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ABSTRACT
Understanding, using, and applying algorithms and pro-
gramming will be everyday necessities in a technological
world of tomorrow, allowing participation in a changing so-
ciety opposed to merely watching ongoing progress. While
establishing Computer Science courses everywhere is a no-
ble goal, other school subjects also can profit from teaching
these two skills. We focus on Mathematics, where algorithms
are inherently important, but often overlooked. Taking ge-
ometry as an example, we studied how to integrate program-
ming and algorithms in the current curriculum in grades 6
and 7, and propose further application scenarios. We also
perform a long-term evaluation, with our methods showing
a significant improvement in the students’ performance.
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1. INTRODUCTION AND MOTIVATION
Before Computer Science became a subject of its own,

it was often Mathematics that brought programming into
schools, cf. [38]. Nowadays, programming is however absent
at large in Mathematics [22]: Specialized tools such as ad-
vanced calculators, spreadsheet software, computer algebra
systems (CAS), and dynamic geometry environments have
in some sense taken it’s place. These are designed for their
specific purposes in mind and are easy to use, so why bother
with programming when teaching Mathematics?

Furthermore, programming languages can be difficult to
learn for pupils, taking away even more of the limited time
teachers have to fulfill the set standards. Should program-
ming not thus be restricted to Computer Science classes?

This viewpoint ignores that programming itself has in-
herent advantages for teaching mathematics, as pointed out
by Feurzeig et al. in their seminal article [4]. Among con-
tributing to rigorous thinking, giving key insights to con-
cepts such as variables and functions, and enabling the chil-
dren to generalize problems, programming can also help with
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another important issue: Students often have difficulties to
talk about mathematical problem solving (especially about
the process afterwards) or to gather first own experiences in
it. “Programs are more discussable than traditional mathe-
matical activities: one can talk about their structure, one can
talk about their development, their relation to one another,
and to the original problem” [4].

Analogous to a function, a program performs a transfor-
mation from an input (argument) to an output (value), cf.,
e.g., [25]. Thus, tasking a student to write a program can be
compared to giving a constructive proof [32]. As exercises
asking for proofs are strongly underrepresented in today’s
classrooms (sometimes as low as just 1% [21]), programming
can also be advantageous regarding this aspect.

Additionally, algorithms themselves are a fundamental core
competence not just for Computer Science, but especially
for Mathematics as well, cf., e.g., [16]. And how to better
teach algorithms than to program them? When restricting
students to the limited set of instructions given by a pro-
gramming language, one forces them to formally implement
their ideas, instead of just describing their thoughts on a
high level – potentially skipping over important aspects or
leaving them unclear: “’telling the machine how to do it’”
engages the child in a cycle of modifying ideas based on the
output the computer gives [12].

In practice, there is however one main obstacle regarding
the usage of programming in the classroom: Limited time.
An endless number of new topics and techniques could be
included or extended in the classroom, e.g., discrete mathe-
matics [14], with each having numerous learning opportuni-
ties. Adding programming into the Mathematics curriculum
is also not a new idea, see, e.g., [5] for an “integrated course
in algebra”, or [11] for a more wide-spread approach, with
many interesting algorithms waiting to be studied [35].

While a discussion on what and in which depth should
be taught in today’s classrooms is interesting for sure, the
wheels of bureaucracy turn slowly, and for every person ar-
guing for the removal of an item from the curriculum in
favor of a replacement, there are multiple persons opposing
the removal – often for good reasons.

We thus propose to integrate programming into the cur-
rent mathematics curriculum, allowing the many advantages
of programming to be experienced today, and not in a dis-
tant future.

We see programming as an essential technique that should
be treated just like any other mathematical tool: To be used
when appropriate, not to be applied when other tools are
more useful, and not taught for it’s own sake.



We build our work on [6], extending their approaches and
evaluating the long-term impact of combining programming
and geometry. We start with Section 2, where we describe
the advantages of using Geometry as a topic when teach-
ing algorithms and programming. In Section 3, we discuss
why we use the graphical language Scratch in the classroom.
Then, in Section 4, we present our integrated approach,
which we studied in the classroom in the grades 6 and 7.
We conclude our paper in Sections 5 and 6, summarizing our
study and providing a positive long-term evaluation. Lastly,
we give an outlook on further possibilities in Section 7.

2. GEOMETRY AND PROGRAMMING
As Holland pointed out [10], describing a geometrical con-

struction is nothing less than giving an appropriate algo-
rithm for it; furthermore, only describing the construction
algorithmically enforces checking the correctness of every
single step of the construction. However, it is akin to chalk
and cheese [28] between what (i) students write when de-
scribing a construction, and (ii) mathematically correct so-
lutions: Early digital thinking in this area leads to fasci-
nating new possibilities [28], with strong improvements in
the students’ descriptive skills when the construction is per-
formed in the computer first [36].

According to Schmidt-Thieme [30], the final form of the
description of a geometric construction is the algorithm,
which then can be translated to a computer language. When
constructing step by step, the geometric computer program
can be developed iteratively, with errors being attributable
to elements of the own code. As in a constructive proof, the
students can modularize different parts of the construction,
testing them separately, and lastly joining them together.

These are just a few reasons why programming with Turtle
graphics (e.g., in LOGO, cf., [1]) was popular in Mathemat-
ics in the 70’s to the 90’s for school children, and is still
used to promote Computer Science in primary schools, e.g.,
in Switzerland [31].

While the educational value of Turtle graphics was and is
widely undisputed regarding Computer Science1, there was
a heavy debate on the concrete usage of Turtle graphics
in teaching Mathematics. Most of this discussion stemmed
from the Logo Philosophy [3], which focuses on construc-
tivism or discovery learning. Some argued that the classical
curriculum might vanish, being replaced with an educational
utopia [2]. On the other hand, e.g., Hromkovic [13] points
out that one can directly achieve a high interaction between
Turtle graphics and teaching Geometry.

We do not want to take any side in this discussion, but
rather reap the best of both worlds: We will use the classic
and well proven concept of Turtle graphics, but integrate it
into a standard curriculum of Mathematics in the grades 6
and 7, considering it not as a replacement, but as a valuable
tool for a deeper understanding of the topic itself and using
programming at the same time.

3. THE CHOICE OF SCRATCH
Many standard programming languages come with a large

initial overhead, which is of no great concern when teaching
(sub-)college level introductory Computer Science courses.
For smaller children however, languages such as C, C++, or

1“The good old idea of Turtle graphics still has an enormous
potential” [23].

(a) Java (b) Scratch

Figure 1: Comparison of a “Hello, World” program
in Java and Scratch. The command blocks of Scratch
are also available in dozens of different spoken lan-
guages from all around the world, e.g., German.

Java can provide starting difficulties, especially when not
much time should be spent on the programming language
itself, but rather on directly programming algorithms.

Especially not being able to fix “brackets out of synch”
seems to be a common problem [34]. Furthermore, our main
audience are not students who will take Computer Science
courses in parallel, but rather those who will not encounter
CS courses in their curriculum.

As such, there has been a wide variety of specially de-
signed languages/environments: LOGO, Karel the Robot,
Etoys and Squeak, Lego Mindstorms, Alice, Kara, and Green-
foot, to list just a few in historical order. However, we would
like to use a language capable of performing Turtle graph-
ics, being easy to use right away, and universal enough to
apply it also after the grades 6–7 for diverse mathematical
algorithms.

The graphical programming language Scratch2 meets all
these criteria, and is even used by universities for introduc-
tory courses (e.g., Harvard, Berkeley etc.). [7, 26, 29, 33]
By combining blocks in a Lego-like structure, syntax errors
are impossible, meaning that the errors can be restricted to
the algorithmic thoughts themselves. Even object-oriented
programming and complex algorithms are possible, e.g., Di-
jkstra’s algorithm. [19]

We would like to strongly emphasize that Scratch does
not replace or improve all these languages and environments
listed before, but just suits our intended purposes better.
Furthermore, Scratch has been used before to augment the
teaching of Mathematics using extra-curricular activities,
cf., e.g., [15, 18, 37]. We are not aware of a long-term ap-
proach to use Scratch in an unchanged Mathematics cur-
riculum.

Scratch is available for free for Windows, MacOS X, and
Linux. There are multiple variants/re-implementations avail-
able, e.g., Snap! with further features, or Scratch Jr for pre-
school children. We chose Scratch in the older version 1.4,
as it still runs on outdated (but still used in offline school
environments) operating systems, such as Windows 2000.
Furthermore, we changed the language settings to German,
as our studies were performed at a German school. For ease
of reading, nearly all pictures use English block descriptions
in this paper.

4. OUR SCRATCH APPROACH
Based on our thoughts noted in Section 2, we chose the

standard mathematical topics of (i) polygons and tessella-
tions for grade 6, and (ii) congruent triangle constructions
for grade 7. Our classroom studies were performed in a high
school in northern Germany, in the same class with roughly

2Available at http://scratch.mit.edu.



(a) Blocks to create a regu-
lar triangle, step by step.

(b) The same construction,
but now with a loop.

Figure 2: The natural notion of a loop can be intro-
duced when covering regular triangles, as the needed
commands will repeat multiple times.

one year of time in between. In grade 6, there were 15 girls
and 13 boys, while in grade 7, the number was slightly re-
duced to 12 girls and 12 boys, due to some children leaving
the school/repeating grade 6. Most students had no prior
knowledge in programming and Computer Science was not
available as a subject for these grades at the school. The pro-
gramming part was integrated into the normal Mathematics
lectures and covered only subjects part of the standard cur-
riculum, though from the new viewpoint of programming al-
gorithms. Due to the facilities available in the school, most
students shared a computer as a pair respectively.

4.1 Polygons and Tessellations
After introducing the students to the Scratch environ-

ment (especially how to draw lines using simple moving com-
mands), the first two lectures (45 minutes each) covered the
construction of triangles and regular polygons, followed by
two lectures about tessellations.

The correctness of the first programs can be verified by
the output on the screen, whether it is a triangle or not.
As noted before, this concept spans over most geometrical
algorithms, as the output is produced on the screen itera-
tively (the drawing object takes some time to move along its
path), errors can be directly correlated to program blocks.
However, drawing a simple triangle does not give any deep
algorithmic insights. When advancing to regular triangles
(and polygons), the concepts of loops can be introduced in
a natural way, as depicted in Figure 2.

While the advantages of using a loop are not strongly
noticeable when constructing a regular polygon with just
three corners, it becomes more clear when the number of
corners are increased. Then, one can directly cover that
the sum of the exterior angles has to be 360◦, leading to a
more intricate program depicted in Subfigure 3a. Now the
program can be used as a sort of a black box: One just
changes the number of desired corners, and the program
draws the regular polygon.

Some took a longer time to understand the concept of the
algorithmically more intricate program in Subfigure 3a, as it
implicitly uses variables on a propaedeutic level. One should
not aim for a program as in Subfigure 3b, unless the concept
of variables has been introduced in depth in Mathematics
(usually not the case in grade 6 in Germany).

For the following topic of creating finite regular tessella-
tions, the three respective building blocks (regular triangle,
square, and hexagon) had now already been programmed by
the students.

Nonetheless, putting the individual polygons together mul-
tiple times to a tessellation is not as simple a task as it might
seem. The student has to take the perspective of the drawing

(a) To construct regular
polygons with a differing
number of corners, one
would replace the 10s with
the desired number.

(b) A generalized form
with added variables.

Figure 3: Extending the program from Subfigure 2b
to deal with regular polygons in general.

object itself; else, e.g., multiple hexagons might be drawn,
but the final product does not resemble a regular tessellation
at all. A modularizing approach is needed, drawing first a
sequence of polygons, and then joining them multiple times
to a tessellation. An iterative approach can still be helpful
though, first figuring out the ideas needed for the solution,
before simplifying them in a concise program, cf. Figure 4.

Figure 4: A first approach by students to generate
a tessellation.

While a square tessellation can be performed as the eas-
iest of the three, the regular triangle tessellation is already
intricate, with the hexagon tessellation usually taking over
20 lines of correct code, see Figure 5.

4.2 Congruent Triangle Constructions
Describing congruent triangle constructions is usually split

into four cases, cf., e.g. [17], in the Mathematics curriculum:

1. SSS: All three sides are given (side-side-side).

2. SSA: side-side-angle.

3. SAS: side-angle-side.

4. ASA: angle-side-angle (or SAA or AAS).

The first two items, SSS and SSA, are not suited for im-
plementation in Scratch in grade 7, as the intersection of
two cycles cannot be calculated yet by the students. How-
ever, these two items can be handled by dynamic geometry
environments such as, e.g., GeoGebra [9] or Cinderella [27].

In fact, following the arguments at the beginning of Sec-
tion 2, one can choose a reverse approach: First let the
students program SAS and ASA in Scratch (and analogous
parametrized families of triangles), then switch to a dynamic
geometry environment for SSS and SSA, and lastly, let the
students describe congruent triangle constructions the clas-
sical way, i.e., by hand. We now focus on the programming
part with Scratch in this subsection.



(a) By adding five addi-
tional blocks of code, multi-
ple hexagons can be drawn
in a row.

(b) However creating a 5×5
tessellation requires many
more additional blocks of
code.

Figure 5: Extending the program creating a hexagon
to first create a “line” of hexagons in Subfigure 5a,
before assembling the final program to create a 5×5
hexagon tessellation in Subfigure 5b.

A major change compared to the programming in grade
6 (see Subsection 4.1) is the use of variables. The students
already know them from previous topics in Mathematics in
grade 7, allowing variables to be used in programming. Of
course, one could also introduce variables earlier, e.g., in
grade 6, but then additional time would be devoted to a
topic which is not covered by the curriculum in grade 6.
Our approach is an integrated one, i.e., we do not intend to
add any topic to the curriculum itself.

To start with variables in Scratch, we picked up on the
known topic of regular triangles. The length of each side can
be replaced by a common variable, allowing the program to
represent all regular triangles at once, see Figure 6.

This idea can then be applied to SAS and ASA: First,
the students generate a program for a specific triangle, and
secondly, extend it to a program that can generate all trian-
gles of the sort by adding variables, cf. Figure 7 for the case
of SAS. Thus, the classic concept of describing a specific ge-
ometric construction for congruent triangles is generalized.

So far, variables have been only used as placeholders for
values, they were not changed during the execution of the
program; yet, this is a concept fundamental to programming
advanced algorithms. As before, we introduce this concept
by extending previous programs, see Figure 8.

Parametrized families of triangles can then also be pro-
grammed by the students for constructions of the type ASA
and SAS, see Figure 9.

As noted before, the remaining types of congruent triangle
constructions can afterwards be handled by dynamic geom-
etry environments, followed by hand-written descriptions of
the different construction types.

5. OBSERVATIONS OF OUR APPROACH
As expected, introducing the students in grade 6 to the

programming language Scratch was intuitive and unprob-
lematic. The concepts of Turtle graphics were directly trans-

Figure 6: The program from Subfigure 2b, with the
length of each side replaced by the variable A.

(a) Construction of a trian-
gle with SAS given by 75 −
100◦ − 123.

(b) Generalized construc-
tion of all triangles given by
SAS.

Figure 7: By replacing the explicit values in Subfig-
ure 7a with variables in Subfigure 7b, all SAS con-
structions can be described at once.

Figure 8: The program from Subfigure 6, with the
variable A changing during the execution of the pro-
gram. In this example, there will be eight squares,
with the length of each side increasing by a length
of 15 each time. If desired, the program can be even
more generalized by replacing the 8 and 15 with fur-
ther variables.

(a) Program for a parametrized
family of constructions of the type
SAS.

(b) Example output
of the program from
Subfigure 9a.

Figure 9: The program in Subfigure 9a is an exten-
sion of the program for SAS from Subfigure 7b, with
an encompassing loop added and the variable Beta
changing during the execution.



Figure 10: Stacked column chart of the results of
the four classes, sorted from 0 (none or barely any
knowledge) to 5 (correct solution). While all classes
have some correct solutions, the class 9a (using our
Scratch approach) has mostly high ratings, with the
other classes having many children that scored low.

latable into Scratch, with regular polygons giving a first start
into programming algorithms. Furthermore, the subsequent
topic of tessellations illustrated the relevance of exactness
and the need for modularization in programming.

In grade 7, roughly a year later, the students were quickly
familiar with Scratch again, maybe also because some stu-
dents continued to use it at home from time to time. Scratch
proved to be a viable tool in constructing congruent trian-
gles, with variables now also being used from a Computer
Science viewpoint. By reversing the classical order with first
programming, then describing by hand, the students were
able to provide more concise descriptions of geometric con-
structions than students from other classes. Additionally,
by programming the constructions themselves, the students
gained a propaedeutic view on the function of dynamic ge-
ometry environments.

While the computers were mostly shared pairwise among
the students due to the facilities provided by the school,
this turned out to be beneficial, cf. [20]. The students could
discuss their programs with each other, as they now had a
common mathematical language provided by Scratch.

6. LONG-TERM EVALUATION
To study the long-term impact of our approach, we per-

formed an evaluation in four grade 9 classes at the same
school. All classes were taught according to the same Math-
ematics curriculum by different teachers, except for one class
(9a), which used our Scratch approach in grades 6 and 73.
The N = 98 pupils were tasked with describing a congru-
ent triangle construction, using pen and paper, of the type
SAS: 3cm, 50◦, 4cm.

We rated the students’ answers forwarded to us by the
teachers as follows: 5: Correct, 4: few errors, 3: moder-
ate amount of errors, 2: many errors, but correct approach
visible, 1: some information about the triangle supplied, 0:
none or barely any knowledge. The Figures 10 and 11 show
the distribution of the rated answers.

3Our integrated approach in grade 7 was ≈ two years before.

Figure 11: Probability density functions of our data
sets. Note that these are fitted curves, therefore the
interval extends beyond 0 and 5. The three classes
without Scratch perform quite similar, with the class
9a using our approach outperforming them.

Based on these results, we further analyzed4 the data us-
ing Levene’s test to test for homogeneity of variance using a
significance level of 0.05 and found that equal variances can
be assumed (p = 0.062). Therefore the one-way Analysis
of Variance (ANOVA) with a significance level of 0.1 was
chosen. We found significant differences (F (3, 94) = 15.06,
p < 0.001) in the performance of the students. Tukey’s
honest significant differences post-hoc test revealed that the
class 9a (which used our Scratch approach) performed sig-
nificantly better than the other classes. We also found no
significant differences between the performance of the other
classes 9b, 9c, and 9d.

Based on these results, we believe that using our Scratch
approach has positive long-term effects regarding the chil-
drens’ expertise in the combination of algorithms and geom-
etry. Maybe it is the deeper understanding of the involved
algorithmic techniques using programming that allows the
knowledge to persist, opposed to it being largely forgotten
without recent repetition.

7. OUTLOOK
There are many further options where programming with

Scratch can be integrated into a standard Mathematics cur-
riculum: The Bisection method, random experiments, the
Euclidean algorithm, the Babylonian method, the sieve of
Eratosthenes, approximation of π, numerical algorithms, in-
troduction of negative numbers [24] and coordinate systems,
or of course also further topics, e.g., aspects of discrete math-
ematics (graph theory), space-filling curves, and the Sierpin-
ski gasket, to list just a few.

We envision that programming should be a standard tool
in Mathematics in schools5, just as a calculator, compass, or
ruler is; a cultural technique that is available to and useable
by everyone.
Acknowledgments We would like to thank the anonymous
reviewers for their helpful comments.

4We used the popular statistics package Minitab, available
at http://www.minitab.com/.
5To quote C.A.R. Hoare [8]: “I hold the principle that the
construction of computer programs is a mathematical activ-
ity like the solution of differential equations.”
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M. Resnick. Alice, greenfoot, and scratch – a
discussion. Trans. Comput. Educ., 10(4):17:1–17:11,
Nov. 2010.
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