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Abstract—In this paper we present Disca, a tool to analyze
discussions in terms of which person is speaking at what time.
We rely on a set of smartphones collaborating in detecting the
most likely speaker at every given moment in real time. Each
pair of smartphones observes a time difference of arrival pattern
that is caused by the location of the different participants. The
set of observations between all pairs of smartphones is then used
to identify speakers on-line. To achieve this, clock differences
and clock drifts between devices are estimated and compensated.
Ultimately, participants are found by clustering time difference
of arrival measurements which are unique for distinct speakers.
We implement the system as an Android application and show
that for more than 90% of time windows the correct speaker
can be identified. To cope with heterogeneous hardware of
Android smartphones, the computational burden is dynamically
distributed among all participating smartphones according to
their performance.

I. INTRODUCTION

Face to face communication is a vital part of our everyday
lives. Discussions occur at work or with friends and family.
However, even though we spend a lot of time talking to
other people, it is hard to obtain objective data about these
discussions. The lack of facts, be it during business meetings
or in informal situations, makes it hard to improve discussions.
Also, we cannot present our peers with facts when criticizing
or trying to improve a conversation. Subjective criticism can
be perceived as being offensive rather than helpful. In a
corporate environment, inefficient communication and a bad
work climate directly translate to added cost. To reduce these
effects, companies organize team building events or even hire
counselors. Using Disca in business or personal meetings can
help obtaining objective statistics about a given discussion.

Disca is a distributed smartphone app which can distinguish
the participants of a discussion and collect data about who is
talking at what time. This information can be used to identify
behavior that is keeping the discussion from being productive.
For example, there might be a person hogging the conversation
by not leaving any room for others. Or there might be someone
who continuously interrupts others. Telling the culprit is usually
difficult since there is no evidence and hence, the constructive
criticism may be ignored or interpreted as a personal attack.
By supplying objective data of such behavior, conversations
can be optimized in an objective way.

We collect this data using a set of smartphones that collabo-
rate to identify the current speaker. Since most people carry a
smartphone nowadays, Disca can be applied in most everyday
situations easily. Each smartphone records the conversation and
exchanges chunks of recorded audio with the others. For each

smartphone pair, the delay between the recordings is estimated
using cross correlation. This leads to a vector containing delays
for each smartphone pair which is then used to identify a
speaker. Our method compensates offsets in the sampling rates
of different smartphones and runs in real time on off-the shelf
smartphones. A Markov model is used to reduce the effect of
noisy measurements. The computational burden is distributed
among the participating smartphones to avoid very slow devices
being overburdened. The results are visualized in real time
and archived so previous conversations can be aggregated or
compared. Also, the results gained from the Markov chain allow
to analyze if there are cliques of participants communicating
mostly with each other.

Disca performs all computations in real time without sending
any audio recordings to the cloud. Instead, all computations
are performed locally such that no personal data has to be
shared to obtain the results. To our knowledge there are no
speaker diarization systems that can run in a fully distributed
setting. This is mostly due to clock inaccuracies that prohibit
tracking time difference of arrival measurements. In Disca, we
show how clock inaccuracies can be overcome by coarsely
synchronizing the clocks via network as well as tracking clock
drifts using the recorded audio directly.

II. RELATED WORK

Business meetings have been in the spotlight for being
inefficient and frustrating as shown in a study by Romano
et al. [1]. The process of distinguishing different speakers
is called speaker diarisation and is extensively discussed in
literature. The systems can be largely divided in two classes.

The first category uses acoustic features like Mel Frequency
Cepstral Coefficients (MFCC) [2] and others [3] generated from
one recording to identify the active speaker. These systems
are especially useful if only one recording is available such as
during like radio broadcasts and phone calls. However, we have
observed that MFCC features perform poorly for voices that
are similar. MFCC features are very suitable for authentication
tasks when the spoken words are always the same. Changing
the content introduces uncertainty that greatly reduces the
performance of these features.

Lu et al [4] recently discussed continuous audio sensing to
identify nearby speakers could improve life-logging applica-
tions. They use a single microphone to determine if a certain
speaker is talking at the time. Note that their approach requires
training for each speaker that is to be classified whereas our
method does not require any training data. Similarly, Xu et
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Fig. 1: Typical drift observed between all pairs of five different phones. Each time segment corresponds to 8192 samples and
hence 1200 time segments correspond to 220 seconds. The clock drifts exceed the time difference of arrival measurements by
far after a short period of time.

al. [5] showed that smartphone microphones can be used to
count speakers in an unsupervised fashion.

The second class of systems takes advantage of multiple
microphones. In contrast to methods relying on acoustic
features, these methods generally require the microphones
and speakers to remain approximately in the same location
during a discussion, the speaker voices can be arbitrarily similar.
Brandstein and Silverman [6] showed that microphone arrays
can track active speakers. Similarly, Anguera et al. [7] use
acoustic beamforming to enhance the signal from multiple
distant microphones. However, the time difference of arrival
(TDoA) data is not used to classify speakers. In their later
paper [8], recordings from different microphones are compared
to a reference and the timing data is used to infer active
speakers. Note that they need reference microphone which can
record each speaker well. Hence, all speakers have to be at
a similar distance to the reference microphone. If this is not
the case, the results will deteriorate since it will affect all the
TDoA measurements from all other microphones. In addition
to this, all the above methods are not robust against uneven
sampling rates across different recording devices. We show
that off-the-shelf smartphones are equipped with clocks that
are prohibitively inaccurate for the above methods to work.
More recently, Sur et al. [9] showed that smartphones can be
accurately synchronized to perform beamforming. A central
server is used to track clock drifts to achieve array gain for
the microphones. Their speaker localization algorithms require
the phones to be placed according to a given scheme. Also, a
central server is required to achieve accurate synchronization.
Disca does not require a central server or reference microphone
and can accurately compensate for clock differences between
recording devices.

Praviainen et al. [10] show how environmental sounds can be
utilized to synchronize and localize off-the-shelf devices such
as smartphones. Our system is similar because the recording
setup of multiple smartphones is alike. Interestingly in [10],
clock drifts are neither handled nor mentioned albeit in our
experiments their impact on performance proved to be severe.

Generally, the resulting sequence of clusters that best match the
observations are post processed to reduce noise. For example,
the Viterbi algorithm can be used to impose basic temporal
properties of discussions as described by Anguera et al. [8].

III. MODEL

We aim to analyze discussions based on who was speaking
at what time. To this end, a set of smartphones record
the discussion. We assume that any two participants of the
discussion have a unique set of distances to each microphone.
If there are three microphones that are not arranged on a line,
it is easy to see that, in a plane, there are no two locations
with the same set of distances. Not every participant requires
to provide a phone to obtain accurate results. The distances
between the speaking participant and the microphones cause a
propagation delay. If the locations of the microphones were
known and their clocks would be synchronized, it would be
possible to deduce the location of the speaker. Mostly because
of the delay caused by the operating system which is not
designed for such tasks, clock synchronization on such a high
level of accuracy is infeasible on current smartphones.

We use the differences in propagation delays ∆s to classify
each speaker s. This difference is defined and may vary for each
pair of smartphones. We assume speakers and smartphones
to remain more or less in the same location throughout the
discussion. In this case ∆s is constant for all speakers s.

The time difference of arrival (TDoA) dk(i) observed in audio
segment i for the kth pair of smartphones is influenced by the
difference in sampling rates of the two recording smartphones
rk. Also, clocks are not perfectly synchronized which leads to
a constant offset ck. The time difference of arrival observation
dk(i) therefore relates to the difference in propagation delays
∆s,k as follows:

dk(i) = ∆s,k + i · rk + ck +w (1)

We account for Gaussian measurement noise with the term
w. When n smartphones are used, the time differences of arrival
di,k are calculated for each of the n(n−1)/2 pairs of recordings
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Fig. 2: Typical voting result for the most frequent slope
aggregated in 500 time segments considering the past 500
segments.

in each audio segment. Combining all pairs of recordings we
get the following:

Di = ∆s + t ·R+C+W (2)

In the following sections, we show how we estimate the
difference in propagation delay for each observed audio
segment. This information is then used to find each speaker’s
∆s. First, the smartphones are roughly synchronized such that
audio segments from the individual smartphones that were
recorded roughly at the same time can be compared. The
time differences of arrival Di are then calculated for each
audio segment as described in the Time Difference of Arrival
Section. The estimation of the difference in sampling rates R
is explained in the Clock Sync Section. The resulting vectors
of propagation delay differences ∆s are then estimated by
clustering and filtered as described in the Clustering Section.

Figure 1 shows the raw TDaA measurements performed for
a set of five phones. Each pair of phones leads to a line that
is sloped because of the clock differences rk between the two
participating devices. Also, the influence of the audio source ∆s
is apparent since the lines for each phone pair assume different
levels as the speakers take turn.

A. Time Difference of Arrival

The calculation of the TDoAs requires the recordings of
the different smartphones to be roughly synchronized. To find
the corresponding position of one audio segment in an other
recording, the time difference should be small. Otherwise the
audio segment has to be compared to a long segment of the
second recording.

Before starting with the recording, the phones exchange
packets analogously to the Precision Time Protocol (PTP).

Using this synchronization method, the smartphones start
recording at roughly the same time. The audio is then
partitioned into segments of 8192 samples length that overlap
the previous segment by 4096 samples. At a sample rate of
44.1 kHz one segment is 185.8 ms long, with one new segment
being created every 92.9 ms. The corresponding position of this
segment is then searched in the other recordings in a segment
of 16384 samples.

The cross-correlation is used to find the time delay between
the two signals x1 and x2.

Rx1,x2(n) = F−1(X1(ω)X∗2 (ω)) (3)

. where X1 and X2 are the Discrete Fourier Transforms of
the signals x1 and x2. The TDoA is then the delay for
which the cross-correlation Rx1,x2 has the largest value. The
Generalized Cross Correlation (GCC) [11] introduces weights
in the frequency domain of the cross-correlation to make
the calculation of the cross-correlation more robust against
disturbing factors like noise and reverberations.

RGCC
x1,x2

(n) = F−1(X1(ω)X∗2 (ω)ψ(ω)) (4)

One such weighting function that is used in conditions
with reverberations is the Phase Transform (PHAT) [11]. It
normalizes each frequency component and only uses the phase.

ψPHAT (ω) =
1∣∣X1(ω)X∗2 (ω)

∣∣ (5)

This method is then called Generalized Cross Correlation
with Phase Transform (GCC-PHAT). The TDoA d can the
be calculated according to:

d = argmax
n

RGCC
x1,x2

(n) (6)

Figure 3a shows three different speakers taking turns in a
discussion. The difference in the TDoA from time segments
when one speaker is active to segments when another speaker is
active are clearly visible. The slope is caused by the difference
in the sampling rates of the two devices rk.

B. Clock Drift

Experiments with different smartphones have shown that
they do not record the audio at exactly 44.1 kHz. Figure 1
shows how quickly clock drifts aggregate to exceed the time
difference of arrival values obtained rooms of regular size for
meetings.

This is due to manufacturing tolerances and temperature
differences. The differences measured are up to ± 15 samples
per second. Without compensating these differences, two
corresponding audio segments diverge and do not overlap
anymore after a few minutes. Also, the TDoA vectors for any
given speaker change over time if the difference in sampling
rate is not compensated.

As a result of the difference in sampling rates, Di lie on
slopes as shown in Figure 1. The offset of these drifts is caused
by different speakers being active at different times. To compute
the actual propagation delay differences ∆ j that are used to
detect the speakers, we need to compensate for the clock drift.
Without knowledge of which speaker is active at what time,
linear regression methods cannot be applied to estimate the
slope. The presence of outliers makes least squares methods
unsuitable. Instead, we compute the most likely slopes r using
a voting scheme. For each newly Di, we compute the slope to
500 D j. The measurements D j to which Di is compared are
cast from the last 2000. Each resulting slope casts a vote for the
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(a) The raw offsets between both recordings. The slope in the graph is
due to the difference in sampling rates rk between the two participating
devices.
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(b) The offsets after compensating the difference in sampling rates rk
using our voting scheme. Each pair of recordings is drift compensated
independently.

Fig. 3: One dimension of Di from a recording of a discussion with 3 participants taking turns.

the actual slope. The binning then aggregates the most likely
slope on-line by adding votes for each new TDoA measurement.
The initial range that the binning spans is −4 . . .4 samples per
time segment and contains 800 bins.

Figure 2 shows a typical binning showing a clear peak for a
slope of roughly -1 samples per time segment containing 8192
samples. To more accurately estimate the slope, the range which
the binning spans is reduced to accommodate the most likely
slope values on-line. Previous measurements Di are updates as
the slope estimation becomes more accurate. Figure 3b shows
the values of the slope compensated Di (Di− t ·R) and the
corresponding to the raw Di values in Figure 3a.

C. Clustering

After accounting for the clock differences, the differences
in propagation delays ∆s are the main unknown influences on
the measurements from Equation 2. For each time window i
we can compute li from the initial measurement Di:

li := ∆s +W = Di− t ·R−C (7)

The values that li can assume are directly related to the time
differences caused by different sound sources ∆s and the
measurement noise. Hence we do expect a user to cause values
of li that are similar regardless of the frame number i. To find
the actual set of ∆s we cluster the results of the right side of
Equation 7. The DBSCAN [12] algorithm clearly outperformed
K-means clustering due to the large number of outliers that
are present in the measurements. Running DBSCAN iteratively
allows us to add new measurements at run-time.

By iteratively adding new data points, the density of noise
points increases. This can lead to the merging of individual
clusters which may represent different speakers. To avoid this
problem, the number of data points is kept constant by removing
the oldest data points. Clusters vanish when they have no data
points left but the position of the previous clusters is stored.
When a new cluster is created, it is compared to the position
of the previous clusters and is connected to it if the positions
are close. Therefore, speakers that were quiet for some time
can be correctly detected when they start speaking again.

The measurements Di often contain noisy components. Since
the difference in propagation delay is short for all pairs of
phones assuming that the recording area is limited, we can
easily filter noisy measurements. After that, most ∆s do not
contain all components. Even so, the measurements should be
clustered. To achieve this, the Partial Distance Strategy [13] is
used to compute the distance between two data points using all
components that exist in both data points. The distance between
the vectors li and l j each with N dimensions is calculated
according to

d =

√√√√N
∑

N
k=1(li,k− l j,k)2Ii, j

k

∑
N
i=1 Ii, j

k

(8)

with li,k being the kth component of li and

Ii, j
k =

{
1, if kth component is defined in li and in l j

0, otherwise
(9)

Additionally, the distance d is set to infinity when too few
corresponding vector components are available after filtering.
Since the geometry of the phones and the position of the
speakers are not known, it is not possible to determine if these
available components are sufficient to distinguish the different
speakers. In the worst case clusters representing different
speakers get merged. To avoid this problem, a high number
minPts for the DBSCAN clustering is used and a penalty for
measurements with only few components is introduced:

d′ = d
N

∑
N
K=1 Ii, j

k

(10)

D. Temporal Filtering With Markov Model

Time segments may be incorrectly classified as silence or as
another speaker. These errors can occur because of short pauses
or environment noise that caused the calculation of the TDoAs
to give wrong results. Subsequently these time segments were
associated with the wrong speaker in the clustering algorithm.

These errors can be corrected by assuming a structure for
conversations that can be captured in a Markov model. For
example, it is unlikely that speakers take turns 10 times per



second. The states in the model we use represent the active
speaker and silence. It is assumed that only one speaker is
active at the same time. The transitions between the states
represent the probability of moving from one state to an other
in one time segment. If a speaker is active in one segment,
the same speaker will probably still be active in the next time
segment 92.9 ms later. Therefore, the probability of staying in
the same state is higher than the probability of changing to
an other active speaker or to silence. For each state there are
emission probabilities describing the probability of getting a
certain observation when being in this state. The observations
here are the different cluster assignments. The probability of
observing the cluster assignment corresponding to the current
state is highest while the probability of observing silence or
another cluster is assignment is smaller. The Viterbi Algorithm
is used to find sequence of states x1, ...,xT of the Hidden
Markov Model that matches the observations best.

E. Distributing the Workload

The smartphones used today vary in their processing power.
Therefore, it is necessary to distribute the workload of process-
ing the audio recording pairs to the participating phones such
that all can complete their work in time. Since the step size of
the processed audio segments is 4096 samples, one segment
should be processed in 92.9 ms. On smartphones with multiple
cores, multiple segments can be processed in parallel.

After starting the application, the audio recording pairs are
distributed evenly to the participating smartphones through
WiFi. Each pair is processed on one of the smartphones that is
part of the pair. This helps to minimize the network bandwidth
utilized by Disca. Also, each phone monitors the time required
to process one segment. If the required time exceeds the
available time of 92.9 ms, it requests its neighbors to take over
the computation for their respective audio pair. So the workload
allocation is handled in a fully distributed manner without
chaning the network bandwidth requirements. After sending a
neighbor a request to pass on the responsibility of processing
the pair of recordings, the other smartphone accepts or refuses
depending on the available processing time. If the transfer is
rejected, we try to pass on one of the other pairs of recordings in
which the overburdened smartphone is involved. We observed
that even dated Android devices such as the Galaxy Nexus
easily handle the computational burden. After calculating the
TDoA for an audio pair, the smartphone transmits the calculated
value to all other smartphones. When all measurements for
one time segment are received, the clustering and classifying
steps are executed on each smartphone.

IV. EVALUATION

To evaluate our speaker detection system two setups have
been used. Firstly, actual conversations with three speakers
sitting around a desk have been recorded. In total, 4 different
seating positions, rooms and combinations of people were
recorded for a total of 20 minutes. The rooms were not chosen
to be explicitly quiet and noise sources such as air conditioning
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Fig. 4: Segments that could be clustered for segment lengths
from 1024 to 16384 samples. With shorter segment length
fewer segments could be assigned to a cluster.

or people moving and talking outside the open door were
present. Each of these discussions was annotated manually.

To do a long term test, we used a 5.1 speaker system. We
distributed an audio book such that it was played from one
speaker at a time. The speaker was switched in a random
pattern to simulate multiple people taking turns speaking. This
setup, by design, provides an accurate ground truth about
which speaker was active at which time. Like this, a total of
60 additional minutes of annotated data was obtained. All the
experiments were recorded with five smartphones (Samsung
Galaxy S3, Samsung Galaxy Nexus, Samsung Nexus S, HTC
One M7).

A. Segment Length

The length of the audio segment has a large impact on
the reliability of the observed TDoAs dk(i). With smaller
segment lengths, fewer TDoAs are correctly estimated. As
a result, incorrect observations are removed in the filtering
step and some are classified as noise. This leads to a poor
clustering result with many time segments not assigned to any
speaker. However, the processing power limits the length of
the segments, larger segments require more processing power
to compute correlation functions. Additionally, the segments
should capture only one active speaker and also detect short
pauses. For the remainder of the evaluation, a segment length
of 8192 was used. This allowed us to run Disca on our test
devices in real time.

Figure 4 shows for the different fragment lengths, which
segments could be assigned to a cluster.

B. Distributed Speaker Diarisation performance

Naively comparing the ground truth annotation to the output
of our diarisation algorithm leads to roughly 93% of time
segments being correctly classified.

In the real discussion experiments, performance is slightly
worse at 90%. Manual inspection showed that many misclas-
sifications occur when the speaker changes. More explicitly,
time segments that are within 0.2 seconds of a speaker change
annotated in the ground truth are only in 58% of cases correct.
Ignoring these time segments, 94% of the remaining time



(a) Overview of a previously
recorded conversation.

(b) On-line visualization of
the speaker activity.

Fig. 5: Selection of saved conversations and overview of
those. Transitions between speakers are shown in the transition
diagram and the number of transitions are displayed. For all
speakers their time contributing to the conversation is listed.

segments to be correctly classified. Note that 8% of time
segments lie within 0.2 seconds of a speaker change.

When annotating the recordings, it is in many cases unclear
at which time exactly a speaker changes happen. In most cases
there is a slight pause between the speakers and it is unclear
to which speaker the pause should be assigned. In other cases,
one speaker interrupts another creating a slight overlap. In the
rarest cases, speakers change without either an audible pause
or overlap.

In the audio book experiment, the performance is slightly
higher at 96% of the segments being correctly identified.
Neglecting errors within 0.2 seconds of a speaker leads to 98%
of the segments being correctly classified. Note that, again, 8%
of time segments lie within 0.2 seconds of a speaker change.
The improved performance is mostly due to the more controlled
sequence of speakers without long pauses or overlaps. Also,
the ground truth data is not subjective and free of annotation
errors due to the experimental setup.

To estimate the performance when less smartphones are
contributing to the system, we randomly selected three of the
available five recordings. The results were within 1% of the
previously discussed results with five recordings.

V. ANDROID APPLICATION

The implemented Android application is able to detect the
active speakers in real time. When starting the detection, the
participating persons can be selected. Speakers selected on
one phone are automatically matched to the cluster which is
closest to that phone. The number of speakers is not tied to
the number of phones participating. Additional speakers are
assigned a color which at any time can be matched with a
name manually.

While detecting the active speakers, the application shows
at the top of the screen the sequence of the last speakers.
The upper half of the bar in Figure 5b shows the result from
the clustering step and the lower half the detected speakers
after filtering with the Markov model. The transition diagram
is updated periodically and shows how often the transition
between the different speakers and silence occurred. The area of
the circles corresponds to the total time the person has spoken.
When the detection is stopped, the results are saved. Figure
5a shows a the statistics available for a completed discussion.
In addition to the information shown while processing, the
number of transitions is also shown in text form.

VI. CONCLUSION

We have shown how a set of off-the-shelf smartphones can
be used to distinguish active speakers in a conversation. We
show that speaker diarization can be performed using multiple
phones and software albeit the practical limitations of inaccurate
clocks. The resulting system could also be used to perform
beamforming to boost the audio quality for the active speaker.
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