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Abstract

In this work we study local checkability of network properties like s-t reachabil-
ity, or whether the network is acyclic or contains a cycle. A structural property
S of a graph G is locally checkable, if there is a prover-and-verifier pair (P,V) as
follows. The prover P assigns a label to each node in graphs satisfying S. The
verifier V is a constant time distributed algorithm that returns Yes at all nodes
if G satisfies S and was labeled by P, and No for at least one node if G does
not satisfy S, regardless of the node labels. The quality of (P,V) is measured
in terms of the label size.

Our model has no strings attached, i.e., we do not assume any identifiers or
port numbers: All we allow is a single exchange of labels between neighbors.

We obtain (asymptotically) tight bounds for the bit complexity of the lat-
ter two problems for undirected as well as directed networks, where in the
directed case we consider one-way and two-way communication, i.e., we dis-
tinguish whether communication is possible only in the edge direction or not.
For the one-way case we obtain a new asymptotically tight lower bound for the
bit complexity of s-t reachability, which also extends to distributed algorithms
with constant time execution. For the two-way case we devise an emulation
technique that allows us to transfer a previously known s-t reachability upper
bound without asymptotic loss in the bit complexity.

Lastly, we also study how to apply the concept of local checkability to up-
dating spanning trees in a loop free manner in the context of asynchronous
networking, by exploring the similarities between prover-and-verifier pairs and
Software Defined Networks (SDNs).
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1. Introduction

Network administrators must know whether the network is correct [45], e.g.
whether destination t is reachable from source s, or whether the forwarding rules
present in the network imply that packets may potentially be sent in a cycle.
Often such network properties are checked by constantly sending probe packets
into the network, or, alternatively, by sending the state of all nodes in the
network to a central location where all the data is then verified. Both methods
take time, often too much time. It would be advantageous to perform these
costly global operations only if needed – and otherwise rely on inexpensive local
verification [44]. Our paper studies local checkability of fundamental structural
properties for directed as well as undirected networks: Nodes of a network can
check whether a given global structural property of a network is guaranteed,
just by locally comparing their state with the state of their neighbors.

The concept of local checkability was popularized by Naor and Stockmeyer
in [41]. In our context, this concept refers to the nodes’ ability to decide (verify)
whether the network has the desired property by exchanging labels with their
neighbors. The nodes decide Yes if all nodes agree, and No if at least one
node disagrees. In practice the disagreement could subsequently be reported.
With deterministic algorithms only few properties can be checked locally. If
however nodes are allowed to use (a bounded amount of) nondeterminism, a rich
complexity hierarchy arises [29]. We focus on the fastest possible case where
nodes are only allowed to communicate a single round, cf. [35]. Furthermore,
our model has no strings attached, i.e., we do not assume any identifiers or port
numbers: All we allow is a single exchange of labels between neighbors.

To obtain a better understanding of nondeterminism in the context of dis-
tributed computing, let us quickly explain a toy example. Consider the set
Bipartite containing all bipartite graphs. In the sequential setting, Bipar-
tite would be called a language, and the Yes-instances (words) in Bipartite
are exactly the graphs that allow a bipartition of the nodes. As in the se-
quential setting, one may now ask: Is there a (nondeterministic) distributed
algorithm deciding whether a given graph G is in Bipartite, using only a sin-
gle communication round? Indeed, such an algorithm exists [29]. First each
node v nondeterministically chooses either the value 0 or 1 and sends it to all
neighbors. Next, v checks if all its neighbors sent the value not chosen by v.

The proposed nondeterministic algorithm indeed decides Bipartite. A bi-
partition of the graph corresponds to a nondeterministic choice of 0 and 1 for
every node v so that all neighbors of v choose the opposite value. Thus, when
the graph G is bipartite, the nodes nondeterministically decide Yes. On the
other hand, if G is not bipartite, then in all possible nondeterministic choices
of the nodes, at least two nodes will have a neighbor that chose the same value.
In that case, the nodes decide No.

Every nondeterministic distributed algorithm can be expressed as a deter-
ministic algorithm with access to a proof labeling [29], where the proof labeling
corresponds to an oracle in the sequential setting. More precisely, a nondeter-
ministic algorithm is a pair (P,V), referred to as prover-verifier pair (PVP).
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Decision Problem Directed one-way Directed two-way Undirected
s-t reachability Θ(log n) O(log ∆) 1 [29] Section 3

Contains a Cycle not possible Θ(log n) 2 Section 2.1
Acyclic Θ(log n) Θ(log n) same as Tree Section 2.2

Tree Θ(log n) [35] Θ(log n) Θ(log n) [35] Section 2.3

Table 1: The proof label size (in bits) necessary and sufficient for a PVP with respect to
different graph decision problems and communication primitives. Here n denotes the number
of nodes in the network G, and ∆ is the maximum degree of any node in G. For s-t reachability,
the O(log ∆) one-way upper bound with port numbers [29] translates to our two-way model,
see Section 3. For Trees, the O(log n) upper bound for directed one-way communication from
[35] also applies in the two-way model.

The task of the prover P is to assign labels to nodes (the proof ) in a Yes-
instance. The verifier V gets as input at node v only the labels of v and its
neighbors. Now V has to decide Yes (at all nodes) in Yes-instances labeled by
P; In No-instances V has to decide No (for at least one node) regardless of the
node labels.

The complexity of such nondeterministic algorithms is measured in terms
of the maximum proof label size used by P. This corresponds to the number
of nondeterministic choices made throughout the execution. In our Bipartite
example each node only needs a single bit1 as its label.

There are two ways to view communication in directed graphs: Nodes can
communicate only in the direction of the edge (directed one-way communica-
tion), or the edge direction imposes no restrictions for communication but only
for the network property itself (directed two-way communication). We inves-
tigate both cases, as well as the undirected case, where nodes communicate
with all their neighbors. One of our findings is that all three models are fun-
damentally different, not only in terms of proof label size, but also in terms
of decidability. The results for each of our three network structure detection
problems are summarized in Table 1.

Another result of our work is the first non-trivial asymptotically tight lower
bound for the directed s-t reachability [2] problem that does not rely on descrip-
tive complexity methods. In that problem, two nodes s and t are guaranteed
by the problem setting, and the question is whether there is a directed path
from s to t. Note that both the directed and the undirected variant are well
understood in terms of descriptive complexity, and the directed variant is known
to be more difficult [2, 10]. While the observations from [10] lead to a proof
label size of 1-bit for the undirected variant, showing a non-trivial lower bound
for the directed case remained an open question. Our bounds can be extended
to distributed algorithms beyond the restriction to a single round of communi-
cation: We show in Section 4 that when allowing k rounds of communication,
with k being any constant, the bounds on the label size remain at Θ(log n).

1Note that a standard covering argument (the 6-cycle is bipartite, while the 3-cycle is not)
can be used to show that one nondeterministic choice is also necessary.
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In light of our tight Θ(log n) bound for the s-t reachability problem with
directed one-way communication we revisit the O(log ∆) bound from [29]. In
particular, their upper bound relies on the fact that the underlying commu-
nication mechanism discloses port numbers to the verifier. As we will detail
in Section 3, this is not necessary: When directed two-way communication is
available, the label can be extended to include checkable port numbers using
only O(log ∆) additional bits. Since referring to a single port number requires
log ∆ bits anyway, this does not change the asymptotic label size.

Lastly, in Section 5, we extend a line of work started by Schmid and Suomela
in [44]: As it turns out, networks managed by a central controller, also known as
Software Defined Networks (SDNs), show a strong similarity to prover-verifier
pairs. The controller can take on the role of the prover, and the switches in
the network itself the role of the verifiers. We show how the concept of local
checkability can be used for graceful network reconfigurations with the example
of migrating in a loop2 free manner between forwarding rules.

1.1. Related Work and Background on Local Checkability
More than 20 years ago, Naor and Stockmeyer [41] raised the question of

“What can be computed locally?” In their work, the notion of Locally Checkable
Labelings (LCL) is investigated, where labels are checked in a local fashion, i.e.,
in a constant number of communication rounds.

This line of research is being followed in many directions, with the concepts
of Proof Labeling Schemes (PLS), Nondeterministic Local Decisions (NLD), and
Locally Checkable Proofs (LCP) being most related to our work. We note that all
three approaches are strictly stronger than the model discussed in this paper (by
adding either identities, port numbers, or more potent communication models).

The term Locally Checkable Proofs was coined by Göös and Suomela [29]
as an extension to Locally Checkable Labelings, where LCP(f) allows for f(n)
bits of additional information per node. They study decision problems from
the viewpoint of nondeterministic distributed local algorithms: Is there a proof
of size f(n) such that all nodes will output Yes for Yes-instances, with any
(invalid) proof for a No-instance being rejected by at least one node? The au-
thors introduce a complexity hierarchy for various problems, with LCP(0) being
equivalent to LCL. For most of the results in [29], unique identifiers are assumed
for each node, or at least port numbers – which can be used for verification pur-
poses. Thus, their algorithms may use additional strings of information free of
cost, which might not be relevant asymptotically for large proof sizes, but come
into play for small labels: E.g., in the case of directed s-t reachability, they show
that O(log ∆) bits suffice by “pointing” at the successor node in the s-t path, a
technique relying on port numbers.

The Proof Labeling Schemes of Korman et al. [34, 35] differ from LCPs in
the sense that they only use one round of communication to transfer the labels.

2In the context of SDNs, the term loops for cycles is prevalent, which is why we will use
the notion of loops when talking about cycles in the forwarding rules of SDNs.
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Thus, upper bounds from PLS apply to LCP and lower bounds from LCP apply
to PLS, as the LCP model is strictly more powerful than the PLS model. In [35],
the authors also investigate the role of unique identities in PLS and show that
there are cases where (given) unique identities are necessary, but also examples
where the transition to identities is possible. Another difference between LCP
and PLS is that in PLS, the identities of the neighboring nodes of a node v
are not available to the verifier at v. Nonetheless, they assume the nodes to be
aware of the port numbers of their edges.

Closely related to our work, they study (among other problems) the question
of whether a connected subgraph is a tree and give asymptotically matching
upper and lower bounds of Θ(log n) bits for directed one-way communication
and the undirected case. Their proofs and techniques for trees carry over to the
model considered in this paper and are thus referenced in Table 1. For spanning
tree verification (also without the notion of labels, cf. [43]), the construction
in [35] is also used in the context of Software Defined Networks (SDNs) [44]:
Inconsistencies of a spanning tree for routing can be detected locally, triggering
a (costly) global recomputation only if needed.

Nondeterministic Local Decisions [26] considers distributed nondeterminism
for decision problems. Like LCP and unlike PLS, they allow more than one
communication round. However, the proofs are not allowed to depend on the
identifier of a node (see [23, 24] for the impact of (missing) identifiers on lo-
cal decisions). Like in our case the nodes are anonymous to the prover, but
unlike in our case they are not anonymous to the verifier. In some sense, as
described by [29], the class NLD for connected graphs can be understood as
LCL ( NLD ( LCP(∞). Unlike LCP and PLS above, Fraigniaud et al. [26]
also study the impact of randomization. Among many other results, they reveal
surprising connections between randomization and oracles related to nondeter-
ministic computing: As it turns out, an oracle providing the nodes with the size
of the graph gives “roughly [. . . ] the same power to nondeterministic distributed
computing as randomization does” [26]. Additional recent results concerning the
power of randomization for local distributed computing can be found in [9, 22].
A generalization of identifiers, so-called scalar oracles, were studied in [25].

Furthermore, there exists a strong connection between proof labeling schemes
and self-stabilization (we refer to [16] for an overview of the topic): As char-
acterized by Blin et al. [11], “any mechanism insuring silent self-stabilization
is essentially equivalent to a proof-labeling scheme”. Even more so, the proof
size nearly corresponds to the number of registers for self-stabilization [11]. As
such, there has been a long line of research connecting local checking with self-
stabilization [1, 6, 7, 8].

We ask the question of how a global prover can convince a distributed verifier
that it fulfills a certain property. One may also ask the converse question, i.e.,
how a distributed prover could convince a centralized verifier that knows only
node labels, but not the graph structure. This inverted setting is studied in the
works of Arfaoui et al. for trees [5] and cycle-freeness [4].

1.2. Preliminaries
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Graphs and Node Labels. We model the network as a graph G = (V (G), E(G)),
where V (G) and E(G) denote the set of vertices and edges, respectively, and
when G is clear from the context, we write V = V (G) and E = E(G). Similarly,
we write n = n(G) = |V (G)| for the number of nodes in G. The graph G
may be either directed or undirected, but we always assume G to be (weakly3)
connected. For a node v ∈ V , we denote by degin(v) and degout(v) the number of
incoming and outgoing edges of v in G, respectively. We set deg(v) = degin(v) =
degout(v) if G is undirected, and deg(v) = degin(v) + degout(v) if G is directed.
By ∆(G) = maxu∈V deg(u) (or simply ∆) we denote the maximum degree in
G.

For two nodes u, v ∈ V , let dist(u, v) denote the distance between both nodes
in G (regarding the distance function in the underlying undirected graph in the
directed case). A (node) labeling for G is a function ` : V → {0, 1}∗ that assigns
a finite label (i.e., a bit-string) to every node in V .

Communication Means. Let G be a graph, let ` be a node labeling for G, and let
v be a node in G. We now consider three means of communication in G, namely
U , D1, and D2, corresponding to undirected, one-way, and two-way communica-
tion, respectively. If G is undirected, then U(v) is the multiset [`(u1), . . . , `(uk)]
containing deg(v) labels, where u1, . . . , uk are the neighbors of v. If G is directed,
then we distinguish two cases. For directed one-way communication, D1(v) is
the multiset [`(u1), . . . , `(uk)] containing degin(v) labels, where u1, . . . , uk are
the in-neighbors of v. For directed two-way communication, D2(v) is a pair
(I, O), where I is D1(v) and O is the multiset containing degout(v) many labels
of v’s out-neighbors. I.e., the sets U(v), D1(v), and D2(v) are the messages re-
ceived by v when the corresponding communication method is used. We denote
the empty multiset by [ ].

Observe that all multisets above are unordered, i.e., there are no unique
identifiers and there is no notion of port labels on the edges. If such an order is
necessary (for some verifier), then the means to order the multiset need to be
included in the proof labels, since the communication mechanism itself does not
attach any strings to the messages. In the directed two-way case, however, there
is a clear distinction between messages transferred along the edge direction or
opposite to it. Note that this distinction is necessary: If it was not made, the
directed two-way mode would essentially be equivalent to the undirected case,
since the edge direction becomes indistinguishable.

Local Checkability. An (un)directed network property is specified by a set Y of
(un)directed graphs containing the Yes-instances, and any (un)directed graph
G 6∈ Y is referred to as a No-instance. A prover-verifier pair (P,V) for Y (PVP
for short) works as follows.

The prover P gets as an input a graph G ∈ Y and computes a (finite) node
label `(v) for every v ∈ V . This labeling ` obtained from P is referred to as

3A directed graph is called weakly connected if the underlying undirected graph is con-
nected.
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proof. Let G be any graph, and let ` be any node labeling for G. The verifier V
is a distributed algorithm that gets as an input at node v the label `(v); and in
addition either U(v) if Y is an undirected property, or D1(v) respectively D2(v)
depending on the communication means if Y is a directed property.

A PVP (P,V) is correct for Y if it satisfies
(1) if G ∈ Y and ` was obtained from P, then V returns Yes at all nodes;

and
(2) if G 6∈ Y , then V returns No for at least one node, regardless of the node

labels.
Whenever necessary, we specify the PVP by the communication means used for
the verifier, and write U -PVP, D1-PVP, and D2-PVP correspondingly. When
X ∈ {U, D1, D2} is some means of communication, then a network property Y
is X-locally checkable if there is a correct X-PVP for Y .

The quality of a PVP is measured in terms of the maximum label size in
bits assigned by the prover. For a PVP (P,V), the proof size of (P,V) is f(n) if
the labels assigned by P use at most f(n) bits in any Yes-instance containing
at most n nodes. For a network property Y , the X-proof size for Y is the
smallest proof size for which there exists a correct X-PVP for Y . Since the
communication means are clear for undirected properties, we omit them in that
case. Throughout this paper, all logarithms use base 2 and are rounded up to
be of integer value.

2. Checking Network Properties

2.1. Cycles
Let U-Cycle denote the set of all undirected connected graphs containing

at least one cycle. Let correspondingly D-Cycle denote the set of all weakly
connected directed graphs containing at least one directed cycle. Note that an
undirected graph is in U-Cycle exactly if it is not an undirected tree, while
a directed graph G is in D-Cycle exactly if G is not a directed acyclic graph
(DAG). In the remainder of this section we establish the following:

Theorem 1. For the cycle detection problem, it holds that
(i) There is no D1-PVP for D-Cycle.

(ii) The D2-proof size for D-Cycle is Θ(log n) bits.
(iii) The U -proof size for U-Cycle is 2 bits.

We prove each claim listed in Theorem 1 separately, starting with the di-
rected cases. As the first step we show that there cannot be a D1-PVP for
D-Cycle.

Lemma 2. There is no D1-PVP for D-Cycle.

Proof. Assume, for the sake of contradiction, that there exists a correct D1-PVP
(P,V) for D-Cycle. Our goal is to construct a No-instance H and node labels
`′ for the nodes in H so that V returns Yes at all nodes. To that end, consider
the Yes-instance G (depicted in Figure 1) consisting of a cycle with two nodes
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c1, c2, and two additional nodes a, b, where a has the two outgoing edges (a, c1)
and (a, b). Let ` denote the node labeling assigned to G by P, and denote by A
and B the values `(a) and `(b), respectively.

G:
c2 c1

A
a

B
b

H: B
b′

A
a

B
b

Figure 1: Yes-instance G and No-instance H of D-Cycle. A and B are the labels assigned
to the nodes a and b in G by the prover P, the node labels in the cycle are not shown.
The construction of H yields that for each u in H there is a v in G with (`′(u), D1(u)) =
(`(v), D1(v)).

Our No-instance H, as shown in Figure 1, consists of the three nodes a, b,
and b′, and the two edges (a, b) and (a, b′). Note that indeed, H does not
contain a cycle. By assigning the labels `′(a) = A and `′(b) = `′(b′) = B, we
obtain that for all nodes u in H there is a corresponding node v in G for which
(`′(u), D1(u)) = (`(v), D1(v)). The verifier V can therefore not differentiate
between u and v and thus returns Yes for all nodes in H. This contradicts the
assumption that (P,V) is correct for D-Cycle.

Lemma 3. There is a D2-PVP for D-Cycle with a proof size of log n bits.

Proof. We describe a D2-prover-verifier pair (P,V) for D-Cycle as required.
Let G = (V, E) ∈ D-Cycle and let C ⊆ V be the set of all nodes that are in a
directed cycle. The prover P labels all nodes v ∈ V as follows. First, all nodes
vc ∈ C are labeled with `(vc) = 0. All other nodes v ∈ V are labeled regarding
their distance to the closest cycle: The prover P sets `(v) = distC(v), where
distC(v) = minvc∈C dist(vc, v). We refer to Figure 2 for an example. As the
distance is bounded from above by n, the maximum label size is log n bits.

1 0 0

00

00

0 12

34 23

1 21

Figure 2: A Yes-instance of D-Cycle labeled for two-way communication. All nodes on cycles
have the label 0, and all other nodes are labeled with the minimum distance to the nearest
cycle using the distance function in the underlying undirected graph.

The verifier V returns Yes for nodes vc with `(vc) = 0 if for the received
pair (I, O) of labels holds: There is a label of 0 in I and a label of 0 in O.
For the other nodes v ∈ V , Yes is returned by V if a) there is an edge (u, v)
or (v, u) such that `(v) = `(u) + 1 and b) no edge (u′, v) or (v, u′) such that
`(v) > `(u′) + 1. In all other cases, V returns No.
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We now show that V returns Yes for all nodes v in Yes-instances that
were labeled by the prover P: The prover P labeled only (and all the) nodes
on a directed cycle with a 0, i.e., if `(v) = 0, then V returns Yes for v. The
remaining case is `(v) = j > 0. If `(v) = j, then distC(v) = j, i.e., there exists
a node u ∈ V such that distC(v) = distC(u) + 1 and no node u′ ∈ V such that
distC(v) > distC(u′)+1, as by the definition of P. Thus, V returns Yes as well.

For the D2-PVP (P,V) to be correct, it is left to show that V returns No
for at least one node if the considered graph is not in D-Cycle. Analogously
to the undirected case, let Gno be a weakly connected directed graph containing
no directed cycle.

For contradiction, assume there would be a node v ∈ V (Gno) with `(v) = 0.
Then there has to be a node v1 with `(v)1 = 0 such that there exists an edge
(v, v1), else V would return No. This concept of “following the zero” can be
iterated, but as the graph is finite (and does not contain a directed cycle), there
will be a node vj for which no node vj+1 with `(vj+1) = 0 exists such that there
is an edge (vj , vj+1). Hence, V would return No and therefore no node can be
labeled with 0 in Gno.

An idea similar to following the zero can now be applied again: W.l.o.g., let
v be a node with the label k. There has to be an edge (v, v1) with `(v1) = k−1,
else V would return No for v. Again, as the graph is finite and contains no
cycle, following the outgoing edge to a decreasing label is no longer possible at
some point. Thus V will return No for any weakly connected directed graph
not containing a cycle, meaning that the D2-PVP (P,V) is correct.

Lemma 4. The D2-PVP proof size for D-Cycle is at least log
(

n−5
2
)

/2 bits.

We establish Lemma 4 by showing that any D2-PVP (P,V) with a smaller
proof size can be fooled. To that end, we apply P to a Yes-instance G. We
then use the labels applied by P to construct a No-instance H for which V must
return Yes.

Our construction relies on a graph G, obtained from an undirected path by
alternating the edge directions, and creating a cycle with the last two nodes (see
Figure 3 for an illustration).

If the proof size is at most log
(

n−5
2
)

/2− 1 bits, then less than
√

n− 5/2
√

2
different labels are available. Thus, in G a pair of adjacent labels A, B on the
path will appear twice. Moreover, the nodes labeled A have only outgoing edges,
and conversely, the nodes labeled B have only incoming edges. We obtain the
acyclic No-instance H by copying the pairs of nodes, and connecting them as
depicted in Figure 3. This construction ensures that for all nodes u in H, there
is a corresponding node v in G with (`(u), D2(u)) = (`(v), D2(v)). Therefore,
the verifier V returns Yes for all nodes in H.

Proof. Assume, for the sake of contradiction, there exists a D2-PVP (P,V) for
D-Cycle using log

(
n−5

2
)

/2 − 1 bits. Let G be the path v1, . . . , vn−2 with
n − 2 nodes and alternating edge directions, connected at vn−2 to the cycle
vn, vn−1 (which consists of just two nodes). The graph G is a Yes-instance of
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G: . . . A B . . . A B . . .
v1 vi−1 vi vi+1 vi+2 vj−1 vj vj+1 vj+2 vn−2 vn−1 vn

H: A B . . . A B . . .
ui ui+1 ui+2 uj−1 uj uj+1 u′i+2 u′j−1

Figure 3: Yes-instance G (with odd n) and No-instance H of D-Cycle. G consists of the n
nodes v1, . . . , vn. For even k, node vk has two incoming edges from vk−1 and vk+1, whereas all
vk with odd k have two outgoing edges to vk−1 and vk+1, i.e., the edge directions alternate.
The prover P assigned the labels `(vi) = `(vj) = A and `(vi+1) = `(vj+1) = B to the
corresponding nodes in G. In H, the nodes ui+2, . . . , uj−1 are copies of vi, . . . , vj+1 from
G, and the nodes u′i+2, . . . , u′j−1 are obtained by copying (again) the nodes vi+2, . . . , vj−1.
Note that H does not contain a cycle, but due to our construction each u ∈ V (H) has a
corresponding node v ∈ V (G) with (`(u), D2(u)) = (`(v), D2(v)).

the problem, and thus the verifier V has to return Yes for every node if the
graph G was labeled by the prover P.

We will now construct a No-instance H (based on G and P) such that for
each vH ∈ V (H) there is a vG ∈ V (G) with (`(vH), D2(vH)) = (`(vG), D2(vG)),
i.e., the verifier will output Yes for every node in H.

First, we will prove that (due to the construction of G) there are i 6= j,
with 2 ≤ i, j ≤ n − 3, such that a) `(vi) = `(vj), b) `(vi+1) = `(vj+1), and c)
dist(vi, vj) = 2k, k ∈ N: There are at least bn−5

2 c pairs (i, i+1) with 2 ≤ i ≤ n−3
for each direction of the edge vi, vi+1. Labeling each pair differently requires
at least

√
(n− 5)/2 different labels, i.e., at least 1

2 log( n−5
2 ) bits. Hence (using

the pigeonhole principle), the claim holds.
The No-instance H can now be constructed as follows: Let P be the (possi-

bly empty) sub-path vi+2, . . . , vj−1 in G. We construct the cycle like structure
H using two copies of P to connect copies of the pairs vi, vi+1 and vj , vj+1, see
Figure 3. We obtain the graph H with the nodes ui, . . . , uj+1, u′i+2, . . . , u′j−1,
where the underlying undirected graph forms a ring.

It is left to show that we can assign labels to nodes in H such that V returns
Yes for all nodes in H. We assign the labels to the nodes in H by setting
`(ux) = `(vx) for all x and `(u′x) = `(vx) for all x. It holds for each node vH ∈ H
that there is a node vG in G such that D2(vH) = D2(vG) and `(vh) = `(vG).
Thus, as V returns Yes for all nodes in G, V must return Yes for all nodes in
H, which contradicts that (P,V) is correct.

The claims (i) and (ii) of Theorem 1 for directed graphs are now established
by Lemmas 2 to 4. The next two lemmas cover the undirected case (iii).

Lemma 5. There is a U -PVP for U-Cycle with a proof size of 2 bits.

The upper bound for the optimal proof size is established by providing a U -
PVP (P,V) with the desired proof label size. The idea is similar to the directed
case, but this time the prover P labels all cycles with a 3 instead of a 0. Since
removing all cycles from G leaves a forest of undirected trees (instead of the
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collection of DAGs in the directed case), one can save quite a few bits in the
labels for the remaining nodes. For each tree, P picks a root node r that was
originally adjacent to a cycle. In each tree, all nodes are labeled with their
distance to r modulo 3. An example of a graph G labeled by P is depicted in
Figure 4.

0 1 3 3

33

33

3

33

3 1

201

2

0

0 10

22 2

Figure 4: A labeled Yes-instance of U-Cycle. Nodes in cycles are labeled 3. The remaining
nodes form a forest. After picking a root node adjacent to a cycle for each tree in the forest,
all nodes in a tree are labeled with their distance (modulo 3) to the corresponding root.

The correctness of the PVP is established in a similar manner as in the
directed case: The verifier V can then check if each node supposedly on a cycle
(label 3) has at least two neighbors in a cycle, and if every other node (label
6= 3) has exactly one node “closer” to the root node of its tree. If G is acyclic,
then there can be no node with label 3, as all nodes with a label of 3 would form
a forest with at least one leaf. Assume for the sake of contradiction that the
verifier returns Yes for all nodes, and consider any node in some acyclic graph
G. The path obtained by following the labels in descending order (modulo 3),
i.e., going towards the root, must have infinite length, since there is no node
adjacent to a cycle to break the succession.

Proof. We describe a U -prover-verifier pair (P,V) as required. Let G = (V, E) ∈
U-Cycle. The prover P labels all nodes v ∈ V as follows: If v is part of a cycle,
then `(v) = 3. By removing all nodes (and incident edges) that belong to a cycle,
the graph decomposes into a set of Trees T . Each tree T ∈ T is labeled by
first picking a node r ∈ T that was originally adjacent to a cycle and setting
`(r) = 0. Then, for each other node t ∈ T let distT (r, t) be the distance from r
to t in T and set `(t) = distT (r, t) mod 3. An example for the labeling can be
found in Figure 4. As only the labels {0, 1, 2, 3} are used, 2 bits suffice.

The verifier V returns Yes for nodes v with a) at least two neighbors have
a label of 3 if `(v) = 3 or b) if `(v) = j, j ∈ {0, 1, 2}, then the following three
conditions must be fulfilled: i) There is no neighbor with a label of j, ii) There
is exactly one neighbor with a label of j−1 if j ∈ {1, 2} or at most one neighbor
with a label of 2 if j = 0 , and iii) all other neighbors must have a label of
exactly j + 1 mod 3 or 3. In all other cases, V returns No. If a node v is part
of an undirected cycle (hence, `(v) = 3), then it has at least two neighbors in
the cycle with the label 3, meaning that V returns Yes for v. Else, consider the
tree T ∈ T from above with v ∈ T with the corresponding “root” node r picked

11



by the prover. If v = r, then all neighbors in T have the label 1 and all other
neighbors (of whom at least one exists) are on cycles with a label of 3. Thus,
V outputs Yes for v = r. If v ∈ T and v 6= r, then all neighbors v′ of v in T
are labeled according to `(v′) = distT (r, v′) mod 3. All other neighbors (if any
exist) of v in G must be on cycles with a label of 3. Hence, V returns also Yes
in this case.

For the U -prover-verifier pair (P,V) to be correct, it is left to show that V
returns No for at least one node if the considered graph is not in U-Cycle.
Let Gno be a connected undirected graph containing no cycle.

Assume there would be a node v ∈ V (Gno) with `(v) = 3. Consider all nodes
with a label of 3 in V (Gno): As there is no cycle, the subgraph(s) induced by
these nodes form a forest F . Let T ∈ F be the tree with v ∈ T . Pick a leaf
of T : It has at most one neighbor with a label of 3, meaning that V will return
No for at least one node.

Thus, no node v with `(v) = 3 can exist. Now, pick any node v ∈ V (Gno

with `(v) ∈ {0, 1, 2}. Node v (and also any other node in V (Gno)) must have
exactly one neighbor v1 with a label of `(v1) = `(v)− 1 mod 3, as else V would
return No for v. Consider the path starting from v that picks as its next node
the unique neighbor with a label smaller by one modulo 3, i.e., v, v1, . . . - until
no such node exists any more. Since Gno is cycle-free, the path must be finite
and end at some node vj . As vj has no neighbor with a label of 3 or a label of
`(vj) − 1 mod 3, the verifier V returns No for vj . Thus V will return No for
any connected graph not containing a cycle, meaning that the U -PVP (P,V) is
correct.

Lemma 6. The U -PVP proof size for U-Cycle is at least 2 bits.

Proof. The proof is by case distinction. Assume there exists a U -PVP (P,V)
for U-Cycle using 1 bit. We use a Yes-instance G = (V (G), E(G)) of U-
Cycle consisting of a cycle with three nodes with a path P of three nodes
attached to it. We will show that for any labeling ` assigned to the nodes on
the path P , for which V returns Yes for all nodes in G, there exists a No-
instance H = (V (H), E(H)) of U-Cycle for which V must also return Yes for
all nodes in H. W.l.o.g. consider the four cases in Figure 5.

These four cases combined with their analogous inversions, where all labels
are switched on the path P , present all combinations of how labels can be
assigned to the nodes on the path P . For every Yes-instance G there exists
a No-instance H such that for each vH ∈ V (H) there is a vG ∈ V (G) with
(`(vH), U(vH)) = (`(vG), U(vG)). Since V can not differentiate between vH and
VG, it must also return Yes for all nodes in the corresponding No-instance,
which contradicts that (P,V) is correct. It follows that there is no correct proof
labeling scheme (P,V) using only 1 bit.

We note that one could deviate from the notion of studying the label size in
bits, by studying how many different labels are sufficient and necessary. E.g.,
for U-Cycle, we showed that 1 bit does not suffice, but 2 bits are sufficient,
raising the question of studying three different labels, using ≈ 1.58 . . . bits at
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G1: 0 0 0 H1: 0 0

G2: 0 1 0 H2: 0 1 0

G3: 1 1 0 H3: 0 1 1 0

G4: 1 0 0 H4: 0 0

Figure 5: Yes-instances G1, G2, G3, G4 and No-instances H1, H2, H3, H4 of U-Cycle. For
any labeling assigned to the Yes-instances, there exists a No-instance for which V must
return Yes for all nodes. In these graphs, the labels for the nodes in the cycle can be chosen
arbitrarily. The numbers in the remaining nodes are their labels. All labels in this figure can
be inverted to get the remaining 4 possible combinations for a labeling.

every node. However, the lower bound idea from the proof of Lemma 6 does
not extend to three labels, and neither does the method from the 2-bit PVP
for U-Cycle. We believe that intricate techniques beyond those used in this
article will be needed to settle the question of three labels for U-Cycle.

2.2. Acyclicity
In the undirected case, an acyclic graph is nothing but an undirected tree.

The question of detecting undirected trees was already answered in [35] (see
Section 2.3). In the directed case, however, not every acyclic graph is necessarily
a tree. Let D-Acyclic denote the set of all weakly connected directed acyclic
graphs. In the remainder of this section we establish the following:

Theorem 7. For the acyclicity detection problem, it holds that
(i) The D1-proof size for D-Acyclic is Θ(log n) bits.

(ii) The D2-proof size for D-Acyclic is Θ(log n) bits.

While not every directed acyclic graph is a directed tree, the converse holds,
i.e., every directed tree is a directed acyclic graph. Techniques similar to those
used by Korman et al. [35] can be used to obtain the claimed lower bound for
tree detection in our model. Hence, we only need to establish the upper bounds
in Theorem 7. Note that any D1-PVP immediately yields a D2-PVP with the
same proof size by simply ignoring the information obtained via outgoing edges.
It is therefore sufficient to find a D1-PVP with the desired proof size.

Lemma 8. There is a D1-PVP for D-Acyclic with a proof size of log n bits.

In the proof, the prover assigns each node with no incoming labels the label
0, and each other node the highest incoming label plus one. We refer to Figure
6 for illustration.

Thus, each node with label j > 0 can check if there is an incoming label
j−1, or when j = 0, if the multiset of incoming labels is the empty set. As each
No-instance contains a cycle, a node with the highest label in the cycle would
send its label to another node, causing this node to output No.
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Figure 6: A labeled Yes-instance of D-Acyclic. Nodes without incoming edges are labeled
0, all other nodes have a label that is equal to the highest incoming label plus 1.

Proof. We describe a D1-prover-verifier pair (P,V) as required. Let G =
(V, E) ∈ D-Acyclic and let V0 ⊆ V be the set of all nodes v0 ∈ V with
D1(v) = [ ], i.e., v0 has zero incoming edges. The prover P labels all nodes
v ∈ V as follows. a) All nodes v0 ∈ V0 have the label `(v0) = 0, and b) for all
other nodes v+ ∈ V holds: `(v+) = 1 + max(u,v+)∈E `(u). We refer to Figure 6
for an example. As a label i requires a label i − 1 to exist, the highest label is
bounded from above by n, inducing a maximum label size of log n bits.

The verifier V returns Yes for nodes v with a) D1(v) = [ ] if `(v) = 0 or
b) `(v) = 1 + max(u,v)∈E `(u) if D1(v) 6= [ ]. In all other cases, V returns No.
Thus, the verifier returns Yes for all nodes in V if G was labeled by P, as all
incoming labels are available to the verifier.

For the D1-prover-verifier pair (P,V) to be correct, it is left to show that V
returns No for at least one node if the considered graph is not in D-Acyclic.
Let Gc be a weakly connected directed graph containing a directed cycle C =
v1, v2, . . . , v|C|, v1. W.l.o.g., let vi ∈ C be a node with the highest labeling in
C. Consider the outgoing edge from vi in C: The corresponding neighbor of vi

in C cannot have a higher label than vi. Thus V will return No, meaning that
the D1-PVP (P,V) is correct.

2.3. Trees
Let U-Tree denote the set of all undirected trees. Let correspondingly D-

Tree denote the set of all weakly connected directed trees in which all edges
are directed away from some unique root node.

Theorem 9 ([35]). For the tree detection problem, it holds that
(i) The proof size for U-Tree is Θ(log n) bits.

(ii) The D1-proof size for D-Tree is Θ(log n) bits.
(iii) The D2-proof size for D-Tree is Θ(log n) bits.

While the authors of [35] assumed port numbers to be available, the PLS
used in the upper bound construction do not make use of them. Therefore,
the upper bound claims (i) and (ii) carry over to our model. Since their port
numbering model is strictly stronger than ours, the same is true for the lower
bounds. Naturally, upper bounds for D1-proof sizes carry over to the D2-case,
so the only thing that is left is to show that there exists no D2-PVP with a
proof size of o(log n) bits. Since the counter example construction to establish
this claim are very similar to the construction used in [35], we omit the details
here.

14



3. Port Numbers vs. s-t Reachability

As pointed out by Göös and Suomela in [29], “To ask meaningful questions
about connectivity [...] we have the promise that there is exactly one node with
label s and exactly one node with label t.” In this section, we thus assume that
all graphs have at least two nodes, of which one node has the unique label s and
another node has the unique label t. It is known that in the undirected case,
the U -proof size for s-t reachability is 1 bit, see Section 1. In the directed case,
on which we focus, a non-trivial lower bound remained an open question [29].
For that, let s-t reachability denote the set of all directed graphs containing
a directed path from s to t.

We show a lower bound for s-t reachability with one-way communication
by combining our previously used techniques. The upper bound for the two-way
case requires a new insight: As it turns out, port numbers can be emulated in
our model by implementing a 2-hop coloring with only O(log ∆) bits4. Then,
whenever a port number is required for some proof, we only need to pay at most
O(log ∆) bits. While this seems like a high price to pay, we note that referring
to a specific port number requires O(log ∆) bits even if the port numbering itself
is provided for free. We will later see how this applies in the case of two-way
s-t reachability (cf. [29]). In the remainder of this section we establish the
following theorem:

Theorem 10. For the s-t reachability problem, it holds that
(i) The D1-proof size for s-t reachability is Θ(log n) bits.

(ii) The D2-proof size for s-t reachability is at most O(log ∆) bits.

To see that s-t reachability permits a D1-PVP with a proof size of
O(log n), observe that the nodes on the path can simply be enumerated, cf.
Figure 7.

200

1s

4

3

t

0 00

0

Figure 7: A labeled Yes-instance of s-t reachability. All nodes v in G on the shortest s-t
path P of length 5 are labeled `(v) = dist(s, v). All other nodes are labeled 0.

Each node on the path can now check whether it has a predecessor on the
path, i.e., every Yes-instance is verified correctly. To see that No-instances will
be rejected, one can follow a similar line of arguments as in Lemma 8: Every
path obtained by following descending incoming labels, starting from t, must

4For more applications of 2-hop colorings in anonymous networks we refer to the recent
article of Emek et al. [17].
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end in a node without a predecessor, since the graph is finite and s and t are
not connected.

Lemma 11. There is D1-PVP for s-t reachability with a proof size of
O(log n) bits.

Proof. We describe a D1-prover-verifier pair (P,V) as required. Let the directed
graph G = (V, E) ∈ s-t reachability and let P = s, v1, . . . , vj , t be a shortest
directed path from s to t. The prover P labels all nodes v /∈ P with `(v) = 0
and each node vi ∈ P = s, v1, . . . , vj , t with `(vi) = i, i.e., `(vi) = dist(s, vi) by
definition of P . We refer to Figure 7 for illustration. As dist(s, t) ≤ n, `(s) = s,
and `(t) = t, the proof size is in O(log n) bits.

The verifier V returns Yes for all nodes v with a label of 0 and for the node
s with unique label `(s) = s. For the node t with the unique label `(t) = t,
Yes is returned if a) the label s is received, or b) if a label greater than zero is
received. V returns Yes for all other nodes v with label `(v) = i > 1, if one of
the received labels is i− 1. For the special case of `(v) = 1, one of the received
labels has to be s.

Thus, the verifier will return Yes at all nodes for Yes-instances labeled by
P: The nodes v with `(v) = 0 and s return Yes. Furthermore, as each other
node is on the path P = s, v1, . . . , vj , t with `(vi) = i, they have a predecessor
on the path with the desired label, and hence return Yes as well.

It is left to show that V returns No for at least one node if the graph G is
not in s-t reachability. Let H be a No-instance of s-t reachability, i.e.,
there is no directed path from s to t. Consider the set Z of nodes that can be
reached from t by traversing directed edges in the reverse direction to a node
with a label lower by exactly one, or in the case of t, with any label greater than
zero. Note that by definition of H, there is no node v′ ∈ Z such that there is
an edge (s, v′) ∈ H(E). Let v∗ be a node with the lowest label `(v∗) = x in Z:
As v∗ cannot receive a label x− 1 or the label s, v∗ will return No. Hence, the
described D1-PVP (P,V) is correct.

Lemma 12. The D1-PVP proof size for s-t reachability is at least log
(

n
4
)
−2

bits.

Proof. Assume, for the sake of contradiction, that there is a D1-PVP (P,V) for
s-t reachability with a proof size of log(n/4)− 3 bits. Let n be odd and let
G be the directed path P = v1, . . . , vn where v1 = s, and vn = t. We add to G
directed edges so that all nodes vk with n > k > dn/2e have an outgoing edge
to vk−dn/2e+1, as depicted in Figure 8.

We note that G is a Yes-instance for s-t reachability, and that there is
only one simple path from s to t in G. Like above, we now apply P to G and
use the obtained labels ` to construct a No-instance H with a labeling `′. The
construction ensures that for every node u in H, there is a node v in G with
(`′(u), D1(u)) = (`(v), D1(v)).

With an argument analogous to that in the proof of the previous Lemma 4,
we will first show that there are i 6= j, with dn/2e + 2 ≤ i ≤ n − 4 and i + 2 ≤
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Figure 8: The Yes-instance G of s-t reachability used in our proof of Lemma 12. Nodes vj

with j > dn/2e have an outgoing edge to vj−dn/2e+1. Note that G contains only one simple
s-t path.

j ≤ n − 2, such that `(vi) = `(vj). In other words, we are looking for two
non-adjacent nodes vi and vj that are within the second half of the path P , and
vi comes before vj on P . Suppose that there are no such vi, vj . Consequently,
`(vdn/2e+2) must be different from the label of each node in {vdn/2e+4, . . . , vn−2}.
By induction, if vi, vj with the desired properties do not exist, then there need
to be at least bn

4 c−2 different labels on the sub-path vdn/2e+2, . . . , vn−2. This is
a contradiction to the assumption that the proof size is limited to log(n/4)− 3
bits, and we conclude that such nodes vi, vj must be present.

To complete our proof of Lemma 12, we now construct the (weakly con-
nected) No-instance H and the labeling `′. For that, let vi and vj be the two
nodes in G with `(vi) = `(vj) as above. We denote by x the node vj−dn/2e+1 in
the first half of P with an incoming edge from vj . To construct H and `′, we
first copy the graph G including the labels assigned by `. We then replace the
edges (vi, vi+1) and (vj , x) by (vi, x) and (vj , vi+1) (see Figure 9). Note that in
H, the two distinguished nodes s and t are no longer connected by a directed
path.

B
x

...s ... A

vi

C
vi+1

...A
vj

...t

B...s ... A

C...A...t

G: H:

Figure 9: Yes-instance G of s-t reachability labeled by P, and the corresponding No-
instance H for s-t reachability. Some label A appears twice on the s-t path, namely at the
nodes vi and vj . Since vj is at least two steps after vi and has an outgoing edge to a node x
before vi, the No-instance H for which V fails can be constructed. For the sake of simplicity
not all edges are shown.

It is left to show that V will return Yes for all nodes in H when labeled
with `′. Note that in H, the only nodes that were changed in some way in
comparison to G were vi, vi+1, vj and x. However, all four nodes still have the
same labels, and the incoming edges were changed only for x and vi+1. As it
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holds that `′(vi) = `′(vj), it follows that D1(vi+1) is the same in G and in H,
equivalently for D1(x). Thus, since the verifier V returned Yes for all nodes
in G, V must also return Yes for all nodes in H, contradicting that (P,V) is
correct.

We note that the construction in the proof of Lemma 12 has constant degree
in every node. Therefore, there cannot be a D1-PVP for which the proof size
depends only on ∆. The missing part to establish Theorem 10 is a D2-PVP for
s-t reachability.

The PVP for this problem as proposed by [29] relies on the nodes’ ability
to “point to an edge” by using its port number. The authors suggest to mark
an s-t path P by simply pointing to the edges used by P . We argue that one
can point to an edge in our models U and D2, even though port numbers are
not available. To that end, we enrich the labels to include a 2-hop coloring of
the graph G, i.e., a coloring (node labeling) such that the label of each node v
is unique among all nodes with distance at most 2. We denote this coloring by
c(v).

Since a 2-hop coloring requires at most ∆2 + 1 colors, each color can be
encoded using O(log ∆) bits. Moreover, the 2-hop coloring can be checked
locally, since each node v only needs to verify if v and all its neighbors have
different colors. A PVP can now rely on the fact that v’s color is unique among
u’s neighbors.

To obtain a D2-PVP for for s-t reachability, a node u ∈ V can now point
to an edge (u, v) ∈ E by referencing c(v) in its label. In this way, the pointed-to
edge is uniquely specified for both u and v. Applying the same reasoning as
in [29], we obtain the following lemma, which together with Lemmas 11 and 12
concludes our effort to establish Theorem 10.

Lemma 13. There is a D2-PVP for s-t reachability with a proof size of
O(log ∆) bits.

4. s-t Reachability: Beyond a Single Round of Communication

In the last section, we combined our developed techniques to obtain the first
non-trivial lower bound for the label size of directed one-way s-t reachability
that does not rely on descriptive complexity methods. In this section, we will
show how our lower bound can be extended to models where more than a single
round of communication is allowed. This idea is inspired by the model of Locally
Checkable Proofs by Göös and Suomela [29], where labels may be exchanged
over a constant number of communication rounds.

To be more precise, we will show that relaying the labels of the in-neighbors
over k rounds (i.e., k rounds of communication, with 1 ≤ k ≤ n) reduces our
lower bound on the label size proportionately to k. More formally, the following
holds:

Lemma 14. The D1-PVP proof size for s-t reachability with k rounds of
communications is at least Ω

( 1
k log n

)
bits.

18



Proof. We essentially use the same construction as in the proof of Lemma
12, but with one modification: In the graph used (cf. Figure 8) we replace
each of the dn/2e − 2 directed edges between the nodes vdn/2e+1, . . . , vn−1 and
v2, . . . , vdn/2e−1 with directed paths of k nodes. The new graph G′ has thus
n′ = n + (dn/2e − 2) k ∈ Θ(nk) nodes.

To obtain the result of Lemma 14, we need to bound the number of bits x of
the label size s.t. there are two of these paths v1

1 , . . . , v1
k and v2

1 , . . . , v2
k of length

k in G′ with exactly the same sequence of labels `(v1
1) = `(v2

1), . . . , `(v1
k) =

`(v2
k). Thus, we will study the size of x s.t. two labels of length kx exist among

dn/2e − 2 nodes. I.e., for what x does 2kx < dn/2e − 2 hold? For our purposes,
2kx < n/2−2 is sufficient. We obtain kx < log(n/2−2), resulting in a weakened
bound of x < log n

k − log 2
k − 2

k ∈ Ω
(

log n
k

)
.

As the number of nodes n′ in G′ is Θ(nk), n ∈ Θ(n′/k) holds. Due to
logarithmic identities, Ω

(
1/k log

(
n′

k

))
∈ Ω

(
log n′

k

)
, yielding Lemma 14.

Hence, our results carry over for the model where a constant number of
communication rounds is allowed.

Theorem 15. Let k be any constant. The D1-proof size for s-t reachability
with k rounds of communications is Θ(log n) bits.

For an upper bound beyond constant communication range, the construction
for the proof of Lemma 11 can be modified as well, by labeling the nodes along
a shortest directed s-t path P with a label size of O(log

(
n
k

)
): The prover labels

the first k nodes on P after s with 1, the k next nodes with 2, and so on. The
verifier can be left nearly identical We omit the details of the analogous proof:

Lemma 16. There is D1-PVP for s-t reachability with k rounds of com-
munications with a proof size of O(log

(
n
k

)
) bits.

We note that there is still a gap between the upper and lower bounds of
Lemma 14 and 16. An idea to close this gap would be to distribute the log n-
size numbers over k nodes, obtaining an upper bound of O( 1

k log n). However,
even keeping techniques such as padding and marking the “beginning/end” of
a number in mind, an adversary can place back edges from nodes representing
numbers closer to t to a set of nodes representing some number i, tricking them
into believing they are predated by some non-existent number i−1. We believe
however, that this idea might be of use in stronger models with “more strings
attached”, such as (incoming) port numbers or unique identifiers.

5. Application to Network Updates in Software Defined Networks

While the current line of research on local checkability focuses extensively
on its theoretical properties, the number of practical applications beyond ver-
ification of a proof is sparse to the best of our knowledge. E.g., as mentioned
in the related work Subsection 1.1, Schmid and Suomela [44] use proof label-
ing schemes to verify spanning trees in networks. They make use of a recent
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development in networking, so-called Software Defined Networks (SDNs) (cf.,
e.g., [14]), which resembles the model of local checkability in some sense: In
SDNs, a (logically) centralized controller oversees the switches in the network
itself, updating their behavior on how to deal with data packets. As such, the
control and data plane of networks are decoupled, with the controller becoming
the prover and the switches becoming the verifiers.

In this section, we will extend their line of work beyond the verification
of spanning trees, to the consistent migration between spanning trees. We
will use the notion of routing trees in this context, as their intended use is to
perform routing to a fixed root of all trees. As such, a migration via updates
is called consistent, if the spanning tree property is always maintained. I.e., no
(temporary) forwarding loops are introduced in the process. More formally:

Let G = (V, E) be a connected directed graph, with every edge (u, v) also
having a back edge (v, u).5 Let T1 = (V, E1) and T2 = (V, E2) be directed trees
with a common root node r ∈ V and E1, E2 ⊂ E. A node v ∈ V, v 6= r changing
its parent from the one in T1 to the one in T2 is called an update. An update is
called consistent if the resulting graph is a directed tree rooted in r. A sequence
of consistent updates resulting in T2 is called a consistent migration.

We will first discuss the current state of the art of consistent migration
between spanning trees in SDNs with a centralized controller in Subsection 5.1
and compare it with the paradigm of local checkability, before proposing a local
migration scheme in Subsection 5.2.

5.1. Consistent Migration between Routing Trees in SDNs
With the central controller having the power to change the switches’ be-

havior for optimization purposes, the network itself is in a constant state of
change, several hundred times per day in practice [31, 32]. As thus, another
problem surfaces: The (temporal) breaking of the verified properties. Imagine
all switches change from a routing tree T1 for a destination r to another routing
tree T2. If a node u is the parent of v in T1, but v is a parent of u in T2,
then u updating before v temporarily breaks the tree property, inducing a loop,
cf. Figure 10.

r

v u

T1: r

v u

r

v u

T2:

Figure 10: In the tree T1 to the left, v forwards all packets for r to u, which in turn forwards
all packets to r. This situation is flipped in T2: u forwards all packets for r to v, which in
turn forwards all packets to r. Should u update before v, then the situation in the middle
occurs: The graph is no longer a tree, and all packets loop between v and u.

5I.e., we consider standard full-duplex networks.
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This asynchronous behavior is not a technicality, switches can take different
times to apply updates (especially under load), or might even temporarily not
be available to the controller [30, 33, 36]. Hence, it is not possible to guarantee
two updates taking place at exactly the same time, inducing an ordering of all
updates. However, the controller may send out multiple updates in parallel, this
subset of updates could be executed in any order though.

To guarantee consistency, the authors of [3, 19, 21, 38, 40, 46] pre-compute
a (partial) update order, send out the individual updates (possibly multiple at
once), and only proceed with the next set of updates if the previous one is
confirmed. E.g., in the previously discussed example depicted in Figure 10, v
could update before u, always maintaining the tree property in the network.
This involves an ongoing interaction with the central controller, unlike the local
checkability paradigm, in which the prover sends out the proofs once, and is
only involved again if the verification fails.

The methods of [3, 19, 21, 38, 40, 46] are inherently non-local however: Their
algorithms check for updates that will not violate the tree property, but these
updates can be anywhere in the network. Consider the example in Figure 11,
where with the previously mentioned methods, the whole network can be up-
dated in a few rounds of switch-controller interaction, but the nodes with new
forwarding rules cannot decide with local communication6 whether it is safe to
update or not.

r

u′ v′

v u

... ...T1: d

u′ v′

v u

... ...T2:

Figure 11: The consistent migration from T1 to T2 can be handled in two updates by
a centralized controller: First, u updates, and then after u confirmed the update to the
controller, in a second update, the controller tells u′ to update. As the distance between the
nodes u, v and u′, v′ can be Ω(n), non-local communication via necessary: Else, u′ cannot
know when it is safe to update without inducing a loop.

A different approach is taken in [27, 28], which can be seen as analogous to
the local checkability approach for acyclicity and trees: For the new tree T2,
label the root with (update) 0, then its children with (update) 1, and so on,
labeling each node with an (update) number equivalent to its distance to the
root of T2. As T2 could have a depth of n− 1 ∈ Ω(n), they need Ω(n) (or depth
of T2) subsequent updates in the worst case. No faster algorithm (dependent on
n or the tree depth) can exist either for the general case: Consider a degenerated

6I.e., in a constant number of rounds.
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tree T1, where every node has at most one child. If the parent-child relation is
flipped in T2 (with the only leaf becoming the only child of the root), then Ω(n)
(or depth of T2) updates are required, cf., e.g., [38].

5.2. A Local Migration Scheme
As pointed out in Figure 11, the methods of, e.g., [19, 38, 40, 46], are not

applicable for a local migration scheme. Thus, we will extend the scheme used
by [27, 28], which has the same worst-case number of updates needed in SDNs.
Every node should be able to decide locally if it can change its forwarding
behavior to the new routing tree T2.

We note that the nodes cannot verify if the new tree T ′ is actually T2, as
the very nature of T2 is decided upon by the central controller. An analogous
case can be about identifiers, which is why we will adopt the model of Schmid
and Suomela [44] and assume every node has a unique identifier id(v) (of size
O(log n)). As thus, we will only make sure that the nodes update to the tree
specified by the sent out labels. We will still maintain a tree property at all
times, no matter what labels are sent by the controller.

Algorithm 17 (From the perspective of a node v).
Situation: Graph G = (V, E) with the forwarding rules of the nodes forming a
directed tree T1 = (V, E1) with root r ∈ V . Every node v ∈ V, v 6= r gets a label
consisting of id(p2(v)) of its parent p2(v) in T2 and the depth d2(v) of v in T2.

If p2(v) sends depth d2(p2(v)) = d2(v)−1 or p2(v) = d, and v didn’t update yet:
Update forwarding rule to p2(v) and then send d2(v) to all neighbors.

Lemma 18. Algorithm 17 takes at most n− 1 updates.

Proof. r will never update, and every other node will update at most once.

We will now prove that Algorithm 17 works as intended, if the labels are correct:

Lemma 19. Let the situation described in Algorithm 17 be correct: Then, ex-
ecuting Algorithm 17, the nodes v ∈ V perform consistent updates, leading to a
consistent migration from T1 to T2.

Proof. We will first prove that every update is consistent, before showing that
a consistent migration to T2 occurs.

Observe that initially, there is no loop in the network. Furthermore, note
that during the whole execution of Algorithm 17, every node v has either a
forwarding rule pointing at its parent p1(v) in T1 or a forwarding rule pointing
at its parent p2(v).

Assume for the sake of contradiction that the update of the node v′ is the
first occurrence of a loop in Algorithm 17. W.l.o.g., let this loop be v′ =
v0, v1, v2, . . . , vk, v′ = vk+1. v0 will only have updated to v1 after v1 has updated
to v2, with v1 only updating to v2 after v2 has updated to v3, and so on. As
thus, for 1 ≤ i ≤ k + 1, vi must be the parent of vi−1 in T2. This leads to the
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desired contradiction: As T2 is a tree, no loop v′ = v0, v1, v2, . . . , vk, v′ = vk+1
can exist in it. Hence, every update performed by Algorithm 17 is consistent.

As every update is consistent, Algorithm 17 performs a consistent migration,
but it is left to show that the migration will reach T2. Now, assume, again for
the sake of contradiction, that at some point no node can update any longer, but
the forwarding rules do not form T2. If every node (except for r) has updated,
then the forwarding rules form exactly T2. Thus, let v′ 6= r be a node which
has not updated yet. We can use similar reasoning to the paragraph above: If
v′ has not updated yet, then p2(v′) has not updated yet, which means in turn
p2(p2(v′)) has not updated yet, and so on. As the graph is finite, this leads to
the desired contradiction, as else a loop would need to exist.

However, the network could still end up in a loop if the new forwarding rules
do not form a tree T2, but contain some loop, due to the error of the controller.
As we incorporated the depth of each node into its label, this will be prevented:

Lemma 20. Let the situation described in Algorithm 17 be correct, except that
the new forwarding rules do not form a tree. Then, the updates performed by
Algorithm 17 will still be consistent and not induce a loop.

Proof. W.l.o.g., assume for the sake of contradiction that the update of a node
v′ is the first update of Algorithm 17 inducing a loop v′ = v0, v1, v2, . . . , vk, v′ =
vk+1. As shown in the proof of Lemma 19, this loop must be exclusively induced
by the new forwarding rules, which could be the case now as the new forwarding
rules no longer have to form a tree. However, when updating, every node also
checks if the label for the depth of the tree is smaller than its own by exactly one.
Consider the smallest depth given as part of a labeling to a node vi in the loop
v′ = v0, v1, v2, . . . , vk, v′ = vk+1. When vi updated, it checked the depth of its
parent to be exactly one smaller than its own. However, as vi has the smallest
depth in the loop, this is a contradiction: vi would not have updated.

5.3. Further Applications in SDNs
The loop freedom of forwarding rules is just one of many consistency prop-

erties to be considered when performing changes in the behavior of switches of
Software Defined Networks via the controller, cf. [20]. We envision that local
updates for other consistency properties can be developed as well, e.g., for black
hole freedom [19], per-packet consistency [15, 42], waypoint enforcement [37, 39,
46], and bandwidth capacity constraints for network flows [12, 13, 31, 33].
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[22] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David
Peleg. Randomized distributed decision. Distributed Computing, 27(6):419–
434, 2014.
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