize their local orientations [18]. Reminiscent to graph searching [17] or
pursuit-evasion games in general [46] is the idea that the mobile exit(-agent) does
not want to be found, possibly with multiple evaders [36]. An extension to this
model is that the aims of the exit(-agent) are unknown, i.e., either a rendezvous
or evasion is desired according to some known probability [1]. Moreover, there
could be two types of exit(-agents), where one has to be fetched [41] and brought
to the other, called treasure-evacuation [42].

Lastly, the searchers could also be equipped with some initial information [34],
often studied in the context of so-called advice complexity [51].
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6. Concluding Remarks

We studied the problem of collaboratively evacuating k robots on m con-
current rays, using wireless communication. To the best of our knowledge, our
work is the first that considers not starting on the junction j of the m rays, and
also to consider k < m robots for the specific problem of wireless collaborative
evacuation on m rays.

For the case of k = m robots, a simple waiting strategy gives a competitive
ratio of 4, with a constructive lower bound of 2 +

√
7/3 ≈ 3.52753 for every

k = m ≥ 3. For the specific case of k = m = 3, we develop a parametrized class of
algorithms with a nearly matching competitive ratio of 2 +

√
3 ≈ 3.73205, where

the parameter choice decides on the first search depth beyond the junction j,
once the junction is found.

Unlike prior work, not starting on the junction j allows to consider the
scenario of the robots being initially oblivious to the number of rays. Our
optimization over the parameter space of a geometric search strategy yields an

algorithm with a competitive ratio of 1 + 2 · m−1
k ·

(
1 + k

m−1

)1+ m−1
k . For a lower

bound, we give a simple but fundamental argument, resulting in the fact that
no algorithm can obtain a better competitive ratio than 3 + 2 b(m− 1)/kc for
every combination of k,m with k < m, even when starting on j.
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