
RTDS: Real-Time Discussion Statistics

Pascal Bissig, Jan Deriu, Klaus-Tycho Foerster, Roger Wattenhofer
Distributed Computing Group, ETH Zurich

Gloriastrasse 35, CH-8092 Zurich, Switzerland
{firstname.lastname}@tik.ee.ethz.ch

ABSTRACT
We present RTDS, an Android application to analyze discus-
sions while they are taking place. Using two microphones
of a smart phone and Time Difference of Arrival measure-
ments, conversations of participants are evaluated regarding,
e.g., speaking time, contributions, or complex interaction pat-
terns. The application can also assume the role of an active
referee to ensure that all speakers get a fair share of the on-
going conversation. By using an off the shelf smart phone
with two microphones, our system can immediately be ap-
plied to track spoken interactions between people. Experi-
mental results show that our implementation causes only 2%
user classification errors whilst being able to run in real-time
on a standard smart phone without hardware modifications.
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INTRODUCTION
Modern technology has allowed us to quantify more and more
aspects of our behavior. A few years ago, fitness tracking
for example was limited to comparing lap times, running
distances or other key parameters of a workout. Today, fit-
ness tracking devices can tell you, with high accuracy, how
much exercise you get throughout a normal day by contin-
uously monitoring your behavior. The ease of quantifying
complex personal exercise behavior leaves a user with unde-
niable facts, that when taken seriously, can help improving
quality of life.

The same principles have been applied to social interactions.
For example, there is a tool that helps quantifying the quality
of the encounters with your friends [13].

However, current tracking methods for interactions are far
from being convenient to use. To our knowledge there are
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no tools to easily track verbal interactions, even though con-
versations are an integral part of our everyday lives and the
underlying mechanics might give great insights on the state
of a relationship. Maybe you have the feeling that you are al-
ways interrupted by a specific person during work meetings,
but want to quantify that feeling into numeric values? With
RTDS we present a solution (not only) for this issue.

RTDS can accurately capture how people interact in a dis-
cussion. This tool can give insights about how much people
speak, or reveal more complex patterns in their interaction.
RTDS is applicable in many situations such as business meet-
ings, interviews, dinner conversations, or during arguments.
Running on of the shelf smartphones, RTDS is quickly setup
and can give insights about verbal interaction patterns wher-
ever you go. Furthermore, RTDS can also augment conversa-
tions by acting as a referee, e.g., by notifying participants of
using too much time in the ongoing conversation.

Contribution and Ongoing Work
Our contribution in this short paper focuses on showing the
technical feasibility of the described system on an off the
shelf smart phone, combined with a pilot evaluation.

For a future full version of this paper, we plan to incorporate
multiple extensions discussed at the end of this work, devel-
oped jointly with user studies – going beyond the technical
contribution of our short paper.

RELATED WORK
Our discussion mechanics inference method is based on Time
Difference of Arrival (TDOA) to determine the Angle of Ar-
rival (AOA) of sound signals. Humans and animals use this
method in everyday life with their two ears to aid the local-
ization of sounds, we refer to [11] for an overview: As it turns
out, the change of the angle of a sound source can be detected
by humans even if the difference is as small as 1◦, depending
on the relative position of the sound source. Not surprisingly,
this established technique has already been applied in various
contexts, e.g., shooter detection: In Washington, D.C., USA,
the installment of just 300 sensors was enough to localize sev-
eral ten thousands of gun shots in an area of 20 square miles
since 2006 [10].

Another type of work is using TDOA to localize the (sin-
gle) device itself. Global navigation satellite systems, such
as GPS, Galileo, or GLONASS, employ TDOA correlation to
determine, e.g., the position of a smart phone [5]. However,
they use radio waves instead of acoustics and have further in-
formation about the senders.

http://dx.doi.org/10.1145/3012709.3012726
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Figure 1: Values of c(τ) for different time slices k (44100
samples each) and sensible values of τ considering a sam-
pling rate of 44.1kHz and microphone distance of 12.7 cm.
At k = 8, the TDOA changed drastically which is clearly
reflected in the change of c(τ).

A different line of research leveraging TDOA focuses on
around device interaction: E.g., Toffee [16] uses an acoustic
TDOA approach to detect the location of nearby (finger) taps.
Devices, such as smart phones or laptops, are augmented with
four vibro-acoustic sensors, located below the device. Then,
the devices, which are placed on a hard surface, can use the
relative angle of the finger taps as an input method, e.g., to
switch desktops or to control a game. They note that “dis-
tance estimation is too poor for practical use at this time”.
Besides a distinct application, a main difference is that they
use customized hardware, whereas we do not.

MEASUREMENT SYSTEM
Application wise, more linked to this paper is using TDOA
to determine the relative speaker location/angle (cf. [2, 4])
or to localize a set of connected smart phones in a meeting,
cf. [9], where 10 phones are used for accuracy. However,
all these systems differ from our work in the sense that we
just need one off the shelf smart phone with our application
installed. No specialized hardware, multiple phones, or long
setup-times are needed. The participants enroll with one tap
on the screen.

McCowan et al. [8] presented a system that automatically an-
alyzes and stores meeting contents. Amongst others, features
such as “speech pitch” and “presentation speech activity” are
tracked. The features allow for fine grained analysis of the
meeting. However, the system requires multiple cameras and
microphones being placed in a certain way. This reduces the
applicability in many real world scenarios in which RTDS can
give insights on the social dynamics of a discussion.

Another aspect of our work relates to lifelogging (cf. [1, 3]) &
the quantified self (e.g., [14]) and augmenting conversations
with smart phones. Many people are interested in quantify-
ing activities in their everyday life by logging (for example,
recording audio with their smart phone all the time [12]) and
subsequently analyzing them. Automatically augmenting dis-
cussions can come into play here, by, e.g., trying to enforce
certain conversation criteria (as done in our work). Current
applications such as the system in [6] embark in a similar (yet
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Figure 2: Areas of same color lead to the same TDOA
measurement at the phone. The area shown is 5m by
2.5m and the microphone assumptions are based on the
Samsung I9300 which we used for our experiments. As
seen, TDOA with two microphones cannot distinguish two
speakers sitting on opposite sides of the microphone axis.

maybe orthogonal) direction by creating, e.g., tickets-to-talk
between participants.

In order to distinguish people within one discussion, we rely
on a Time Difference of Arrival measurement of the au-
dio signal. We use a Samsung I9300 smart phone from
2012 which allows for stereo recording using the two built
in microphones. A large portion of current smart phones is
equipped with two microphones, with some even having three
or more (e.g., LG G3). The microphones are sampled at 44.1
kHz and are located at the top and bottom of the device (12.7
cm apart). Assuming the spoken signal is s(t), we assume that
we receive ri(t) = ki · s(t−τi)+n(t) at microphone i. The noise
term n(t) is assumed to be uncorrelated and the signal s(t) is
shifted in time due to the distance between microphone and
the sound source. The anisotropic gain of the microphones
and the speaker itself is captured in ki as it is constant dur-
ing a discussion as long as we assume neither microphones
or participants move significantly. To find the angle of ar-
rival based on two microphones (i ∈ [1, 2]), we use a cross

correlation of the received signals: c(τ) =
n∑

i=0
r1(i) · r2(i − τ).

This gives us an indication of how well the received signals
match for a given time delay τ within a fixed time slice of
length n samples. The value τ which maximizes c(τ) gives
the time difference of arrival at which the most energy arrives
at the two microphones. Since each τ corresponds to an angle
of arrival given the distance between the microphones (shown
in Figure 2, the speakers can approximately be localized with
respect to the microphone pair. Figure 1 shows values of c(τ)
for different delays τ over a period of 17 consecutive time
slices of one second. The change of c(τ) at half time of the
measurement indicates that the angle of arrival has changed
significantly. See Figure 2 to get an intuitive idea of which
areas around the microphone pair lead to a fixed value of τ.
As you can see, the areas extend to both sides of the micro-
phone axis. Therefore, two speakers sitting exactly opposite
of each other with respect to the microphone axis cannot be
distinguished using our method and only two microphones.
However, this problem can easily be avoided by placing the
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Figure 3: Hidden Markov Model template for two speak-
ers. Silent states are introduced for each user to cap-
ture user specific discussion behavior. For simplicity, only
transitions originating from Person 1 are drawn.

phone such that the arrival angles are unambiguous. Should
there be no dominant angle of arrival (c(τ) < x ∀ τ), we
assume that nobody was speaking. The threshold we use to
separate silence from speech is empirically evaluated (we re-
fer to the evaluation section for details).

Discussion Mechanics Inference
In order to reduce the effect of measurement noise and to in-
fer high level discussion statistics, we use a Markov model.
The structure of the model is defined as shown in Figure 3.
Each user can either be speaking or silent (top and bottom
row of states). By modeling silent states for each user, we
allow the model to distinguish a pause from a user continu-
ing the discussion after another stopped talking. The transi-
tion probabilities are adapted throughout each discussion to
best explain the sequence of angle of arrival measurements
using the Baum-Welch algorithm, cf. [7]. The emission prob-
ability distributions for each speaking state matches the di-
mensions of the TDOA measurements. Figure 6 shows such
a distribution that resulted from one of our test discussions.
Each silent state is only allowed to emit silence observations.
This means that our system does not require prior informa-
tion about where speakers are located, and is able to find and
distinguish speakers solely based on the structure of the Hid-
den Markov Model. To generate the final statistics, we use the
Viterbi algorithm [15] to obtain the most likely state sequence
using the trained model.

APPLICATION
We implemented the discussion inference method described
above in an Android application. The application requires
two microphones that can be programmatically accessed
which most modern phones provide. In order to obtain statis-
tics for a discussion, each participant needs to specify an alias
and an approximate direction so the states of the Markov
chain can be matched to the user aliases.

During any discussion, RTDS provides on-line feedback
about the current state of the discussion as shown in Figure
4a.

(a) Information shown by
RTDS during a conversation. The
circle shows the arrival angles
for each user in a different color.
The symmetry of these arrival
angles is caused by the fact,
that two microphones only allow
for unambiguous angle arrival
detection to either side of the
microphone axis. Below, the
transition probabilities between
all the speakers in the discussion
are shown. Wider arrows indicate
higher transition probabilities.

(b) An example for the final statis-
tics shown by RTDS. Included is
the speaking time for each partic-
ipant (Time) and the number of
distinct contributions (# Contr.).
In the lower part of the screen
the complete transition matrix be-
tween the users is shown (silent
and speaking states for each user
are fused). The bar at the top
displays who spoke during which
time period.

Figure 4: Two of the multiple (display) modes of RTDS.

Offline Feedback
In addition to the online feedback, RTDS provides detailed
statistics after each discussion, cf. Subfigure 4b. These in-
clude the total amount of time each participant spoke and how
many distinct contributions were made. Also the min, max
and average length of each contribution is listed for each par-
ticipant. The transition matrix shows how many contributions
from participant A were followed by a contribution of partic-
ipant B. This information can be useful for finding repeating
patterns in the way the participants interact.

Special Operation Modes
In addition to the passive feedback modes described above,
we can use the online statistical data to enforce constraints on
how participants may interact. In case a constraint is violated,
we can give visual or acoustic feedback. We included two
operating modes into RTDS that the user can choose from.
The first mode helps enforce even speaking times for all par-
ticipants. The second mode forces participants to take turns
when talking and limiting the talking time for each participant
and round. These modes for example can be used to defuse a
heated argument by disallowing repeated interruptions or by
reproving participants that are not allowing others to talk.
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Figure 5: The graph in this figure depicts how the silence
threshold (in max(c(τ))

sum(c(τ)) ) affects the classification accuracies
of both speaking and silent states.

PILOT EVALUATION
To evaluate the accuracy of our system, we recorded 6 sepa-
rate discussions with a total of 7 people. Each of the 6 dis-
cussions was annotated manually, this information was then
used as ground truth. In all 6 discussions, two (1), three (3),
or four (2) people were involved, and the phone was placed in
a way that allowed for unambiguous arrival angles for all par-
ticipants. Natural disturbances like coffee machines or other
background noise were present. Figure 5 shows the overall
classification results with respect to a varying silence thresh-
old. We consider direct transitions between speaking states of
two users a valuable metric that captures how one user might
disrupt another. Therefore, we consider confusing speakers
worse than confusing a speaking state with silence since the
latter does not affect direct transition probabilities between
speaking states. With a growing number of observations be-
ing classified as silence, more speaking states are confused
with silence. Most wrong speaking user classifications oc-
cur at a silence threshold of 0.8-0.9. For lower threshold,
the model matches the discussion better thereby causing less
errors. For higher thresholds, too many speaking states are
mistaken for silence, thereby reducing the share of speaker
misclassification. According to our results, a silence thresh-
old of 0.5 is ideal as it leads to error rates of 3% and erroneous
speaking user classification rates of only 2%.

All our experiments were carried out with up to four partic-
ipants. However, the number of speakers is not limited to
four. Figure 6 shows the observation probabilities in a dis-
cussion during which two speakers (2 and 3) sat very close to
each other and therefore caused similar time difference of ar-
rival measurements. Even though the measurements are only
2 samples apart on average (45µs), speakers are reliably de-
tected and misclassification rates are only 2%.

FUTURE WORK
For future versions of RTDS, we envision multiple extensions,
such as i) more in-depth statistics, ii) enhanced referee func-
tions, iii) usage of multiple smart phones, and iv) integrated
voice recognition to deal with moving participants. For an
early prototype version of RTDS, we experimented with voice
recognition to identify participants: While the recognition
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Figure 6: The observation probability distributions are
accurately estimated even if two users cause similar time
of arrival differences τ depicted on the x-axis. In this case,
speaker 1 and speaker 2 are only separated by a two sam-
ple delay between the microphone channels.

rates were in general still acceptable (mostly close to Angle-
of-Arrival), there were accuracy issues with recognizing very
similar voices, e.g., brothers.

CONCLUSION
In this paper we presented RTDS, a smart phone application
to generate participation & interaction statistics about conver-
sations. Our application works online and offline, displaying
useful statistics during the conversation and summarized in-
formation afterwards. Furthermore, RTDS can be used as an
active referee to enhance discussions by, e.g., allocating a fair
share of time to each participant. We did not use any special-
ized hardware and reach a high accuracy with an Angle-of-
Arrival measurement and a hidden Markov model.
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