
Lower and Upper Competitive Bounds for Online
Directed Graph ExplorationI

Klaus-Tycho Foerstera,1,∗, Roger Wattenhofera

aETH Zürich, Gloriastrasse 35, 8092 Zurich, Switzerland

Abstract

We study the problem of exploring all nodes of an unknown directed graph. A
searcher has to construct a tour that visits all nodes, but only has information
about the parts of the graph it already visited. Analogously to the travelling
salesman problem, the goal is to minimize the cost of such a tour. In this article,
we present upper and lower bounds for the competitive ratio of both the de-
terministic and the randomized online version of exploring all nodes of directed
graphs. Our bounds are sharp or sharp up to a small constant, depending on the
specific model. As it turns out, restricting the diameter, the incoming/outgoing
degree, or randomly choosing a starting point does not improve lower bounds
beyond a small constant factor. Even supplying the searcher in a planar eu-
clidean graph with the nodes’ coordinates does not help. Essentially, exploring
a directed graph has a multiplicative overhead linear in the number of nodes.
Furthermore, if one wants to search for a specific node in unweighted directed
graphs, a greedy algorithm with quadratic multiplicative overhead can only be
improved by a small constant factor as well.

Keywords: Graph exploration, Online algorithms, Competitive analysis,
Directed graphs

1. Introduction

The hotel concierge promised that this tourist attraction is easy to find, just
a short drive in your car, and she was right. However, how do you now get back
to your hotel, in this cursed city full of one-way streets? After finally being back
at your hotel, totally exhausted, you have a hunch that one-way streets render
navigation more difficult, but is it true?!

IA preliminary extended abstract appeared in Proceedings of the 16th International Con-
ference on Principles of Distributed Systems (OPODIS), Springer, 2012 [37].
∗Corresponding author
Email addresses: foklaus@ethz.ch (Klaus-Tycho Foerster), wattenhofer@ethz.ch

(Roger Wattenhofer)
1Tel: +41 44 63 24776

Preprint submitted to Theoretical Computer Science November 8, 2015

In this article we quantitatively analyze navigation problems in unknown
directed graphs from a worst-case perspective. We present a whole flurry of
tight upper and lower bounds, showing that directed graphs exhibit a penalty
in the order of the number of nodes of the graph, even with coordinates.

Navigation problems in directed graphs are not restricted to the playful
introductory example of one-way streets. Staying in the car context, if we are
for instance interested in minimizing gasoline cost, any hill-side city becomes
directed, as driving downhill is virtually free, whereas driving uphill may incur
a high cost. As such, when applying a cost measure, edges of a graph must
often be represented by two directed edges with an appropriate cost.

The most important applications for investigating navigation in directed
graphs are however beyond street networks. In computer networks, for in-
stance, directed graphs have for instance been studied in the context data ag-
gregation [49], routing [57], web crawlers [53], or traversing social networks [58].
Brass et al. [13] compared the exploration of directed graphs to exploring the
state space of a finite automaton, where the states are nodes and the transitions
are edges. Deng and Papadimitriou [21] proposed the exploration of directed
graphs as a model for learning, for example for a newborn: current states can
be detected by sensor information (like eyes or ears) and possible actions lead-
ing to other states are known, but it is not known what the situation will be
at a not yet explored state. And last not least, exploring an unknown graph
is considered one of the fundamental problems in robotics [17, 33]. Because of
all these applications, directed graph exploration will be the main focus in this
article. In addition, we look at other navigation problems, such as searching for
a node, which turn out to be related to exploration.

1.1. Model

For ease of notation, in the remainder of our paper a graph G = (V,E) is
directed and strongly connected with |V | = n ≥ 6 nodes and |E| = m edges.
We denote an edge from u ∈ V to v ∈ V with uv. All nodes v ∈ V have unique
IDs and all edges uv ∈ E have non-negative weights of weight(uv).

A walk is a concatenation of incident edges uv, vw, . . . , with a path being a
walk that visits no node twice. The weight or cost of a walk or a path is the
sum of the weights of each edge traversal. The distance from a node u to a node
v is the weight of a shortest path from u to v, i.e. of a path with the least cost.

Similarly, the hop-cost of a walk or a path is the number of edges traversed
(“hops”), with the hop-distance from a node u to a node v being the hop-cost
of a path from u to v with the least hop-cost. The radius of a node u is the
largest hop-distance to any other node in V , with the diameter of a graph G
being the largest radius of any node u ∈ V .

A searcher that explores a graph via some deterministic or randomized algo-
rithm has unlimited computational power and memory, and may only traverse
edges from tail to head. Upon arriving at a node v, the following information
is made available: all outgoing incident edges including their weight, plus the
IDs (cf. [46, 52]) of the corresponding nodes at the head of these edges. We call

2

a graph explored, if a searcher starting from some node s has visited all nodes
and returned to s.

We only consider the common model of strongly connected directed graphs
[1, 20, 21, 33, 50], since a searcher else might get stuck right away (Section 8).
In Section 9, we also include geometric coordinates. Graph exploration is an
online problem since only partial information about the graph is available [8, 12].
For other exploration models, e.g., unique edge names, or information about
incoming edges, we refer to Section 8 as well.

The cost of such an online exploration tour T is measured by the total sum
of the weight of the traversed edges, denoted as cost(T). It is allowed (and
might be necessary) to visit nodes multiple times, but if we traverse an edge
again it costs the same as for the first time.

The competitive ratio cr of a tour T is measured by the cost of the (online)
tour divided by the cost of an (offline2) tour of minimum cost OPT , i.e. cr(T) =

cost(T)
cost(OPT) . Should OPT have a cost of 0 while cost(T) has a positive value, then

we set cr(T) =∞. We say a deterministic algorithm A has a competitive ratio
of r(n) w.r.t. some graph class G, if for every graph G ∈ G the computed tour
T by A has a competitive ratio of at most r(n), i.e., r(n) ≥ cr(T) for all G ∈ G.
Should A induce a competitive ratio of ∞ for some G ∈ G, then r(n) is set to
∞ as well. If we do not denote a specific graph class G, then we assume G to be
the class of all strongly connected directed graphs.

We also study graph exploration by randomized algorithms3, where we study
the expected costs instead of the worst case. Thus, the competitive ratio of a tour

is now calculated by E
[

cost(T)
cost(OPT)

]
. Let us consider a small introductory exam-

ple, where the cost of an optimal tour is 10: If the randomized algorithm chooses
a tour with a cost of 80 with a 25% chance and a tour with a cost of 40 with a 75%
chance, then the competitive ratio is (20+30)/10 = 5. The competitive ratio of a

randomized algorithm is analogously r(n) if r(n) ≥ E
[

cost(T)
cost(OPT)

]
for all G ∈ G.

1.2. Results

In this article we give the first matching lower and upper bounds for the com-
petitive exploration of an unknown directed graph. Our results are sharp for
both the general weighted and unweighted cases. For randomized exploration,
our results only have a gap of less than four. We prove similar results for various
commonly used graph classes, like planar or complete graphs or bounding differ-
ent parameters like degree or diameter. We also discuss changes in the model,
like randomly choosing a starting position or more powerful searchers. We are
able to show that in all these cases, the exploration of unknown directed graphs

2Offline in the sense that all information about the graph is available to the searcher.
3We note that every deterministic algorithm can also be used as a randomized algorithm.

Furthermore, while an algorithm designer could choose to, e.g., pick new edges uniformly at
random for exploration, any other strategy is possible as well, e.g., pick the next node to
explore with a probability inversely proportional to the cost of reaching that node.

3

hhhhhhhhhhhhtype of graph

competitivity
lower bound upper bound mult. gap Section

(deterministic) general*c n− 1 n− 1 sharp 3, 4

(randomized) general*+c n
4 n− 1 ≤ 4 3, 4

(d.) unweighted general* n
2 + 1

2 −
1
n

n
2 + 1

2 −
1
n sharp 5

(r.) unweighted general* n
8 + 3

4 −
1
n

n
2 + 1

2 −
1
n ≤ 4 5

(d.) euclidean planar n− 2− ε′ n− 1 1 +O(1/n) 7, 4

(r.) euclidean planar n
4 − ε

′ n− 1 ≤ 4 + ε 7, 4

(d.) unit w. euclidean planar n
4 + 1

2 −
2
n

n
2 + 1

2 −
1
n ≤ 2 7, 5

(r.) unit w. euclidean planar n
8 + 3

4 −
1
n

n
2 + 1

2 −
1
n ≤ 4 7, 5

(r.) geom. euclidean planar n
16 + 5

8 + 1
2n − ε

′ n− 1 ≤ 16 + ε 9

(d.) searching a node
(n−1)2

4 − (n−1)
4 − 1

2
n2

4 −
n
4 ≤ 3 6

(r.) searching a node n2

16 −
n
8 + 1 n2

4 −
n
4 < 4.1 6

* also applies to planar graphs and graphs that satisfy the triangle inequality4

ε, ε′ denote any fixed value greater than 0

c also applies to complete graphs and graphs with any diameter from 1 to n− 1

+ also applies to graphs with any max. incoming/outgoing degree from 2 to n− 1 and to
graphs with any minimum incoming/outgoing degree from 1 to n− 1

Table 1: Short overview of our main results: In the weighted general case we only need to
use two different edge weights to achieve the bounds. A randomized starting node can only
decrease our lower bounds by a factor of four.

has a multiplicative overhead of Θ(n). Perhaps surprisingly, even allowing to
see the nodes’ coordinates in planar euclidean graphs will not help a searcher
beyond a constant factor.

In a similar fashion, searching for a single node has Θ(n2) overhead if all
edges have unit weight (see Section 6). Furthermore, we look at the impact of
randomly choosing a starting point. It turns out that even the best possible
starting node can decrease any lower bound only by a factor of at most four.

Before our work, sharp results regarding deterministic and randomized ex-
ploration of directed graphs have not yet been published. We summarize our
main results in Table 1.

2. Related Work

The offline variant, i.e., where all information about the graph is available
to the algorithm, of directed graph exploration is the asymmetric travelling
salesperson problem, where it is allowed to visit nodes multiple times. Unlike
the undirected case, there is no known polynomial approximation algorithm
with constant approximation ratio [3]. An approximation ratio of O(log n) was
achieved in [42], the constant was improved over time, e.g. [9, 47]; the best

4The triangle inequality states that for every v, u, w ∈ V holds: If vu, uw, vw ∈ E, then
weight(vu) + weight(uw) ≥ weight(vw).

4

result known to us is 2
3 log2 n [28]. There exists a result of O(log n/ log log n)

for the randomized case [2]. If only the edge weights 1 and 2 are allowed, it is
approximable with a ratio of 17/12 [63], with a NP-hard lower bound of 2805/
2804 − ε [27]. An online variant of asymmetric TSP is as follows: A searcher
knows the graph, but the nodes to visit get determined during the runtime by
an adversary [3].

More closely related to the online exploration of all nodes of directed graphs
is the online exploration of all nodes of undirected graphs. While a greedy
algorithm achieves a competitive ratio of Θ(log n) [59], it is not known if a
constant competitive ratio for general graphs is possible [52]. For cycles there

is an algorithm with a sharp competitive ratio of 1+
√

3
2 , while for trees and

unweighted graphs depth-first search is optimal [54]. Recently, the best known
lower bound for general graphs was improved from 2 − ε [54] to 5/2 − ε [23].
For planar graphs a sophisticated variant of depth-first search named ShortCut
by Kalyanasundaram and Pruhs achieves a competitive ratio of 16 [46]. Their
result was recently extended for graphs of genus g to 16(1+2g) [52]. If there are
just k different edge weights, there exists an algorithm with competitive ratio
2k [52]. Fleischer et al. considered the problem of searching just for a node
instead of a tour in [31]. They model their searcher as “blind”, meaning that
it can only sense the outgoing edges, but not any incoming edges or adjacent
neighbors. They use the example of a modified clique to show a lower bound
on the cost of Ω(n2) for unit weights, since a blind searcher might visit nearly
all edges.

Another related problem is the exploration of all edges of a strongly con-
nected directed graph. Here the difficulty of the problem depends on another
parameter, introduced by Kutten [50]: the eulerian deficiency d of a graph,
which is the minimum amount of edges that need to be added to make the
graph eulerian. A graph is eulerian, if there exists a walk that visits all edges
exactly once. If a graph is eulerian, then it can be traversed in an online fash-
ion with at most 2m edge traversals [20], which directly implies at most 4m
edge traversals in the undirected case, see for example [1]. For d = 1, a ra-
tio of 4 is optimal [21]. An upper bound only dependent polynomially in d
for the directed case was given by Fleischer and Trippen [33], their algorithm
is O(d8)-competitive. There exists also a lower bound of Ω(d)-competitivity
for the deterministic case and a lower bound of Ω(d

log d)-competitivity for the

randomized case [20, 21].
There seems to be no known randomized algorithm for the exploration

of graphs (whether it be just nodes or edges) that gives better bounds than
the known deterministic algorithms. Experimental studies of randomized algo-
rithms for exploring all edges and nodes of a strongly connected directed graph
have been done in [32].

Graph exploration has also been considered with restricted memory models
or multiple searchers, see for example [4, 7, 14, 18, 19, 22, 24, 38, 39]. In the
context of biologically inspired algorithms, Feinerman et al. [29, 30] proposed to
let agents without communication search the plane to find a treasure, where the

5

time needed to find the treasure is roughly quadratic in its distance divided by
the number of agents. This idea has also been considered under the assumption
that the ants are modeled as finite state machines by Emek et al. [25, 26]:
Comparable bounds (to turing-machine agents) can be reached when considering
even a very small constant numbers of ants, but communication is necessary in
this case. Work by Fraigniaud et al. [40] showed that if one uses only a single
searcher, then it needs memory in the order of diameter times maximum degree
to succeed.

Historically, the oldest known online exploration/navigation problem studied
formally on graphs is graph searching, which was first discussed by Breisch [15]
and Parson [55, 56] (cf. [6, 16]). It stands for a closely related problem: A
number of agents has to capture an intruder, or as formulated in the original
paper [15], a rescue party has to search for a person wandering aimlessly in a
particular cave. The offline problem of determining the minimum number of
searchers is NP-complete, but can be solved in linear time for trees [51]. For a
bibliography on graph searching see [36], with more recent work in, e.g., [5, 10,
11, 34, 35, 62].

For an overview of other online navigation tasks we refer to [8, 43, 44].

3. Lower Bounds for General Graphs

We note that in this section we only use the weights 0 and 1 in the weighted
case for lower bounds. If only integers of size at least one are allowed as edge
weights, then analogous results can be achieved by replacing 0 with 1 and 1 with
d1/εe for arbitrarily small ε > 0, cf. Subsection 8.4. Furthermore, the unique
names of nodes in the remainder of the paper are just fixed for the convenience
of the reader, an adversary can permute them in any way it desires – therefore
an online algorithm can derive no further information from just the unique name
of an unexplored node. Also, the graphs used in the lower bounds are planar
and satisfy the triangle inequality.

3.1. Deterministic Online Algorithms

Theorem 1. No deterministic online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n− 1.

Proof. Consider the graph in Figure 1. A searcher using any deterministic online
algorithm starting at node vn cannot differentiate between the nodes v1,v2,. . . ,
vn−1, they all look the same, since it can only see the outgoing edges from vn
and the nodes at the end of these edges. In the worst case, the searcher chooses
to visit the node vn−1 first, then is forced to go back to vn, then to visit vn−2

and so on, until it visits v1 and then returns to vn. The cost of this route is
n− 1, while an optimal tour first visits v1 and then goes to vn, inducing a total
cost of just 1. This yields a competitive ratio of n − 1 for any deterministic
online algorithm.

6

vnv1

v2

v3

vn−1

vn−2

vn−3

0

0

0

0

0

0

0

0

00

0

1

0

Figure 1: In this graph the starting node s is vn in the lower middle of the image. A
deterministic algorithm can get tricked into first visiting vn−1, then vn−2 and so on.

3.2. Randomized Online Algorithms

The construction in Figure 1 relied on a worst case analysis for deterministic
algorithms. When looking at the expected exploration costs of a well-designed
randomized algorithm, the situation changes: The searcher starting at vn can
pick each of the yet unvisited nodes with the same probability, meaning it will
on average choose a node in the ”middle” of the so far yet unvisited nodes,
therefore visiting the starting node only about O(ln(n))-times in expectation.
However, we can reach nearly the same lower bounds with the graph from Figure
2 as in the deterministic case:

Theorem 2. No randomized online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n
4 .

Proof. Consider the graph in Figure 2 and let the number of nodes n be even. If
one wants to consider odd n, then the same results can be achieved by removing
the node vn

2
and updating the graph accordingly. Let us assume a searcher

using any randomized online algorithm starting from vn visits a node vi, with
1 ≤ i ≤ n

2 − 2, for the first time: then it cannot differentiate the two outgoing
edges. Thus the decisions at the nodes v1 to vi−1 do not yield any useful
information about how to pick the outgoing edges at vi. Therefore the expected
amount of choosing a wrong outgoing edge is 0.5

(
n
2 − 2

)
. A wrongly chosen

edge when visiting vi for the first time induces a cost of 1, since the searcher
has to follow the unique way back to vi, traversing the edge from vn−1 to vn
with cost 1. This results in an expected cost of 0.5

(
n
2 − 2

)
= n

4 − 1 to explore
the node vn

2−1. Once reaching the node vn
2−1 for the first time, the searcher is

forced to go back to vn, resulting in another cost of 1. Since an optimal tour
has a cost of 1, this yields the lower bound of n

4 .

7

vn v1 v2 v3 vn
2

−2 vn
2

−1

vn
2

vn
2

+1vn−4vn−3vn−2vn−1

0 0 0 00 0

0

0

0

00

0001

0 0 0

Figure 2: In this graph the starting node s is vn in the upper left corner. Upon arriving at
each of the nodes v1, v2, . . . vn

2
−2 for the first time, a randomized algorithm gets tricked into

taking the wrong edge with probability 0.5. If n is odd, then the lower right node vn
2

can be

removed to achieve the lower bound.

3.3. Starting Node

While the examples of the graphs in the Figures 1 and 2 lead to a high lower
bound for the competitive ratio, this is only true because the online algorithm
is forced to start at the node vn. Starting at node v1 in Figure 1 or at node
vn

2
in Figure 2 leads to a competitive ratio of 1. If the starting node were to

be chosen randomly, the expected ratio is O(
√
n) for both cases. This raises

the question if a random starting node can lead to a better competitive ratio.
However this is not the case, there is still a lower bound of Ω(n):

Theorem 3. Even if taking the best result from all possible n starting nodes,
no deterministic online algorithm can achieve a better competitive ratio on ex-
ploring all nodes of strongly connected directed weighted graphs than n/4. The
same holds for randomized online algorithms with a competitive ratio of n/16.

Proof. We start with the deterministic case. We again take the graph from
Figure 1, but draw it two times as G and G′ with their respective starting nodes
vn and v′n. We now connect these graphs by adding an edge from vn to v′n and
back, both with weight 0 – resulting in a graph G′′ with 2n nodes. Without
loss of generality we can assume that a starting node from G′ is chosen. No
deterministic online algorithm can achieve a better worst-case cost on exploring
G than n− 1, since the old graph G can only be entered by the edge from v′n to
vn. On the other hand, the graph G′ will be explored with a cost of at least 1.
An optimal offline algorithm will just have a cost of 2 for exploring the whole
graph, no matter what starting node is chosen. Since the graph has 2n nodes,
this leads to a lower bound of n/4. We can apply the same arguments to the
randomized case using the graph in Figure 2, giving a lower bound of n/16.

This technique can also be applied to the geometric search with coordinates
and the problem of searching for a node which are both covered later.

4. Upper Bounds for General Graphs

In the undirected case, it is not known yet if there is an algorithm with
a better competitive ratio than O(log n) [59]. A greedy approach reaches this

8

competitive ratio of O(log n) [59], but the same algorithm has a competitivity
of Ω(log n) even on planar unweighted graphs [45].

We define the greedy approach (or also, greedy algorithm) analogously to
the nearest neighbor algorithm in [59] for the case of directed graphs:

Greedy algorithm (for directed graph exploration)
Let Vknown be set the set of known, but not yet visited nodes. Initially this is
just the set of neighbors of s. Select a node v ∈ Vknown that can be reached with
a path P of the least cost5 in the so far known subgraph and traverse the path P
until v is reached. Repeat the last step until Vknown = ∅. Then, choose a path
P of least cost to s and traverse P to s.

Thanks to our strong lower bounds, this greedy algorithm has a sharp com-
petitive ratio in the directed case:

Theorem 4. A greedy algorithm achieves a competitive ratio of n − 1 for ex-
ploring all nodes of strongly connected directed weighted graphs.

Proof. Given any graph G = (V,E), let us fix an optimal tour OPT . The tour
OPT can be viewed as a concatenation of n paths, that visit the nodes of the
graph in the following order: s = vo0, v

o
1, v

o
2, . . . , v

o
n−1, v

o
n = s. We name the path

from voi to voi+1 as woi+1 with 0 ≤ i ≤ n− 1. The walk W o
i,j from voi to voj (with

voi 6= voj) in OPT consists of the concatenation of woi+1, w
o
i+2, . . . , w

o
j for i < j

or of woi+1, w
o
i+2, . . . , w

o
n, w

o
1, . . . , w

o
j−1, w

o
j for i > j. For each W o

i,j with i 6= j it
holds that W o

i,j is the concatenation of at most (n− 1) different paths wor with
1 ≤ r ≤ n.

The greedy algorithm proceeds as follows: Upon reaching a node vgk for the
first time, it selects a shortest path wgk+1 from the current node to a unknown
node vgk+1 in the outgoing neighborhood of the so far explored nodes. We
are now going to show by contradiction that the path wgk+1 has at most the
combined cost of the concatenated paths from vgk to vgk+1 in OPT , even though
the greedy algorithm has no knowledge of OPT .6 Let us assume it has greater
cost: then there is a cheaper path from vgk to vgk+1 that also visits another not
yet explored node vq before visiting vgk+1. However by the choice of vgk+1, then
vq is the same node as vgk+1, which leads to a contradiction.

If we sum this up for all n paths wg1 , . . . , w
g
n−1 from the greedy algorithm

plus the shortest path wgn from vgn−1 to s = vgn, a first simple upper bound is
n · |OPT |. However, each path wor with 1 ≤ r ≤ n from OPT only gets used
at most (n − 1) times in the upper bound. This leads to an upper bound of
(n− 1) · |OPT | on the cost of a tour produced by the greedy algorithm.

A combination of Theorem 1, 2 and 4 yields the following corollary:

5Note that this does not have to be a neighbor of the current node!
6Note that vgk and vgk+1 could appear in a totally different order in OPT , e.g., vgk+1 could

be the third new node vo3 to be visited and vgk could be von−1.

9

Corollary 5. The result of Theorem 4 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

5. Unweighted Graphs

An unweighted graph is a graph where the edges have no weights, i.e., the
cost is the same for all edges. For our purposes, this is the same as assigning
the edge weight 1 to every edge. The lower bounds are lower, but we will see
that the upper bounds also go down:

Theorem 6. No online algorithm can achieve a better competitive ratio on
exploring all nodes of strongly connected directed unweighted graphs than n

2 +
1
2 −

1
n (deterministic) or n

8 + 3
4 −

1
n (randomized).

Proof. Consider the graph in Figure 1 for the deterministic case and assign all
edges a weight of 1. A deterministic online algorithm starting at vn first visits
vn−1, then vn−2 etc. in the worst case. Exploring vn−1 and going back to vn
has a cost of 2, for vn−2 it is 3, . . . , for v1 it is n. Summed up this yields

2 + 3 + · · · + n = n2

2 + n
2 − 1 . Since an optimal tour has cost n, this gives a

lower bound for the competitive ratio of n
2 + 1

2 −
1
n .

Consider the graph in Figure 2 for the randomized case and assign all edges
an edge weight of 1. Now we can apply the same argument as in the weighted
case, but the induced cost by each wrong decision is not 1, but 4 for v1, 6 for
v2, . . . , n− 2 for vn

2−2. Since the previous decisions are useless for the current
decision, each of these wrong decisions happens with a probability of at least 0.5.
Furthermore, independently of these decisions, the last exploration tour starting
at vn will visit all nodes exactly once in this example. This gives a lower cost

bound of 0.5
((

n
2 − 2

)2
+ 3

(
n
2 − 2

))
+ n = n2

8 + 3n
4 − 1 . An optimal tour has

cost n, resulting in a lower bound for the competitive ratio of n
8 + 3

4 −
1
n .

Theorem 7. A greedy algorithm achieves a competitive ratio of n
2 + 1

2 −
1
n for

exploring all nodes of strongly connected directed unweighted graphs.

Proof. We prove this upper bound by summing up the costs to reach the first
newly explored node, the second newly explored node, . . . , the (n − 1)th (and
last) newly explored node. Let us assume that, beside the starting node, we have
explored (k− 2) additional nodes and have just reached the (k− 1)th new node
vk−1 for the first time. Since the graph is strongly connected, there is always at
least one new node reachable from the current node in the neighborhood of the
so far explored subgraph – unless every node has been visited already. If we pick
the new node vk as a unexplored one we can reach with as few edge-traversals as
possible, then we induce a cost of at most k. A shortest path from vk−1 to vk will
by definition not include another unexplored node vu, since then vu had been
chosen as vk. Furthermore, the path will not include any node twice. This gives
an upper bound of k for the length of the path from vk−1 to vk. In order to get

10

back to the starting node once all nodes are explored, a shortest path can again
visit at most all other n− 2 nodes before reaching the starting node, giving an
upper bound of n−1 for this last path. If we sum this up we get an upper bound

of 1+2+3+· · ·+(n−2)+(n−1)+(n−1) = −1+
n∑
i=1

i = n2

2 + n
2 −1 . An optimal

tour has cost at least n, giving a competitive ratio of at most (n
2

2 + n
2 − 1)/

n = n
2 + 1

2 −
1
n .

Combining the results of Theorem 6 and Theorem 7 yields:

Corollary 8. The result of Theorem 7 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

6. Searching a Node

Instead of generating a tour, one can also change the model, and find just
one specific node v and then stop. However an adversary can place this node
in such a way that it is found last. The searcher does not need to return to the
start, but searching for a node is still costly:

Theorem 9. Searching for a node in strongly connected directed weighted graphs
has a competitive ratio of ∞ for any deterministic or randomized online algo-
rithm and can induce arbitrarily large additive costs.

Proof. We start with the deterministic case. In Figure 1, a node vn+1 can be
added that is connected to v1 with two edges of weight 0. Since an optimal
algorithm finds this node with cost 0, any deterministic node search algorithm
has a competitive ratio of ∞, since it induces positive costs. The same holds
for randomized algorithms if the same construction is applied at node vn

2−1 in
Figure 2. We can apply the same thought for arbitrarily large additive costs by
replacing the edge weight of 1 with an arbitrarily large value.

If we consider the model of unit weight edges, then the situation changes:

Theorem 10. No online algorithm for searching a node in strongly connected

directed unweighted graphs can achieve a better competitive ratio than (n−1)2

4 −
(n−1)

4 − 1
2 (deterministic) or n2

16 −
n
8 + 1(randomized).

Proof. An optimal offline algorithm has a cost of 2 to find vn+1 in the modified
graph from Figure 1 with unweighted edges (vn to v1 to vn+1). Any deterministic
online algorithm finds vn+1 last in the worst case, producing a cost of at least

(see the proof of Theorem 6) n2

2 + n
2 − 1 − n. The searcher does not have to

go back to the start, so (−n) is added at the end. Since this graph has (n+ 1)
nodes, a lower bound for the competitive ratio of any deterministic node search

algorithm is (n−1)2

4 − (n−1)
4 − 1

2 .
For the randomized case consider a star with one center starting node s,

with an outgoing edge to each of the k leaves, and one edge going back from

11

each of the k leaves to s. If we now hide the searched node v behind one of
the leaves vi, then the optimal offline solution would have a cost of two (s to vi
to v). On the other hand, a randomized algorithm needs to visit k+1

2 different
leaves in expectation until the node v can be found, leading to an expected cost
of k + 1. By setting k = n− 2, this construction leads to a lower bound of n−1

2
for the competitive ratio of any randomized algorithm.

However, we can improve this construction: Instead of letting the searcher
go back directly from each of the leaves (which induces a total cost of two for
visiting each leaf and going back), we remove the back-edge from each leaf and
connect each of these leaves to a new node v′. An exception is the leaf connected
to v: There only the outgoing edge from v changes to point at v′. We refer to
Figure 3 for an illustration.

s

v

v′

v1

v2

vk

Figure 3: When the searcher starts at node s and searches for the node v, there are k different
nodes adjacent to s to choose from. However, not choosing v1 will induce a large cost, as the
only path back to s from vi, with 2 ≤ i ≤ k, is along k′ = n− k − 2 further nodes.

From the node v′, the only way back to s from v′ is via a path of length k′

along k′−1 further nodes. Now, the optimal path to v still has a cost of two, but
going to one of the k leaves and back to s now induces a cost of k′+ 2. I.e., the

expected cost for any randomized online algorithm will be at least (k′+2)(k−1)
2 +2,

leading to a lower bound on the competitive ratio of (k′+2)(k−1)
4 + 1. If we set

k′ = n
2 − 2 and k = n

2 , we have (with the starting node s and the searched node

v) n nodes in total, leading to a lower bound of
(n

2)(n
2−1)

4 + 1 = n2

16 −
n
8 + 1.

For an upper bound we can again use the greedy algorithm:

Theorem 11. A greedy algorithm searching for a node in strongly connected

directed unweighted graphs has a competitive ratio of n2

4 −
n
4 .

Proof. A greedy algorithm finds the searched node last in the worst case with

a cost of at most n2

2 −
n
2 (see the proof of Theorem 7). If the node were to be

12

directly reachable from the starting node, then an online algorithm can find it
in one step. Therefore we can use 2 as the minimal cost needed for an offline
algorithm when computing an upper bound for the competitive ratio. This leads

to a competitive ratio of n2

4 −
n
4 .

Combining Theorem 10 and Theorem 11 yields the following corollary:

Corollary 12. Searching for a node in strongly connected directed graphs has
a competitive ratio of Θ(n2), for both deterministic and randomized algorithms.

Let us now come back to the situation mentioned at the start of our intro-
duction. How expensive can going back to your hotel be? Essentially, it is the
same as searching for a node – just that this node is the only one that has an
outgoing edge to your hotel. For the deterministic case, we again use the graph
from Figure 1 with unweighted edges. We add a hotel-node vh and add a di-
rected edge from vh to vn (the node with the tourist attraction) and one directed
edge from v1 to vh. Going back to your hotel is now the same as searching the
node v1 with one additional step back. The same idea can be applied for the
randomized case with the construction from the proof of Theorem 10.

7. Lower Bounds for Special Graph Classes

When we add directed edges with an arbitrarily high weight W to a given
graph, then using these edges in any online algorithm is not beneficial, as al-
ready traversing them once sets the cost of the obtained tour to be at least W .
However, an online algorithm has now more information about the graph (for
example about the number of nodes), but we can add these edges in such a way
to our lower bound graphs in Figure 1 and 2 that the searcher gains no useful
information. For example, if we turn the graph from Figure 1 into a complete
graph by adding all missing edges with arbitrarily high weights, then these new
edges do not help a searcher on deciding what node to explore next when vis-
iting vn, since all possibilities look the same except for their ID – unless the
searcher decides to use an expensive edge.

Theorem 13. For graphs of any diameter from 1 to n−1, no online algorithm
can achieve a better competitive ratio on exploring all nodes of strongly connected
directed weighted graphs than n− 1 (deterministic) or n/4 (randomized).

Proof. We start with the deterministic case: Consider the graph from Figure 1.
It has a diameter of n− 1, as the nodes v1, v2 have a radius of n− 1, the node
v3 has n− 2, the node v4 has n− 3, . . . , vn−1 has 2, and lastly, vn has a radius
of 1. If we add edges with arbitrarily large weight from v1 to v3 and from v2 to
v4, then only the radius of v1, v2 changes from n− 1 to n− 2, i.e., the diameter
is now n− 2.

To achieve a diameter of n− 3, the nodes v1, v2, v3 need to have a radius of
n−3. Adding an edge from v3 to v5 reduces the radius of v3 to n−3. Similarly,
adding edges from v2 to v5 and from v1 to v4 reduces their radius to n − 3
respectively, resulting in a diameter of n− 3.

13

The general idea for adding these edges is that, except for v1, the radius of
each node is determined by its edge distance to vn plus one, while for v1 it is
the edge distance to vn. Thus, to achieve a diameter of n−1 ≥ i ≥ 2, one would
reduce the radius of the nodes v1, v2, . . . , vn−i+1 to i. In all cases, choosing any
of the new edges with arbitrarily large weight will not improve the result and
the searcher gains no new additional information about the nodes v1 to vn−1

when being at vn, unless the nodes were visited beforehand.
For a diameter of 1, we add all possible missing edges with arbitrarily large

weight to make the graph a complete graph. Again, the searcher cannot use
any of the new edges without violating the competitive ratio. When being at a
node vi with 1 ≤ i ≤ n − 1, the searcher now sees outgoing edges to all nodes
vj with j < i, but this information is of no use to the searcher.

We now look at the randomized case. Similar to above, we consider the
graph from Figure 2, but to avoid case analysis we consider just graphs where n
is divisible by 12. The graph has a diameter of n− 1 as well: The edge distance
from vn

2 +1 to vn
2

is n − 1, also from vn
2

to vn
2−1 and vn

2−1 to vn
2−2, as the

shortest path each time is via the starting node vn. However, there is no node
with a radius of just 1, the nodes with the smallest radius of 1 + n/3 are the
two nodes v−1+2n/12 and v2n/12. For the 2n/3 nodes from vn

2 +1 to v−1+2n/12,
the radius decreases by 1 from n− 1 to 1 + n/3, while for the remaining nodes,
the radius increases from 1 +n/3 to n− 1 by 2 the further one is away from the
starting node vn.

The used construction scheme is a bit different to the deterministic case, we
depict both main ideas in Figure 4:

v1 v2 v3

vn−4vn−3vn−2

0 0 0 0

0

000

0 0 0

W

W

W

Figure 4: An example of the two techniques how to reduce the diameter of the graph in the
randomized case by adding edges with arbitrarily high weight W . The new lower edge from
vn−4 to vn−2 decreases the diameter by one and the two new outgoing edges from v1 decrease
the diameter by one as well. In the latter case, two edges have to be introduced to not allow
the searcher to break symmetry when deciding whether to continue at v3 or vn−3.

When an edge is introduced from v1 to v4, then an edge from v1 to vn−4

has to be introduced as well, as else the searcher could break the symmetry
between v4 and vn−4 when visiting the node v3 for the first time. However, an
edge with arbitrarily large weight from one of the nodes vn/2−1, . . . , vn/2−1+i

with 0 ≤ i ≤ n/2 to any of the nodes in the range vn/2+i, . . . , vn does not help

14

the searcher, because when this edge is seen for the first time, the searcher just
needs to return to vn and is done with the exploration. Thus, it is possible to
reduce the radius of all the nodes vn/2−1, . . . , vn to any value of at most n/2.
In a similar way, adding an edge with arbitrarily large weight from any node to
the node vn/2−1 does not help the searcher with exploring the graph. The same
holds for adding edges with arbitrarily large weights from vn/2−1 to any other
node. Combining these techniques allows to reduce the diameter from n− 1 to
any value down to 2, at which point all nodes would have an edge to vn/2−1 and
vn/2−1 would have an edge to all other nodes.

To reach a diameter of 1, one would turn the graph into a complete graph by
adding all possible missing edges, again with an arbitrarily large weight: Now,
if there would be, e.g., an edge from v1 to v4, there is also an edge from v1

to vn−4, as the graph is complete. Like before, the searcher cannot use any of
these new edges without violating the competitive ratio.

Corollary 14. For graphs of any maximum (respectively minimum) incom-
ing/outgoing degree from 2 (respectively 1) to n − 1, no online algorithm can
achieve a better competitive ratio on exploring all nodes of strongly connected
directed weighted graphs than n/4.

A graph is called euclidean, if its nodes can be embedded into the euclidean
plane with the edge weights being equivalent to the length of the straight edge
in the embedding, cf. [60].

Theorem 15. No online algorithm can achieve a better competitive ratio on
exploring all nodes of strongly connected directed planar euclidean graphs than
n− 2− ε∗ (deterministic) or n/4− ε∗ (randomized) for any ε∗ > 0.

Proof. We again consider the graph in Figure 2 for the randomized case and
replace all edge weights with a fixed εr, with 1/100 > εr > 0 and ε∗/n2 > εr,
and embed it as a planar euclidean graph like shown in the figure, except for
the node vn−1 – which will be placed next. To reach the lower bound for
competitivity, we replace both edge weights of the incoming and the outgoing
edge for vn−1 with 1/2. Now consider a circle with radius 1

2 through the nodes
vn and vn−2, with the nodes v1 and vn−3 not being inside the circle. We place
vn−1 in the center of the circle and obtain a proper planar euclidean embedding
of the constructed graph. As we chose εr to be small enough, we reach a lower
bound of n/4− ε∗.

For the deterministic case we consider the graph in Figure 1 and proceed in
a similar fashion. Let us fix a εd with 1/100 > εd > 0, ε∗/n2 > εd and construct
a circle of radius εd with vn being in the center of the circle and placing the
nodes v1 to vn−2 with distance εd/n on the cycle. Like in the randomized case,
we construct another circle of radius 1

2 through the nodes vn and vn−2, with
v1 and vn−3 not being inside the circle. We now place vn−1 in the middle of
that cycle, which means that the edge weights of both the incoming and the
outgoing edges are 1/2. We remove the edge from vn to vv−1, since it has no
longer the same weight than the other outgoing edges from vn. All other edge

15

weights are now ≤ εd. Notice that a deterministic algorithm can now only be
tricked n− 2 times. As we chose εd to be small enough, we reach a lower bound
of n− 2− ε∗.

A similar result also holds if all edge weights have to be of unit weight:

Corollary 16. No online algorithm can achieve a better competitive ratio on
exploring all nodes of strongly connected directed unit weight planar euclidean
graphs than n

4 + 1
2 −

2
n (deterministic) or n

8 + 3
4 −

1
n (randomized).

8. Other Exploration Models

In the following subsections we discuss five variations of the previously used
exploration model: Unique edge names in Subsection 8.1, seeing identifiers from
incoming edges in Subsection 8.2, deviating from strongly connected directed
graphs in Subsection 8.3, positive integer edge weights in Subsection 8.4, and
giving advice in Subsection 8.5. For the special case of embedding a planar graph
into a plane and letting the searcher see coordinates, we refer to Section 9.

8.1. Unique Edge Names

Our results also hold if the searcher cannot see the name of nodes at the
end of incident outgoing edges, but just the unique name of both incoming and
outgoing edges. When two nodes vi and vj are visited by the searcher, it knows
the name of all incident edges for vi and vj , therefore also the subgraph that is
spanned by vi and vj . If the searcher is at a node vi and does not know where
an incident outgoing edge ends, then the node at the end of that edge has not
been explored yet. In other words, the searcher has visited all nodes if and only
if it knows where each edge ends and starts. Since our greedy algorithms do not
utilize node names when selecting the next node to be explored, but just try to
get to a unexplored node as cheap as possible, our upper bounds still apply. This
holds as well for our lower bound examples if we use this modified exploration
model: every time we trick any online algorithm into making a wrong decision,
we give a set of options to choose from that look exactly the same for the online
searcher.

8.2. Incoming Edges

Let us assume that the searcher does not just see the names of the nodes
at the end of incident outgoing edges, but also the names of the nodes at the
other end of incident incoming edges. Our upper bound still applies, since the
algorithms can just choose to ignore that additional information. For the lower
bound however, we can no longer use the graphs from Figure 1 and Figure
2. For example when starting on the graph in Figure 1, the node vn−1 now
can be differentiated from the nodes v1, . . . , vn−2. Also when visiting vn−2, the
searcher can now differentiate vn−3 from v1, . . . , vn−4, since there is an edge
from vn−3 to vn−2. We can fix this problem by hiding this information with
adding additional nodes. For the example in Figure 1, we add n− 1 additional

16

nodes. For 1 ≤ i ≤ n − 1, remove the edge from vi to vi+1, add a new node
v+
i between them and add a edge from vi to v+

i and from v+
i to vi+1. The edge

weights of the two new edges is one half of the edge weight of the removed edge.
This decreases the lower bound by a factor of less than 2. We fix the graph
in Figure 2 in a similar way. We add n

2 − 3 nodes between the nodes vn
2 +1 to

vn−2. For n
2 + 1 ≤ i ≤ n− 2, remove the edge from vi to vi+1 add a new node

v+
i between them and add a edge from vi to v+

i and from v+
i to vi+1. The edge

weights of the two new edges are one half of the edge weight of the removed
edge. This decreases the lower bound by a factor of less than 1.5.

8.3. Connectivity

When exploring directed graphs (for both cases of just nodes or nodes and
edges), usually only strongly connected variants are considered, see for example
[1, 20, 21, 33, 50]. This ensures that every node is reachable from the starting
node and that the searcher can return to the starting node from every node.
If the directed graph is not strongly connected, then exploration is not feasible
(for example if two nodes have outgoing degree of 0).

8.4. Positive Integer Edge Weights

In Section 5 we studied the exploration of unweighted graphs, opposed to
weighted graphs before – where we just used the edge weights 0 and 1 for the
lower bounds in Section 3. One could also change the model to just allow
positive integer edge weights ranging from 1 to some W ∈ N>0, to prevent i)
any edge from having a weight of 0, and ii) to introduce a limit of W on how
much more costly traversing one edge can be compared to another.

We start with the deterministic case. Consider the graph from Figure 1, but
replace all edge weights of 0 with 1 and assign the single edge back to the start
vn with weight 1 a weight of W . The optimal tour will use the edge with weight
W just once, while a deterministic exploration algorithm will use it n− 1 times
in the worst case. An optimal tour has now a cost of n − 1 + W − 1, and any

deterministic algorithm can incur a cost of n2

2 + n
2 − 1 + (n− 1)(W − 1).

For the randomized case, we consider the graph from Figure 3.2, and proceed
in an analogous fashion: I.e., we replace all edge weights of 0 with 1 and assign
the edge back to the start vn with weight 1 a weight of W . The optimal tour has
a cost of n+W − 2 as well, and the expected costs for a randomized algorithm

are at least n2

8 + 3n
4 − 1 + n

4 (W − 1).
Thus, if we consider the asymptotic behavior of our lower bounds, they

converge to the undirected case for any fixed W with n → ∞ and towards the
weighted case for any fixed n with W →∞.

8.5. Advice Complexity

The authors of [23] studied the problem of advice complexity for exploring
undirected graphs7. They showed that there is a family of graphs where a

7Tree exploration was studied in [41] and searching for a node was studied in [48, 61].

17

searcher needs to be given at least Ω(n ln(n)) bits of information (from an all-
knowing outside source before starting) to explore the graphs with optimal cost.
We note that a greedy algorithm in any directed or undirected graph can solve
the graph exploration problem optimally with O(n log(n)) bits: We give a list
of the nodes from an optimal tour OPT in the order they first appear in OPT
to the searcher. Since the ID of every node can be uniquely represented in size
O(log(n)) bits, the lower bound of Ω(n log(n)) from [23] is a sharp bound of
Θ(n ln(n)) bits for both directed and undirected graphs.

9. Adding Geometry

In the previous sections, the searcher could easily be fooled by multiple
options, out of which only one in some sense was correct. In Figure 1, the
searcher had to guess the right node out of n−1 nodes when being at the starting
node, while in Figure 2, the searcher had to choose the right node out of two
options a linear number of times. As all options were indistinguishable except
for the nodes’ identifiers, it was essentially a guessing game. Various changes of
the model have been discussed in this article up to this point, though no non-
artifical ones offered a way out of a multiplicative linear overhead. One model
change that could offer a way out is to embed the nodes of a planar graph into
the euclidean plane, set the edge weights to the euclidean distance between the
respective nodes and to supply the searcher with the coordinates of all nodes at
outgoing incident edges. Then, in the counterexamples of Figure 1 and Figure 2,
the searcher could easily achieve better competitive ratios. Nonetheless, we will
show in this section that even such a geometric model has a linear multiplicative
overhead.

Thus, we will increase the power of the searcher in this section compared to
the model defined in Subsection 1.1 (changes in bold): A searcher that explores
an euclidean graph via some deterministic or randomized algorithm has unlim-
ited computational power and memory, and may only traverse edges from tail
to head. Upon arriving at a node v, the following information is made available
to the searcher: all outgoing incident edges including their weight, plus the IDs
and the coordinates of the corresponding nodes at the head of these edges.

We indicate this more powerful searcher by denoting that the searcher has
access to the coordinates of each known node.

Theorem 17. No randomized online algorithm can achieve a better competi-
tive ratio on exploring all nodes of strongly connected directed planar euclidean
graphs than n

16 + 5
8 + 1

2n −ε ∈ Ω(n) for any ε > 0, even if the searcher has access
to the coordinates of each known node.

The proof idea is essentially as follows: Even with geometric information,
the searcher can still only guess in some cases what the right way to go would
be. Following the idea of the proofs of Theorem 2 and Theorem 6, we can
construct a family of graphs where the searcher has to go back to the start a
linear number of times in expectation, while an optimal tour only revisits nodes

18

a constant number of times, resulting in a linear multiplicative overhead for any
randomized or deterministic algorithm.

v1

v3

v5

v7

v2 v4

v6

v8

Layer 0 Layer 1 Layer 2 Layer 3

Figure 5: In this graph the starting node s is v1 on the left side of the image. When the
searcher has never visited layer 1 before, it is unknown if v3 or v4 advances to layer 2. Even
with the knowledge of the coordinates of v3 or v4, both nodes could be the correct ones to
choose. While the correct node in layer 1 in this example is the top node v3, it might as
well have been the bottom node (as it is the case in layer 2). Each time the searcher chooses
the wrong node, it has to go back to the start. An all-knowing algorithm however only
needs to go back to v1 once before finishing the tour, by traversing the graph in the sequence
v1, v3, v6, v7, v5, v1, v3, v6, v8, v4, v2, v1.

Proof. We construct a family of planar euclidean graphs with an even amount
of n ≥ 6 nodes v1, v2, . . . , vn, which consists exactly of all graphs which fit the
following description: The nodes are organized in n/2 layers, with the nodes
v1, v2 being layer 0, the nodes v3, v4 being layer 1, . . . , and the nodes vn−1, vn
being layer n/2− 1.

For the remainder of the proof, we will tag each node being either a “correct”
or a “wrong” node, with the idea that the correct nodes in the intermediate
layers are those that need to be visited to advance to the next layer: For each
layer from 1 to n/2− 2, one node is the correct node and the other node is the

19

wrong node. In these n/2 − 2 layers, the correct node has two outgoing edges
to both nodes of the next layer, with the node v1 having two outgoing edges to
the nodes v3, v4 as well. For the sake of completeness of tagging of all nodes
being correct or wrong, the first layer 0 has two wrong nodes and the last layer
n/2− 1 has also just two wrong nodes. Furthermore, all nodes with odd index
will be denoted as top nodes and all nodes with even index as bottom nodes.
In each layer i from 1 to n/2− 1, each wrong node can be top or bottom. Note
that the layers from 1 to n/2 − 2 each only have one wrong node. If it is a
top node, it has an outgoing edge to the top wrong node with the largest layer
smaller than i. The same holds analogously if the wrong node is a bottom node.
Lastly, the node v2 has one outgoing edge to v1. Thus, the layers 0 to n/2− 2
have each three outgoing edges and the layer n/2− 1 has exactly two outgoing
edges, resulting in m = 3(n/2− 1) + 2 = 1.5n− 1 edges. The starting node for
the searcher is set as the node v1.

The only thing needed to complete the description of each graph is the actual
embedding, i.e., the two-dimensional coordinates of each node. Let 0 < ε′ < 1.
Each top node in layer i has the coordinates (i, i2 · ε′), while each bottom node
in layer i > 0 has the coordinates (i,−i2 · ε′). The missing bottom node v2

in layer 0 has the coordinates (0,−ε′). We note that with to the choice of the
y-coordinates (with i2 · ε′), the graph is planar. An example with n = 8 nodes
can be found in Figure 5.

We first describe an optimal tour8: The searcher starts by advancing from
layer to layer via the correct nodes, then picking the top node in the last layer,
and visits all wrong top nodes on the way back to the start. This is repeated once
more, but on the way back, all wrong bottom nodes are visited. The cost of each
edge from a layer i−1 to a layer i (or from a layer i to a layer i−1) can be upper
bounded by

√
12 + (2i2 · ε′)2 =

√
1 + 4i4 · ε′2 < 1 + 4i4 · ε′ < 1 + 4(n/2)4 · ε′ =

1 + n4/4 · ε′. I.e., the unique path from v1 to vn−1 or vn has a cost of at
most n/2 + n/2 · n4/4 · ε′. Due to the triangle inequality and the upper bound
above, the cost of the unique path from layer n/2−1 to layer 0 along the top or
bottom wrong nodes can be upper bounded by the cost of n/2 + n/2 · n4/4 · ε′
as well. If we add the cost of going from v2 to v1, this results in a total cost of
ε′ + 4 ·

(
n/2 + n/2 · n4/4 · ε′

)
= 2n+ ε′ ·

(
2n · n4/4

)
+ ε′ = 2n+ ε′

(
1 + n5/2

)
.

We now consider the behavior of any randomized online algorithm starting
from v1. Each time the algorithm wants to move from layer i to layer i + 1
for the first time, it has to decide with some probability if the top or bottom
node is chosen. Note that in the example of Figure 2, the searcher could always
choose the top node and explore the graph in an optimal fashion. However, for
each strategy chosen and for each n ≥ 6, there is at least one graph where the
searcher will pick the wrong node with a probability of at least 0.5. For ease
of readability, we will decrease the weight of edges in the following calculations.
This will only improve the cost of an algorithm. Note that the actual strategy

8We note that any actual tour of all nodes can be used as an upper bound for an optimal
tour that visits all nodes and returns to the start.

20

stays untouched. Each edge from a layer i to a layer i+ 1 will have a weight of
exactly one, while the unique tour from a wrong node in layer i to layer 0 will
have a cost of i. The edge from v2 to v1 will have a cost of 0.

We can now reason analogously as in the proofs of Theorem 2 and Theorem
6: The cost for choosing the wrong edge in layer 0 is 2, for layer 1 is 4, for layer
2 is 6, . . . , for layer n/2−3 is n−4. Thus, before the searcher starts from v1 and
knows a correct way to the layer n/2− 1 for the first time, an expected cost of

0.5 (2 + 4 + 6 + · · ·+ n− 4) = 0.5
(

(n/2− 2)
2

+ (n/2− 2)
)

= n2/8− 3n/4 + 1

is accrued. Afterwards, the graph can be explored with a cost of 2n, resulting
in a total expected cost of at least n2/8 + 5n/4 + 1 for any randomized or
deterministic online algorithm.

Recall that the cost of an optimal tour can be bounded from above by
2n+ε′

(
1 + n5/2

)
. Thus, for every ε′′ > 0 and every n ≥ 6 one can choose ε′ > 0

small enough s.t. no randomized algorithm can achieve a better competitive ratio
than n

16 + 5
8 + 1

2n − ε
′′ ∈ Ω(n).

Corollary 18. Exploring all nodes of strongly connected directed planar eu-
clidean graphs has a competitive ratio of Θ(n), even when considering random-
ized algorithms where the searcher has access to the coordinates of each known
node.

Lastly, we note that the above corollary holds even when supplying the
searcher with the coordinate of every node in the graph before starting the
exploration, as long as the searcher is not informed about the edges beforehand.

10. Concluding Remarks

We studied the online exploration of all nodes in directed graphs by a single
searcher, both deterministic and randomized. As it turns out, this problem
deviates strongly from the corresponding problem in undirected graphs. Apart
from rather artificial scenarios, it seems to us that there is no way to escape
a multiplicative linear overhead in the competitive ratio, even if coordinates of
the nodes are available to the searcher.

Acknowledgements

We would like to thank the anonymous reviewers of the 16th International
Conference on Principles of Distributed Systems (OPODIS) for their helpful
comments on our preliminary extended abstract [37]. The first author would
also like to thank Cristina Pérez Arranz for supplying him with a copy of [15].
Furthermore, we would like to thank the anonymous reviewers of this journal
article for their helpful comments as well, among many other things they allowed
us to improve the lower bound of the competitive ratio for searching a node with
randomized algorithms from Ω(n) to Ω(n2).

21

11. References

[1] Susanne Albers and Monika Rauch Henzinger. Exploring unknown envi-
ronments. SIAM J. Comput., 29(4):1164–1188, 2000.

[2] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis
Gharan, and Amin Saberi. An o(log n/ log log n)-approximation algorithm
for the asymmetric traveling salesman problem. In Moses Charikar, editor,
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 379–389. SIAM, 2010.

[3] Giorgio Ausiello, Vincenzo Bonifaci, and Luigi Laura. The on-line asym-
metric traveling salesman problem. J. Discrete Algorithms, 6(2):290–298,
2008.

[4] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal.
Anonymous graph exploration without collision by mobile robots. Inf. Pro-
cess. Lett., 109(2):98–103, 2008.

[5] Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud, Nico-
las Nisse, Nicola Santoro, and Dimitrios M. Thilikos. Connected graph
searching. Inf. Comput., 219:1–16, 2012.

[6] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Cap-
ture of an intruder by mobile agents. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2002, Winnipeg, Manitoba, Canada, August 11-13, 2002, pages 200–209.
ACM, 2002.

[7] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil P.
Vadhan. The power of a pebble: Exploring and mapping directed graphs.
Inf. Comput., 176(1):1–21, 2002.

[8] Piotr Berman. On-line searching and navigation. In Amos Fiat and Ger-
hard J. Woeginger, editors, Online Algorithms, The State of the Art, vol-
ume 1442 of Lecture Notes in Computer Science, pages 232–241. Springer,
1996.

[9] Markus Bläser. A new approximation algorithm for the asymmetric TSP
with triangle inequality. ACM Transactions on Algorithms, 4(4):47:1–47:15,
2008.

[10] Lélia Blin, Janna Burman, and Nicolas Nisse. Exclusive graph searching.
In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms -
ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France,
September 2-4, 2013. Proceedings, volume 8125 of Lecture Notes in Com-
puter Science, pages 181–192. Springer, 2013.

22

[11] Anthony Bonato and Richard J. Nowakowski. The game of cops and rob-
bers on graphs, volume 61 of Student Mathematical Library. American
Mathematical Society, Providence, RI, 2011.

[12] Allan Borodin and Ran El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[13] Peter Brass, Flavio Cabrera-Mora, Andrea Gasparri, and Jizhong Xiao.
Multirobot tree and graph exploration. IEEE Transactions on Robotics,
27(4):707–717, 2011.

[14] Peter Brass, Ivo Vigan, and Ning Xu. Improved analysis of a multirobot
graph exploration strategy. In 13th International Conference on Control
Automation Robotics & Vision, ICARCV 2014, Singapore, December 10-
12, 2014, pages 1906–1910. IEEE, 2014.

[15] Richard Breisch. An intuitive approach to speleotopology. Southwestern
cavers, 6(5):72–78, 1967.

[16] Richard Breisch. Lost in a Cave: applying graph theory to cave exploration.
National Speleological Society, 2012.

[17] Wolfram Burgard, Mark Moors, Dieter Fox, Reid G. Simmons, and Sebas-
tian Thrun. Collaborative multi-robot exploration. In Proceedings of the
IEEE International Conference on Robotics and Automation, ICRA 2000,
April 24-28, 2000, San Francisco, CA, USA, pages 476–481. IEEE, 2000.

[18] Jérémie Chalopin, Paola Flocchini, Bernard Mans, and Nicola Santoro.
Network exploration by silent and oblivious robots. In Dimitrios M. Thi-
likos, editor, Graph Theoretic Concepts in Computer Science - 36th In-
ternational Workshop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010
Revised Papers, volume 6410 of Lecture Notes in Computer Science, pages
208–219, 2010.

[19] Shantanu Das, Paola Flocchini, Shay Kutten, Amiya Nayak, and Nicola
Santoro. Map construction of unknown graphs by multiple agents. Theor.
Comput. Sci., 385(1-3):34–48, 2007.

[20] Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph
(extended abstract). In 31st Annual Symposium on Foundations of Com-
puter Science, STOC 1990, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 355–361. IEEE Computer Society, 1990.

[21] Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph.
Journal of Graph Theory, 32(3):265–297, 1999.

[22] Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc.
Tree exploration with little memory. J. Algorithms, 51(1):38–63, 2004.

23

[23] Stefan Dobrev, Rastislav Královic, and Euripides Markou. Online graph
exploration with advice. In Guy Even and Magnús M. Halldórsson, edi-
tors, Structural Information and Communication Complexity - 19th Inter-
national Colloquium, SIROCCO 2012, Reykjavik, Iceland, June 30-July 2,
2012, Revised Selected Papers, volume 7355 of Lecture Notes in Computer
Science, pages 267–278. Springer, 2012.

[24] Miroslaw Dynia, Jakub Lopuszanski, and Christian Schindelhauer. Why
robots need maps. In Giuseppe Prencipe and Shmuel Zaks, editors, Struc-
tural Information and Communication Complexity, 14th International Col-
loquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007, Proceed-
ings, volume 4474 of Lecture Notes in Computer Science, pages 41–50.
Springer, 2007.

[25] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wat-
tenhofer. How many ants does it take to find the food? In Magnús M.
Halldórsson, editor, Structural Information and Communication Complex-
ity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan,
July 23-25, 2014. Proceedings, volume 8576 of Lecture Notes in Computer
Science, pages 263–278. Springer, 2014.

[26] Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving
the ANTS problem with asynchronous finite state machines. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
II, volume 8573 of Lecture Notes in Computer Science, pages 471–482.
Springer, 2014.

[27] Lars Engebretsen. An explicit lower bound for TSP with distances one and
two. Algorithmica, 35(4):301–318, 2003.

[28] Uriel Feige and Mohit Singh. Improved approximation ratios for traveling
salesperson tours and paths in directed graphs. In Moses Charikar, Klaus
Jansen, Omer Reingold, and José D. P. Rolim, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, 10th International Workshop, APPROX, and 11th International
Workshop, RANDOM, Princeton, NJ, USA, August 20-22, 2007, Proceed-
ings, volume 4627 of Lecture Notes in Computer Science, pages 104–118.
Springer, 2007.

[29] Ofer Feinerman and Amos Korman. Memory lower bounds for randomized
collaborative search and implications for biology. In Marcos K. Aguilera,
editor, Distributed Computing - 26th International Symposium, DISC 2012,
Salvador, Brazil, October 16-18, 2012. Proceedings, volume 7611 of Lecture
Notes in Computer Science, pages 61–75. Springer, 2012.

24

[30] Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sébastien Sereni.
Collaborative search on the plane without communication. In Darek Kowal-
ski and Alessandro Panconesi, editors, ACM Symposium on Principles of
Distributed Computing, PODC 2012, Funchal, Madeira, Portugal, July 16-
18, 2012, pages 77–86. ACM, 2012.

[31] Rudolf Fleischer, Thomas Kamphans, Rolf Klein, Elmar Langetepe, and
Gerhard Trippen. Competitive online approximation of the optimal search
ratio. SIAM J. Comput., 38(3):881–898, 2008.

[32] Rudolf Fleischer and Gerhard Trippen. Experimental studies of graph
traversal algorithms. In Klaus Jansen, Marian Margraf, Monaldo Mastro-
lilli, and José D. P. Rolim, editors, Experimental and Efficient Algorithms,
Second International Workshop, WEA 2003, Ascona, Switzerland, May 26-
28, 2003, Proceedings, volume 2647 of Lecture Notes in Computer Science,
pages 120–133. Springer, 2003.

[33] Rudolf Fleischer and Gerhard Trippen. Exploring an unknown graph effi-
ciently. In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms
- ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain,
October 3-6, 2005, Proceedings, volume 3669 of Lecture Notes in Computer
Science, pages 11–22. Springer, 2005.

[34] Fedor V. Fomin, Pierre Fraigniaud, Nicolas Nisse, and Dimitrios M. Thi-
likos. Report on GRASTA 2014. Research report, 6th Workshop on GRAph
Searching, Theory and Applications, 2014.

[35] Fedor V. Fomin, Pierre Fraigniaud, and Dimitrios M. Thilikos, editors.
Special issue on graph searching, volume 399(3). Theor. Comput. Sci.,
2008.

[36] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on
guaranteed graph searching. Theor. Comput. Sci., 399(3):236–245, 2008.

[37] Klaus-Tycho Förster and Roger Wattenhofer. Directed graph exploration.
In Roberto Baldoni, Paola Flocchini, and Binoy Ravindran, editors, Princi-
ples of Distributed Systems, 16th International Conference, OPODIS 2012,
Rome, Italy, December 18-20, 2012. Proceedings, volume 7702 of Lecture
Notes in Computer Science, pages 151–165. Springer, 2012.

[38] Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej
Pelc. Collective tree exploration. Networks, 48(3):166–177, 2006.

[39] Pierre Fraigniaud and David Ilcinkas. Digraphs exploration with little mem-
ory. In Volker Diekert and Michel Habib, editors, STACS 2004, 21st An-
nual Symposium on Theoretical Aspects of Computer Science, Montpellier,
France, March 25-27, 2004, Proceedings, volume 2996 of Lecture Notes in
Computer Science, pages 246–257. Springer, 2004.

25

[40] Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Pe-
leg. Graph exploration by a finite automaton. Theor. Comput. Sci., 345(2-
3):331–344, 2005.

[41] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Tree exploration with
advice. Inf. Comput., 206(11):1276–1287, 2008.

[42] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-
case performance of some algorithms for the asymmetric traveling salesman
problem. Networks, 12(1):23–39, 1982.

[43] Shmuel Gal. Search Games. Academic Press, 1980.

[44] Bruce Golden, S. Raghavan, and Edward Wasil, editors. The Vehicle Rout-
ing Problem: Latest Advances and New Challenges. Springer US, 2008.

[45] Cor A. J. Hurkens and Gerhard J. Woeginger. On the nearest neighbor
rule for the traveling salesman problem. Oper. Res. Lett., 32(1):1–4, 2004.

[46] Bala Kalyanasundaram and Kirk Pruhs. Constructing competitive tours
from local information. Theor. Comput. Sci., 130(1):125–138, 1994.

[47] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko.
Approximation algorithms for asymmetric TSP by decomposing directed
regular multigraphs. J. ACM, 52(4):602–626, 2005.

[48] Dennis Komm, Rastislav Královic, Richard Královic, and Jasmin Smula.
Treasure hunt with advice. In Christian Scheideler, editor, Structural
Information and Communication Complexity - 22nd International Col-
loquium, SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-
Proceedings, volume 9439 of Lecture Notes in Computer Science, pages
328–341. Springer, 2015.

[49] Fabian Kuhn and Rotem Oshman. The complexity of data aggregation in
directed networks. In David Peleg, editor, Distributed Computing - 25th
International Symposium, DISC 2011, Rome, Italy, September 20-22, 2011.
Proceedings, volume 6950 of Lecture Notes in Computer Science, pages 416–
431. Springer, 2011.

[50] Shay Kutten. Stepwise construction of an efficient distributed traversing
algorithm for general strongly connected directed networks or: Traversing
one way streets with no map. In ICCC, pages 446–452, 1988.

[51] Nimrod Megiddo, S. Louis Hakimi, M. R. Garey, David S. Johnson, and
Christos H. Papadimitriou. The complexity of searching a graph. J. ACM,
35(1):18–44, 1988.

[52] Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph ex-
ploration: New results on old and new algorithms. Theor. Comput. Sci.,
463:62–72, 2012.

26

[53] Seyed M. Mirtaheri, Mustafa Emre Dinçtürk, Salman Hooshmand, Gre-
gor von Bochmann, Guy-Vincent Jourdan, and Iosif-Viorel Onut. A brief
history of web crawlers. In James R. Cordy, Krzystof Czarnecki, and Sang-
Ah Han, editors, Center for Advanced Studies on Collaborative Research,
CASCON 2013, Toronto, ON, Canada, November 18-20, 2013, pages 40–
54. IBM / ACM, 2013.

[54] Shuichi Miyazaki, Naoyuki Morimoto, and Yasuo Okabe. The online
graph exploration problem on restricted graphs. IEICE Transactions, 92-
D(9):1620–1627, 2009.

[55] Torrence D. Parsons. Pursuit-evasion in a graph. In Yousef Alavi and
DonR. Lick, editors, Theory and Applications of Graphs, volume 642 of
Lecture Notes in Mathematics, pages 426–441. Springer Berlin Heidelberg,
1978.

[56] Torrence D. Parsons. The search number of a connected graph. In Proc.
9th southeast. Conf. on Combinatorics, graph theory, and computing, 1978.

[57] Ravi Prakash. Unidirectional links prove costly in wireless ad hoc networks.
In Proceedings of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications (DIAL-M 1999),
Seattle, Washington, USA, August 20, 1999, pages 15–22. ACM, 1999.

[58] Bruno F. Ribeiro, Pinghui Wang, Fabricio Murai, and Don Towsley. Sam-
pling directed graphs with random walks. In Albert G. Greenberg and
Kazem Sohraby, editors, Proceedings of the IEEE INFOCOM 2012, Or-
lando, FL, USA, March 25-30, 2012, pages 1692–1700. IEEE, 2012.

[59] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. An
analysis of several heuristics for the traveling salesman problem. SIAM J.
Comput., 6(3):563–581, 1977.

[60] Robert Sedgewick and Jeffrey Scott Vitter. Shortest paths in euclidean
graphs. Algorithmica, 1(1):31–48, 1986.

[61] Jasmin Smula. Information Content of Online Problems: Advice versus
Determinism and Randomization. PhD thesis, ETH Zürich, Zürich, 2015.

[62] Dimitrios M. Thilikos, Fedor V. Fomin, Pierre Fraigniaud, and Stephan
Kreutzer, editors. Special Issue on Theory and Applications of Graph
Searching Problems, volume 463. Theor. Comput. Sci., 2012.

[63] Sundar Vishwanathan. An approximation algorithm for the asymmetric
travelling salesman problem with distances one and two. Inf. Process. Lett.,
44(6):297–302, 1992.

27

