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Abstract. We study the problem of exploring all nodes of an unknown
directed graph. A searcher has to construct a tour that visits all nodes,
but only has information about the parts of the graph it already visited.
The goal is to minimize the cost of such a tour. In this paper, we present
upper and lower bounds for both the deterministic and the randomized
online version of exploring all nodes of directed graphs. Our bounds are
sharp or sharp up to a small constant, depending on the specific model.
Essentially, exploring a directed graph has a multiplicative overhead lin-
ear in the number of nodes. If one wants to search for just a node in
unweighted directed graphs, a greedy algorithm with quadratic multi-
plicative overhead can only be improved by a factor of at most two. We
were also able to show that randomly choosing a starting point does not
improve lower bounds beyond a small constant factor.

Keywords: : online algorithms, graph exploration, mobile agents and
autonomous robots

1 Introduction

The hotel concierge promised that this tourist attraction is easy to find, just a
short drive in your car, and she was right. However, how do you now get back
to your hotel, in this cursed city full of one-way streets? After finally being back
at your hotel, totally exhausted, you have a hunch that one-way streets render
navigation more difficult, but is it true?!

In this paper we quantitatively analyze navigation problems in unknown
directed graphs from a worst-case perspective. We present a whole flurry of
tight upper and lower bounds, showing that directed graphs exhibit a penalty
in the order of the number of nodes of the graph.

Navigation problems in directed graphs are not restricted to the playful in-
troductory example of one-way streets. Staying in the car context, if we are for
instance interested in minimizing gasoline cost, any hill-side city becomes di-
rected, as driving downhill is virtually free, whereas driving uphill may incur a
high cost. As such, when applying a cost measure, edges of a graph must often
be represented by two directed edges with an appropriate cost.

The most important applications for investigating navigation in directed
graphs are however beyond street networks. In computer networks, for instance,
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directed graphs have for instance been studied in the context data aggregation
[29], routing [33], or traversing social networks [34]. Brass et. al. [7] compared
the exploration of directed graphs to exploring the state space of a finite au-
tomaton, where the states are nodes and the transitions are edges. Deng and
Papadimitriou [15] proposed the exploration of directed graphs as a model for
learning, for example for a newborn: current states can be detected by sensor
information (like eyes or ears) and possible actions leading to other states are
known, but it is not known what the situation will be at a not yet explored state.
And last not least, exploring an unknown graph is considered one of the funda-
mental problems in robotics [11, 25]. Because of all these applications, directed
graph exploration will be the main focus in this paper. In addition, we look at
other navigation problems, such as searching for a node, which turn out to be
related to exploration.

1.1 Model

We only consider the common model of strongly connected directed graphs [1,
14, 15, 25, 30], since a searcher else might get stuck right away (Section 8). We
call a graph explored, if a searcher starting from some node s has visited all nodes
and returned to s. The cost of such an online exploration tour is measured by
the total sum of the weight of the traversed edges. It is allowed (and might be
necessary) to visit nodes multiple times, but if we traverse an edge again it costs
the same as for the first time. The competitive ratio of a tour is measured by
the ratio of the cost of the tour divided by the cost of a tour of minimum cost.
The competitive ratio of an algorithm is measured by the largest competitive
ratio of all tours generated over all input graphs. For randomized algorithms, it
is the largest expected competitive ratio.

For ease of notation, in the remainder of our paper a graph G = (V,E) has
|V | = n ≥ 6 nodes and |E| = m edges. All nodes have unique IDs, and all
edges have non-negative weights. A searcher has unlimited computational power
and memory and may only traverse edges from tail to head. Upon arriving at a
node v, the following information is made available: all outgoing incident edges
including their weight, plus the IDs (cf. [27, 31]) of the corresponding nodes at
the head of these edges. Graph exploration is an online problem since only partial
information about the graph is available [9, 10]. For other exploration models,
e.g. unique edge names or information about incoming edges, we refer to Section
8.

1.2 Results

In our paper we give the first matching lower and upper bounds for the com-
petitive exploration of an unknown directed graph. Our results are sharp for
both the weighted and the unweighted case. For randomized exploration, our
results only have a gap of less than four. We prove similar results for various
commonly used graph classes, like planar or complete graphs or bounding dif-
ferent parameters like degree or diameter. We also discuss changes in the model,
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like randomly choosing a starting position or more powerful searchers. We are
able to show that in all these cases, the exploration of unknown directed graphs
has a multiplicative overhead of Θ(n).

In a similar fashion, searching for a single node has Θ(n2) overhead if all
edges have unit weight (see Section 6). Furthermore, we look at the impact of
randomly choosing a starting point. It turns out that even the best possible
starting node can decrease any lower bound only by a factor of at most four.

To the best of our knowledge, sharp results regarding deterministic and ran-
domized exploration of directed graphs have not yet been published. We sum-
marize our main results in Table 1.

Table 1. Short overview of our main results: In the weighted general case we only need
to use two different edge weights to achieve the bounds. A randomized starting node
can only decrease our lower bounds by a factor of four.

hhhhhhhhhhhhhhtype of graph
competitivity

lower bound upper bound multiplicative gap

(deterministic) general*c n− 1 n− 1 sharp

(randomized) general*+c n
4

n− 1 ≤ 4

(determ.) unweighted general* n
2

+ 1
2
− 1

n
n
2

+ 1
2
− 1

n
sharp

(random.) unweighted general* n
8

+ 3
4
− 1

n
n
2

+ 1
2
− 1

n
≤ 4

(deterministic) euclidean planar n− 2 − ε̄ n− 1 ≤ 1.25 + ε

(randomized) euclidean planar n
4
− ε̄ n− 1 ≤ 4 + ε

(d.) unit weight euclidean planar n
4

+ 1
2
− 2

n
n
2

+ 1
2
− 1

n
≤ 2

(r.) unit weight euclidean planar n
8

+ 3
4
− 1

n
n
2

+ 1
2
− 1

n
≤ 4

* also applies to planar graphs and graphs that satisfy the triangle inequality

c also applies to complete graphs and graphs with any diameter from 1 to n− 1

+ also applies to graphs with any maximum incoming/outgoing degree from 2 to
n− 1 and to graphs with any minimum incoming/outgoing degree from 1 to n− 1

2 Related Work

The offline variant, i.e. where all information about the graph is available to the
algorithm, of directed graph exploration is the asymmetric travelling salesperson
problem, where it is allowed to visit nodes multiple times. Unlike the undirected
case, there is no known polynomial approximation algorithm with constant ap-
proximation ratio [3]. An approximation ratio of O(log n) was achieved in [22],
the constant was improved over time, e.g. [8, 28]; the best result known to us
is 2

3 log2 n [19]. There exists a result of O(log n/ log log n) for the randomized
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case [2]. If only the edge weights 1 and 2 are allowed, it is approximable with a
ratio of 17/12 [37], with a NP-hard lower bound of 2805/2804− ε [18]. An online
variant of asymmetric TSP is as follows: A searcher knows the graph, but the
nodes to visit get determined during the runtime by an adversary [3].

More closely related to the online exploration of all nodes of directed graphs
is the online exploration of all nodes of undirected graphs. While a greedy algo-
rithm achieves a competitive ratio of Θ(log n) [35], it is not known if a constant
competitive ratio for general graphs is possible [31]. For cycles there is an algo-

rithm with a sharp competitive ratio of 1+
√
3

2 , while for trees depth-first search
is optimal [32]. Recently, the best known lower bound for general graphs was im-
proved from 2− ε [32] to 5/2− ε [16]. For planar graphs a sophisticated variant
of depth-first search named ShortCut by Kalyanasundaram and Pruhs achieves
a competitive ratio of 16 [27]. Their result was recently extended for graphs of
genus g to 16(1 + 2g) [31]. If there are just k different edge weights, there ex-
ists an algorithm with competitive ratio 2k [31]. Fleischer et. al. considered the
problem of searching just for a node instead of a tour in [23]. They model their
searcher as “blind”, meaning that it can only sense the outgoing edges, but not
any incoming edges or adjacent neighbors. They use the example of a modified
clique to show a lower bound on the cost of Ω(n2) for unit weights, since a blind
searcher might visit nearly all edges.

Another related problem is the exploration of all edges of a strongly connected
directed graph. Here the difficulty of the problem depends on another parameter,
introduced by Kutten [30]: the eulerian deficiency d of a graph, which is the
minimum amount of edges that need to be added to make the graph eulerian.
A graph is eulerian, if there exists a path that visits all edges exactly once. If
a graph is eulerian, then it can be traversed in an online fashion with at most
2m edge traversals [14], which directly implies at most 4m edge traversals in the
undirected case, see for example [1]. For d = 1, a ratio of 4 is optimal [15]. An
upper bound only dependent polynomially in d for the directed case was given
by Fleischer and Trippen [25], their algorithm is O(d8)-competitive. There exists
also a lower bound of Ω(d)-competitivity for the deterministic case and a lower
bound of Ω( d

log d )-competitivity for the randomized case [14, 15]. Furthermore,
graph exploration has also been considered with restricted memory models or
multiple searchers, see for example [4, 6, 12, 13, 17, 20, 21].

There seems to be no known randomized algorithm for the exploration of
graphs (wether it be just nodes or edges) that gives better bounds than the
known deterministic algorithms. Experimental studies of randomized algorithms
for exploring all edges and nodes of a strongly connected directed graph have
been done in [24].

The similar sounding term graph searching, which was first discussed by
Breisch and Parsons (cf. [5]), stands for another problem: A number of agents
has to capture an intruder, or as formulated in the original papers, a party of
searchers has to find a person lost in a cave. For an overview of other online
navigation tasks we refer to [10].
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3 Lower Bounds for General Graphs

We note that in this section we only use the weights 0 and 1 in the weighted case
for lower bounds. If only integers of size at least one are allowed as edge weights,
then analog results can be achieved by replacing 0 with 1 and 1 with d1/εe for
arbitrarily small ε > 0. Furthermore, the unique names of nodes in the remainder
of the paper are just fixed for the convenience of the reader, an adversary can
permute them in any way it desires – therefore an online algorithm can derive no
further information from just the unique name of an unexplored node. Also the
graphs used in the lower bounds are planar and satisfy the triangle inequality.

3.1 Deterministic Online Algorithms

Theorem 1. No deterministic online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n− 1.

Proof. Consider the graph in Figure 1. A searcher using any deterministic online
algorithm starting at node vn cannot differentiate between the nodes v1,v2,. . .,
vn−1, they all look the same, since it can only see the outgoing edges from vn
and the nodes at the end of these edges. In the worst case, the searcher chooses
to visit the node vn−1 first, then is forced to go back to vn, then to visit vn−2
and so on, until it visits v1 and then returns to vn. The cost of this route is n−1,
while an optimal tour first visits v1 and then goes to vn, inducing a total cost
of just 1. This yields a competitive ratio of n − 1 for any deterministic online
algorithm. ut

vnv1

v2

v3

vn−1

vn−2

vn−3

0

0

0

0

0

0

0

0

00

0

1

0

Fig. 1. In this graph the starting node s is vn in the lower middle of the image. A
deterministic algorithm can get tricked into first visiting vn−1, then vn−2 and so on.
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3.2 Randomized Online Algorithms

A randomized searcher can explore the graph in Figure 1 with much lower ex-
pected costs: In average it chooses a node in the ”middle” of the so far yet un-
visited nodes when being at vn, therefore visiting the starting node only about
O(ln(n))-times. However, we can reach nearly the same lower bounds with the
graph from Figure 2 as in the deterministic case:

Theorem 2. No randomized online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n
4 .

Proof. Consider the graph in Figure 2 and let the number of nodes n be even. If
one wants to consider odd n, then the same results can be achieved by removing
the node vn

2
and updating the graph accordingly. Let us assume a searcher

using any randomized online algorithm starting from vn visits a node vi, with
1 ≤ i ≤ n

2 − 2, for the first time: then it cannot differentiate the two outgoing
edges. An adversary can choose the IDs so that a good edge is picked with
a probability of at most p = 0.5. Thus the decisions at the nodes v1 to vi−1
do not yield any useful information about how to pick the outgoing edges at vi.
Therefore the expected amount of choosing a wrong outgoing edge is 0.5

(
n
2 − 2

)
.

A wrongly chosen edge when visiting vi for the first time induces a cost of 1, since
the searcher has to follow the unique way back to vi, traversing the edge from
vn−1 to vn with cost 1. This results in an expected cost of 0.5

(
n
2 − 2

)
= n

4 − 1
to explore the node vn

2−1. Once reaching the node vn
2−1 for the first time, the

searcher is forced to go back to vn, resulting in another cost of 1. Since an optimal
tour has a cost of 1, this yields the lower bound of n

4 . ut

vn v1 v2 v3 vn
2

−2 vn
2

−1
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2

vn
2
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Fig. 2. In this graph the starting node s is vn in the upper left corner. Upon arriving
at each of the nodes v1, v2, . . . vn

2
−2 for the first time, a randomized algorithm gets

tricked into taking the wrong edge with probability at least 0.5. If n is odd, then the
lower right node vn

2
can be removed to achieve the lower bound.

3.3 Starting Node

While the examples of the graphs in the Figures 1 and 2 lead to a high lower
bound for the competitive ratio, this is only true because the online algorithm is
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forced to start at the node vn. Starting at node v1 in Figure 1 or at node vn
2

in
Figure 2 leads to a competitive ratio of 1. If the starting node were to be chosen
randomly, the expected ratio is O(

√
n) for both cases. This raises the question

if a random starting node can lead to a better competitive ratio. However this
is not the case, there is still a lower bound of Ω(n):

Theorem 3. Even if taking the best result from all possible n starting nodes, no
deterministic online algorithm can achieve a better competitive ratio on exploring
all nodes of strongly connected directed weighted graphs than n/4. The same holds
for randomized online algorithms with a competitive ratio of n/16.

Proof. We start with the deterministic case. We again take the graph from Figure
1, but draw it two times as G and G′ with their respective starting nodes vn
and v′n. We now connect these graphs by adding an edge from vn to v′n and
back, both with weight 0 – resulting in a graph G′′ with 2n nodes. Without
loss of generality we can assume that a starting node from G′ is chosen. No
deterministic online algorithm can achieve a better worst-case cost on exploring
G than n − 1, since the old graph G can only be entered by the edge from v′n
to vn. On the other hand, the graph G′ can be explored with a cost of just 1.
An optimal offline algorithm will just have a cost of 2 for exploring the whole
graph, no matter what starting node is chosen. Since the graph has 2n nodes,
this leads to a lower bound of n/4. We can apply the same arguments to the
randomized case using the graph in Figure 2, giving a lower bound of n/16. ut

4 Upper Bounds for General Graphs

In the undirected case, it is not known yet if there is an algorithm with a better
competitive ratio than O(log n) [35]. A greedy approach reaches this competitive
ratio of O(log n) [35], but the same algorithm has a competitivity of Ω(log n)
even on planar unweighted graphs [26]. Thanks to our strong lower bounds, a
greedy algorithm has a sharp competitive ratio in the directed case:

Theorem 4. A greedy algorithm achieves a competitive ratio of n − 1 for ex-
ploring all nodes of strongly connected directed weighted graphs.

Proof. Given any graph G = (V,E), let us fix an optimal tour OPT . The tour
OPT can be viewed as a concatenation of n paths, that visit the nodes of the
graph in the following order: s = vo0, v

o
1, v

o
2, . . . , v

o
n−1, v

o
n = s. We name the path

from voi to voi+1 as wo
i+1 with 0 ≤ i ≤ n− 1. The walk W o

i,j from voi to voj (with
voi 6= voj ) in OPT consists of the concatenation of wo

i+1, w
o
i+2, . . . , w

o
j for i < j

or of wo
i+1, w

o
i+2, . . . , w

o
n, w

o
1, . . . , w

o
j−1, w

o
j for i > j. For each W o

i,j with i 6= j
it holds that W o

i,j is the concatenation of at most (n − 1) different paths wo
r

with 1 ≤ r ≤ n. Let us assume the greedy algorithm proceeds as follows: upon
reaching a node vgk for the first time, find a shortest path wg

k+1 from the current
node to a unknown node vgk+1 in the outgoing neighborhood of the so far explored
nodes. This path wg

k+1 has at most the weight of the concatenated paths from
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vgk to vgk+1 in OPT . Let us assume it has heavier weight: then there is a cheaper
path from vgk to vgk+1 that also visits another not yet explored node vq before
visiting vgk+1. However by the choice of vgk+1, then vq is the same node as vgk+1,
which leads to a contradiction. If we sum this up for all n paths wg

1 , . . . , w
g
n−1

from the greedy algorithm plus the shortest path wg
n from vgn−1 to s = vgn, a first

simple upper bound is n · |OPT |. However, each path wo
r with 1 ≤ r ≤ n from

OPT only gets used at most (n− 1) times in the upper bound. This leads to an
upper bound of (n − 1) · |OPT | on the cost of a tour produced by the greedy
algorithm. ut

A combination of Theorem 1, 2 and 4 yields the following corollary:

Corollary 1. The result of Theorem 4 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

Furthermore, the authors of [16] also studied the problem of advice complexity
for exploring undirected graphs. They showed that there is a family of graphs
where a searcher needs to be given at least Ω(n ln(n)) bits of information (from
an all-knowing outside source before starting) to explore the graphs with optimal
cost. We note that a greedy algorithm in any directed or undirected graph can
solve the graph exploration problem optimally with O(n ln(n)) bits. We apply
the arguments from above and give a list of the nodes from an optimal tour
OPT in the order they first appear in OPT to the searcher. Since the ID of
every node is of size O(ln(n)) bits, the lower bound of Ω(n ln(n)) from [16] is a
sharp bound of Θ(n ln(n)) bits for both directed and undirected graphs.

5 Unweighted Graphs

An unweighted graph is a graph where the edges have no edge weights, i.e. the
cost is the same for all edges. For our purposes, this is the same as assigning the
edge weight 1 to every edge. The lower bounds are lower, but we will see that
the upper bounds also go down:

Theorem 5. No online algorithm can achieve a better competitive ratio on ex-
ploring all nodes of strongly connected directed unweighted graphs than n

2 + 1
2−

1
n

(deterministic) or n
8 + 3

4 −
1
n (randomized) .

Proof. Consider the graph in Figure 1 for the deterministic case and assign all
edges a weight of 1. A deterministic online algorithm starting at vn first visits
vn−1, then vn−2 etc. in the worst case. Exploring vn−1 and going back to vn
has a cost of 2, for vn−2 it is 3, . . ., for v1 it is n. Summed up this yields

2 + 3 + . . .+n = n2

2 + n
2 −1 . Since an optimal tour has cost n, this gives a lower

bound for the competitive ratio of n
2 + 1

2 −
1
n .

Consider the graph in Figure 2 for the randomized case and assign all edges
an edge weight of 1. Now we can apply the same argument as in the weighted
case, but the induced cost by each wrong decision is not 1, but 4 for v1, 6 for
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v2, . . ., n − 2 for vn
2−2. Since the previous decisions are useless for the current

decision, each of these wrong decisions happens with a probability of at least 0.5.
Furthermore, independently of these decisions, the last exploration tour starting
at vn will visit all nodes exactly once in this example. This gives a lower cost

bound of 0.5
((

n
2 − 2

)2
+ 3

(
n
2 − 2

))
+ n = n2

8 + 3n
4 − 1 . An optimal tour has

cost n, resulting in a lower bound for the competitive ratio of n
8 + 3

4 −
1
n . ut

Theorem 6. A greedy algorithm achieves a competitive ratio of n
2 + 1

2 −
1
n for

exploring all nodes of strongly connected directed unweighted graphs.

Proof. We prove this upper bound by summing up the costs to reach the first
newly explored node, the second newly explored node, . . ., the (n − 1)th (and
last) newly explored node. Let us assume that, beside the starting node, we have
explored (k− 2) additional nodes and have just reached the (k− 1)th new node
vk−1 for the first time. Since the graph is strongly connected, there is always at
least one new node reachable from the current node in the neighborhood of the
so far explored subgraph – unless every node has been visited already. If we pick
the new node vk as a unexplored one we can reach with as few edge-traversals
as possible, then we induce a cost of at most k. A shortest path from vk−1 to
vk will by definition not include another unexplored node vu, since then vu had
been chosen as vk. Furthermore, the path will not include any node twice. This
gives an upper bound of k for the length of the path from vk−1 to vk. In order
to get back to the starting node once all nodes are explored, a shortest path can
again visit at most all other n−2 nodes before reaching the starting node, giving
an upper bound of n − 1 for this last path. If we sum this up we get an upper

bound of 1+2+3+ . . .+(n−2)+(n−1)+(n−1) = −1+
n∑

i=1

i = n2

2 + n
2 −1 . An

optimal tour has cost at least n, giving a competitive ratio of at most (n2

2 +n
2−1)/

n = n
2 + 1

2 −
1
n . ut

Combining the results of Theorem 5 and Theorem 6 yields:

Corollary 2. The result of Theorem 6 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

6 Searching a Node

Instead of generating a tour, one can also change the model, and find just one
specific node v and then stop. However an adversary can place this node in such
a way that it is found last. The searcher does not need to return to the start,
but searching for a node is still costly:

Theorem 7. Searching for a node in strongly connected directed weighted graphs
has an arbitrarily large competitive ratio for any deterministic or randomized
online algorithm and can induce arbitrarily large additive costs.
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Proof. We start with the deterministic case. In Figure 1, a node vn+1 can be
added that is connected to v1 with two edges of weight 0. Since an optimal
algorithm finds this node with cost 0, any deterministic node search algorithm
has an arbitrarily bad competitive ratio, since it induces positive costs. The same
holds for randomized algorithms if the same construction is applied at node vn

2−1
in Figure 2. We can apply the same thought for arbitrarily large additive costs
by replacing the edge weight of 1 with an arbitrarily large value. ut

If we consider the model of unit weight edges, then the situation changes:

Theorem 8. Any online algorithm for searching a node in strongly connected

directed unweighted graphs has a lower bound of (n−1)2
4 − (n−1)

4 − 1
2 (deterministic)

or (n−1)
4 + 1

2 + 2
(n−1) (randomized) for its competitive ratio.

Proof. An optimal offline algorithm has a cost of 2 to find vn+1 in the modified
graph from Figure 1 with unweighted edges (vn to v1 to vn+1). Any deterministic
online algorithm finds vn+1 last in the worst case, producing a cost of at least

(see the proof of Theorem 5) n2

2 + n
2 − 1 − n. The searcher does not have to

go back to the start, so (−n) is added at the end. Since this graph has (n + 1)
nodes, a lower bound for the competitive ratio of any deterministic node search

algorithm is (n−1)2
4 − (n−1)

4 − 1
2 .

For the randomized case we use the modified graph from Figure 2 and search
for the node vn

2
. An optimal algorithm finds vn

2
after n

2 steps (vn to v1 . . . to
vn

2−1 to vn+1). Any randomized algorithm needs at least an expected cost of

(see the proof of Theorem 5) n2

8 −
n
4 − 1 + n

2 . This leads to a competitive ratio

of
(

n2

8 + n
4 − 1

)
/n
2 = n

4 −
2
n + 1

2 . ut

For an upper bound we can again use the greedy algorithm:

Theorem 9. A greedy algorithm searching for a node in strongly connected di-

rected unweighted graphs has a competitive ratio of n2

4 −
n
4 .

Proof. A greedy algorithm finds the searched node last in the worst case with

a cost of at most n2

2 −
n
2 (see the proof of Theorem 6). If the node were to be

directly reachable from the starting node, then an online algorithm can find it
in one step. Therefore we can use 2 as the minimal cost needed for an offline
algorithm when computing an upper bound for the competitive ratio. This leads

to a competitive ratio of n2

4 −
n
4 . ut

Combining Theorem 8 and Theorem 9 yields the following corollary:

Corollary 3. Any deterministic online algorithm searching for a node in strongly
connected directed unweighted graphs can improve the competitive ratio of a
greedy algorithm by a factor of 3 at most.

Proof. The quotient of the upper and lower bounds from Theorem 9 and 8 for
n ≥ 4 (for n ≤ 3 any node search takes two steps at most) has a global maximum
in the range n ∈ [4,∞) at n = 4 with value 3. ut
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Let us now come back to the situation mentioned at the start of our introduction.
How expensive can going back to your hotel be? Essentially, it is the same as
searching for a node – just that this node is the only one that has an outgoing
edge to your hotel. For the deterministic case, we again use the graph from
Figure 1 with unweighted edges. We add a hotel-node vh and add a directed
edge from vh to vn (the node with the tourist attraction) and one directed edge
from v1 to vh. Going back to your hotel is now the same as searching the node
v1 with one additional step back. The same construction can be used for the
randomized case with the graph from Figure 2 with unweighted edges. We add
a hotel-node vh and add an outgoing edge from vh to vn (again, the node with
the tourist attraction) and one outgoing edge from vn

2
to vh.

7 Lower Bounds for Special Cases

When we add directed edges with arbitrarily high weights to a given graph,
then using these edges in any online algorithm will not improve the weight of an
obtained tour. An online algorithm has now more information about the graph
(for example about the number of nodes), but we can add these edges in such
a way to our lower bound graphs in Figure 1 and 2 that the searcher gains
no useful information. For example, if we turn the graph from Figure 1 into a
complete graph by adding all missing edges with arbitrarily high weights, then
these new edges do not help a searcher on deciding what node to explore next
when visiting vn, since all possibilities look the same except for their ID – unless
the searcher decides to use an expensive edge. Due to space constraints, we omit
the proofs of the Theorems 10 and 11 in this section:

Theorem 10. For graphs of any diameter from 1 to n − 1 or complete graphs
with eulerian deficiency of d = 0, no online algorithm can achieve a better com-
petitive ratio on exploring all nodes of strongly connected directed weighted graphs
than n− 1 (deterministic) or n/4 (randomized).

We can apply the same line of thought to the graph in Figure 2:

Theorem 11. For graphs of any maximum (minimum) incoming/outgoing de-
gree from 2(1) to n − 1, no online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n/4.

A graph is called euclidean, if its nodes can be embedded into the euclidean
plane with the edge weights being equivalent to the length of the straight edge
in the embedding [36].

Theorem 12. No online algorithm can achieve a better competitive ratio on ex-
ploring all nodes of strongly connected directed weighted planar euclidean graphs
than n− 2− ε∗ (deterministic) or n/4− ε∗ (randomized) for any ε∗ > 0.

Proof. We again consider the graph in Figure 2 for the randomized case. If we
replace all edge weights with a fixed εr > 0, then it can be embedded as a
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planar euclidean graph like shown in the figure. To reach the lower bound for
competitivity, we replace both edge weights of the incoming and the outgoing
edge for vn−1 with 1/2. Now let us consider a circle with radius 1

2 through the
nodes vn and vn−2, with the nodes v1 and vn−3 not being inside the circle. If
we place vn−1 in the center of the circle, we have a proper planar euclidean
embedding of the constructed graph. By choosing εr to be small enough, for
example εr < ε∗/n2, we reach a lower bound of n/4− ε∗.

For the deterministic case we consider the graph in Figure 1. Let us fix a
εd > 0 and construct a cycle of radius εd with vn being in the center of the cycle
and placing the nodes v1 to vn−1 with distance εd/n on the cycle. Like in the
randomized case, we construct another circle of radius 1

2 through the nodes vn
and vn−2, with v1 and vn−3 not being inside the circle. We now place vn−1 in the
middle of that cycle, which means that the edge weights of both the incoming
and the outgoing edges are 1/2. We remove the edge from vn to vv−1, since it
has no longer the same weight than the other outgoing edges from vn. All other
edge weights are now ≤ εd. Notice that a deterministic algorithm can now only
be tricked n − 2 times. If we choose εd ≤ ε∗/n2, we reach a lower bound of
n− 2− ε∗. ut

A similar result also holds if all edge weights have to be of unit weight:

Corollary 4. No online algorithm can achieve a better competitive ratio on
exploring all nodes of strongly connected directed unit weight planar euclidean
graphs than n

4 + 1
2 −

2
n (deterministic) or n

8 + 3
4 −

1
n (randomized).

Proof. We use the graph from Figure 2 (see Theorem 5) and set all edge weights
to 1, which results in a unit weight euclidean planar graph. ut

8 Other Exploration Models

Unique Edge Names: Our results also hold if the searcher cannot see the
name of nodes at the end of incident outgoing edges, but just the unique name
of both incoming and outgoing edges. When two nodes vi and vj are visited by
the searcher, it knows the name of all incident edges for vi and vj , therefore
also the subgraph that is spanned by vi and vj . If the searcher is at a node vi
and does not know where an incident outgoing edge ends, then the node at the
end of that edge has not been explored yet. In other words, the searcher has
visited all nodes if and only if it knows where each edge ends and starts. Since
our greedy algorithms do not utilize node names when selecting the next node
to be explored, but just try to get to a unexplored node as cheap as possible, our
upper bounds still apply. This holds as well for our lower bound examples if we
use this modified exploration model: every time we trick any online algorithm
into making a wrong decision, we give a set of options to choose from that look
exactly the same for the online searcher.

Incoming Edges: Let us assume that the searcher does not just see the names
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of the nodes at the end of incident outgoing edges, but also the names of the
nodes at the other end of incident incoming edges. Our upper bound still applies,
since the algorithms can just choose to ignore that additional information. For
the lower bound however, we can no longer use the graphs from Figure 1 and
Figure 2. For example when starting on the graph in Figure 1, the node vn−1
now can be differentiated from the nodes v1, . . . , vn−2. Also when visiting vn−2,
the searcher can now differentiate vn−3 from v1, . . . , vn−4, since there is an edge
from vn−3 to vn−2. We can fix this problem by hiding this information with
adding additional nodes. For the example in Figure 1, we add n − 1 additional
nodes. For 1 ≤ i ≤ n − 1, remove the edge from vi to vi+1, add a new node
v+i between them and add a edge from vi to v+i and from v+i to vi+1. The edge
weights of the two new edges is one half of the edge weight of the removed edge.
This decreases the lower bound by a factor of less than 2. We fix the graph in
Figure 2 in a similar way. We add n

2 − 3 nodes between the nodes vn
2 +1 to vn−2.

For n
2 + 1 ≤ i ≤ n − 2, remove the edge from vi to vi+1 add a new node v+i

between them and add a edge from vi to v+i and from v+i to vi+1. The edge
weights of the two new edges are one half of the edge weight of the removed
edge. This decreases the lower bound by a factor of less than 1.5.

Connectivity: When exploring directed graphs (for both cases of just nodes
or nodes and edges), usually only strongly connected variants are considered,
see for example [1, 14, 15, 25, 30]. This ensures that every node is reachable from
the starting node and that the searcher can return to the starting node from ev-
ery node. If the directed graph is not strongly connected, then any deterministic
online algorithm can already get stuck after visiting the first new node, even
though an offline algorithm can visit every other node and just skip this one.
Similar graphs can be constructed for the randomized case. Consider a directed
cycle, where each node has an outgoing edge to the same node v – which has
outgoing degree of 0. The starting point is only reached again by the searcher
with a probability of (0.5)

n−2
for n ≥ 3. Already for n = 12 this gives just a

chance of < 0.001 to return to the start.
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