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A Tutorial on Software-Defined Networks and Consistent Network Updates
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• Focus on algorithmic/complexity issues in consistent updates in Software Defined Networks (SDNs)

◦ Not so much on system etc. issues respectively SDNs themselves

• Two “bigger” connections to classic distributed computing halfway-in

◦ Proof Labeling Schemes

◦ Distributed Control Plane
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Brief Preamble



Network Updates

• The Internet: Designed for selfish participants 

◦ Often inefficient (low utilization of links), but robust

• But what if eg the Wide-Area Network is controlled by a single entity?

◦ Examples: Microsoft & Amazon & Google …

◦ They spend hundreds of millions of dollars per year
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Network Updates

Think: Google, Amazon, Microsoft
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Also relevant in eg Data Center 
Networks, for ISPs etc

Eg update link capacity at runtime?* 

*:RADWAN: Rate Adaptive Wide Area Network. R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, P. Gill. ACM SIGCOMM 2018



Software-Defined Networking

• Possible solution: 

◦ Software-Defined Networking (SDNs)

• General Idea: Separate data & control plane in a network

• Centralized controller updates networks rules for optimization

◦ Controller (control plane) updates the switches/routers (data plane)

• Logically centralized controller (eg implemented with replication)

Virtual Services Controller Physical Network
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Note: There is also a lot of (prior) research on consistency 
before SDNs – can’t cover everything in this tutorial

See history section in:
Survey of Consistent Software-Defined Network Updates 
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019



old network
rules

new network
rules

network updates 
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old network
rules

new network
rules

network updates 

possible solution: be fast!

e.g., B4 (Google, 2013)
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But they deviated from that a 
bit in the B4 2018 version…



old network
rules

new network
rules

network updates 

Alternative: Be consistent!
• Algorithms with guarantees
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Toy Example

d
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Link should not be used anymore
eg repair, congestion, policy change etc
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Update!
Update!
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Toy Example
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Appears in Practice

“Data plane updates may fall behind the control 
plane acknowledgments and may be even reordered.”

Kuzniar et al., PAM 2015

“some switches can ‘straggle,’ taking substantially more time 
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014

“…the inbound latency is quite variable with a 
[…] standard deviation of 31.34ms…”

He et al., SOSR 2015
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Toy Example
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d

v u

Old and new states exist simultaneously in a limbo state 



Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 19



Ordering Solution: Go backwards through the new routing tree
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Update!



Ordering Solution: Go backwards through the new routing tree
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Ordering Solution: Go backwards through the new routing tree
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Ack!



Ordering Solution: Go backwards through the new routing tree
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Update!



Ordering Solution: Go backwards through the new routing tree

• Always works for single-destination rules

◦ Also for multi-destination with sufficient memory (“split“)

• Schedule length: tree depth (up to Ω(n) )

◦ Optimal scheduling algorithms?

d

v u

d

v u

d

v u

Round 1Round 0 (old) Round 2 (new)
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More on scheduling multiple policies:
Basta et al: Efficient Loop-Free Rerouting of 

Multiple SDN Flows. ToN 2018



• Always works ☺
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Greedy? Update as many as possible per round
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…

a b d

…

a b d

network updates 

…

a b d

greedy maximal update
a & b update → all others wait 

2 nodes update

…

a b d

maximum update
a waits→ all others update

all but 1 update

How hard?
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Find maximum update?

• Let’s go more general

• Delete all cycles in a graph 

V1 V2

V4 V3
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Find maximum update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

• And it’s (essentially) equivalent 
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Find maximum update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

• And it’s (essentially) equivalent 

≅

V2

V3
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• Always works ☺

• Maximizing is NP-hard 
◦ Transiently Consistent SDN Updates: Being Greedy is Hard. S. Akhoondian Amiri, A. Ludwig, J. Marcinkowski, S. Schmid. In: SIROCCO 2016

◦ The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. K.-T. Foerster, R. Wattenhofer. In: ICCCN 2016

• Single greedy update: O(1) rounds  Ω(n) rounds 
◦ Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw.  2018

• In general: Does a 3-round schedule exist? NP-hard 
◦ Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw.  2018
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Greedy? Update as many as possible per round

Also NP-hard for any o(n) for 2-destination policies:
F., Wattenhofer, ICCCN 2016
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Two key ideas:

1. destination d based source-destination pairs <s,d>

2. no forwarding loops no loops between <s,d>
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Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

[Ludwig et al., PODC 2015]

On its own:
Makes 2-round updates 

polynomial, 3 still NP-hard



• Non-relaxed? Ω(n) rounds 

• Relaxed? 
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Scheduling Loop-free Network Updates: It's Good to Relax!
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Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 1
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• Non-relaxed? Ω(n) rounds 

• Relaxed? 
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Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 2



• Non-relaxed? Ω(n) rounds 

• Relaxed? Just 3 rounds
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Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 3



• Non-relaxed? Ω(n) rounds 

• Relaxed? Just 3 rounds

◦ In general: 𝑂(log 𝑛) rounds (“Peacock“)
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Scheduling Loop-free Network Updates: It's Good to Relax!

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw.  2018
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• Non-relaxed? Ω(n) rounds 

• Relaxed? Just 3 rounds

◦ In general: 𝑂(log 𝑛) rounds (“Peacock“)

◦ But: Peacock instances with Ω(log 𝑛) rounds
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Scheduling Loop-free Network Updates: It's Good to Relax!

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw.  2018



Relaxed:

• Optimal #rounds: NP-hard or in P?

• What is the real lower bound?

Non-relaxed:

• NP-hard for O(1) < k < Ω(n) rounds?
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Some Open Questions for scheduling loop free updates:

• For both models: Approximation algorithms for #rounds?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates 
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Eg Congestion?
Network functions?

In a bit..



So Far Everything Was Sort of Centralized…

• …can we make it more distributed?
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Decentralized Updates for „Tree-Ordering“

• So far: every round:

◦ Controller computes and sends out updates

◦ Switches implement them and send acks

◦ Controller receives acks
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Decentralized Updates for „Tree-Ordering“

• So far: every round:

◦ Controller computes and sends out updates

◦ Switches implement them and send acks

◦ Controller receives acks

• Alternative: Use dualism to so-called proof labeling schemes

Eg P4 switch
(Verifier)

Centralized Controller
(Prover)
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Proof-Labeling Schemes



Deciding vs Checking

Prove Verify
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Brief Selected Background
• [Naor and Stockmeyer, STOC 1993]:

What can be computed locally?

• [Korman et al., PODC 2005]: 
Proof Labeling Schemes (PLS)

• [Göös and Suomela, PODC 2011]: 
Locally Checkable Proofs (LCP)

• [Fraigniaud et al., FOCS 2011,…]: 
Nondeterministic Local Decision (NLD)

• And many more recent works, e.g., on approximation, randomization etc.o
think of
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Example
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Example

Model

• Each of the 𝑛 nodes         is a computer, connected by links

• Synchronous rounds
◦ Simplified: unlimited message size & computational power, unique identifiers for nodes
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Example

• Is 𝑛 even?
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Example

• Is 𝑛 even?

• Ω(𝑛) rounds
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Example

• Is 𝑛 even?

• Ω(𝑛) rounds

• What if I tell you it is even? Why should you trust me ☺
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Example

1 1

1

0

00

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit?
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Example

1 1

1

0

00

Yes

Yes

Yes

Yes

Yes

Yes

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit -> Verify in 1 round
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Example

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit -> Verify in 1 round

• Other way to think of it: 1 bit of non-determinism

• General question: How many bits necessary/sufficient?

1 1

1

0

00

Yes

Yes

Yes

Yes

Yes

Yes
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected

1 1

1
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00

Yes

Yes

Yes

Yes

Yes

Yes
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
◦ Prover chose the wrong proof

1 1

1

1

00

Yes

Yes

No

Yes

No

No
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Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
◦ Prover chose the wrong proof

◦ Property does not hold

1
1

1

0

00

Yes

YesYes

No

1

Yes

Yes

No

Back to SDNs: Switch from a proof to another
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Decentralized Updates for „Tree-Ordering“

When should I update?
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Decentralized Updates for „Tree-Ordering“

Once my parent updates!
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Decentralized Updates for „Tree-Ordering“

Once my parent updates!

Send parent ID
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Decentralized Updates for „Tree-Ordering“

I updated
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Decentralized Updates for „Tree-Ordering“

I updated

I‘ll update too!
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Decentralized Updates for “Tree-Ordering“

+Only one controller-switch interaction per route change

+New route changes can be pushed before old ones done (include “version#”)

+Incorrect updates can be locally detected (include depth in tree, prevents loops)

+/- Speed benefit/penalty depends on update scenario and topology

- Requires switch-to-switch communication   e.g., [Nguyen et al., SOSR 2017]

K.-T. Foerster, T. Luedi, J. Seidel, R. Wattenhofer: Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDNs . In: Theoret. Comput. Sci. 2018
K.-T. Foerster, S. Schmid: Distributed Consistent Network Updates in SDNs: Local Verification for Global Guarantees. Under submission.
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Can we also make the initial computation decentralized?

• Classic setting of distributed computing (e.g. LOCAL or CONGEST model)

◦ Possible benefit in SDNs:

- We do not need to compute from scratch!

• In wired networks, problems depend on a subset of the network

- Leverage Preprocessing

• Further explored in eg:
◦ Exploiting Locality in Distributed SDN Control. S. Schmid, J. Suomela, HotSDN 2013

◦ On the Power of Preprocessing in Decentralized Network Optimization. K.-T. Foerster, J. Hirvonen, S. Schmid, J. Suomela, INFOCOM 2019

◦ BA: Does Preprocessing help under Congestion? K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, PODC 2019
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• 2-coloring:
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• 2-coloring:

◦ Needs Ω(n) rounds
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• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:
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• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:

◦ Needs non-constant time
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• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:

◦ Needs non-constant time

• Cannot improve in the LOCAL model 
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• 2-coloring:

• 3-coloring:
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• 2-coloring:

◦ 0 rounds ☺

• 3-coloring:

◦ 0 rounds ☺
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• 2-coloring:

◦ 0 rounds ☺

• 3-coloring:

◦ 0 rounds ☺
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• How about a coloring of a subgraph?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

85



• How about a coloring of a subgraph?

• Local model: runtime does not change
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

• What are further application scenarios?
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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

• What are further application scenarios?

• What else can we do with the SUPPORT of Preprocessing?
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Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

92



Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

93



• Decentralization aids scalability
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Example: Software-Defined Networking, single (logically centralized) controller does not scale

◦ Create many local controllers that can react quickly, that control small set of “dumb” nodes
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Practical Motivation for Preprocessing
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• Extends the LOCAL model (w. unique IDs) with preprocessing
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• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))
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• Problem instance is a subgraph G=(V,E) of H
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• Extends the LOCAL model (w. unique IDs) with preprocessing
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• Two phases:
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• Extends the LOCAL model (w. unique IDs) with preprocessing
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• Extends the LOCAL model (w. unique IDs) with preprocessing
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• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G  in LOCAL model with preprocessed outputs

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)
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• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G  in LOCAL model with preprocessed outputs

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)
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The SUPPORTED Model

G

H

Active variant: allow to 
communicate on support H

E.g. MAC-address
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• Task: Leader election (Θ(diameter) runtime in LOCAL model)

◦ Easy if G=H: precompute leader, 0 rounds

◦ But for different G:

- We need to compute a leader for each connected component of G!

• Component has no leader? Re-elect 

• Component has multiple leaders? Re-elect 

• Components can have asymptotically same diameter 

• SUPPORTED model does not provide a “silver bullet”

◦ Not even for the active variant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 111

Does the SUPPORTED Model make everything easy?
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• Let the support graph H be a complete graph
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• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?
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• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?
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• Let the support graph H be a complete graph
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• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

◦ Problem: G can be arbitrary

• For example, if a SUPPORTED algorithm has polylogarithmic runtime

◦ ∃ LOCAL algorithm with constant factor overhead

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

Idea: simulate that support graph H is a 
complete graph

In active model:
Congested Clique
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• Real topologies are usually not complete graphs

• Case study: planar graphs

◦ Remain planar under edge deletions

◦ Are 4-colorable

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

But: Restricted Graph Families are Useful ☺

„Geloeste und ungeloeste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html
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• Task: Find subset D of nodes s.t. every node

◦ Has a neighbor in D or is in D

• Can we pre-compute? 

◦ A bad one yes: everyone in D!

◦ But not an optimal one!

- Graph can look very different
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Case Study: Dominating Set
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]
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◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time ] 

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]
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Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

SUPPORTED speed-up: 
1) precompute 4-coloring 
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time ] 

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time ] 

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]

◦ Also for planar graphs for maximum independent set & maximum matching
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Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

[constant time SUPPORTED model ☺]
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• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
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• Connection to SLOCAL model [Ghaffari et al., STOC 2017]
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Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication

138



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

139



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

140



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

141



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H 

for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

142



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H 

for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

143



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

144



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

145



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

146



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without 
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

147



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without 
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)

148



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:
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• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

◦ Set of size (α(G)-ε)n in O(log1+ε n), respectively (1+ε) approximation if maximum degree Δ constant

◦ Cannot be approximated by o(Δ/log Δ) in time o(logΔ n) in the active SUPPORTED model
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Bigger Open Question/Opportunity

How to efficiently leverage such 
preprocessing/distributed computing

to efficiently scale controllers (and network updates)?

So let‘s get back things we know about☺
Congestion and network functions?So far largely unexplored
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• “Stronger” consistency constraint: also do not violate link capacities
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• “Stronger” consistency constraint: also do not violate link capacities
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• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1
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• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1
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• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1
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• NP-hard already for 2 unit size flows on general graphs

• Also NP-hard on acyclic graphs for 𝑘 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)
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• Also NP-hard on acyclic graphs for 6 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P 

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 172

Complexity of Avoiding Congestion?

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

?



Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 173

Take a Step Back: No Loops and a Firewall

s s d

Which forwarding rule to update first?
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Take a Step Back: No Loops and a Firewall

s s d

&           can conflict!

Satisfy both &           ?

NP-hard!

Transiently Secure Network Updates. A. Ludwig, S. Dudycz, M. Rost, S. Schmid. SIGMETRICS 2016.

However: If packets must either take
the new or the old path (and no mix), 

then polynomial-time solvable
(Cerný et al., DISC 2016)



Different model: “tagged” Flows

• Identified by a “tag“ in the packet header, update via

◦ Install new tag‘ rules

◦ Switch from tag to tag‘ at source

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 184



If we move a flow, will there be congestion?
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If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit: [Reitblatt et al., SIGCOMM’12]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules  F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F

F’

188



If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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F’
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Respects network functions!

Can also be implemented by 
proof-labeling techniques

“hand holding”?

Go backwards with 
distance information



If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules  F’

◦ Change packet tag at source from F to F’

◦ Clean-up of old rules

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02
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If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules  F’

◦ Change packet tag at source from F to F’

◦ Clean-up of old rules

• First check:

◦ Is the new network state without congestion?

◦ Easy ☺ (flow size versus capacity)

• Is that it?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F’
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Also verifiable by proof-
labeling techniques



A Small Sample Network
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Unit size flows and capacities



Green wants to send as well
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Unit size flows and capacities



Congestion!
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Unit size flows and capacities



This would work
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Unit size flows and capacities



So lets go back
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Unit size flows and capacities



But Red is a bit Slow..
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Unit size flows and capacities



Congestion Again!
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Unit size flows and capacities



So lets go Back …

Round 0 (old)
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Unit size flows and capacities



First, Red switches

Round 1
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Unit size flows and capacities



Then, Blue …

Round 2
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Unit size flows and capacities



And then, Green …

Round 3
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Unit size flows and capacities



Done

Round 3 (new)
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Unit size flows and capacities



How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 204
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How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows 

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 205

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Hardness intuition: find 
intermediate path for “storage”



How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows 

• Is the problem at least in NP?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 206

Some flows might need to move 
back and forth repeatedly°

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)



How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows 

Not clear if the problem is in NP! (It is known to be in EXPTIME)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 207

How about splittable flows?

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)



Consistent Migration of Splittable Flows

Idea: Flows can be on the old or new route w.r.t. an update
For all edges: σ∀𝐹max 𝐨𝐥𝐝, 𝐧𝐞𝐰 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

No ordering exists (2/3 + 2/3 > 1)

2/3

2/3

Captures Asynchrony

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 208



Consistent Migration of Splittable Flows

Approach of SWAN*: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

2/3

2/3

*: Achieving High Utilization with Software-Driven WAN, SIGCOMM 2013
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

1/3

1/3Update 1 of 2
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

1/3

1/3Update 1 of 2
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Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

2/3

2/3Update 2 of 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 212



Consistent Migration of Splittable Flows

No slack on flow edges?

1

1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 213



Consistent Migration of Splittable Flows

Alternate routes? 

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 214



Consistent Migration of Splittable Flows

Think: variable swapping of 𝑏 & 𝑔

1. 𝑥 ≔ 𝑏, 2. b ≔ 𝑔, 3. 𝑔 ≔ 𝑥

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 215
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Consistent Migration of Splittable Flows

Think: variable swapping of 𝑏 & 𝑔

1. 𝑥 ≔ 𝑏, 2. b ≔ 𝑔, 3. 𝑔 ≔ 𝑥
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Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

1 update? 2 updates? 4 updates? …

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 218



Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

1 update? 2 updates? 4 updates? …

𝜺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 219



Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

Θ 1/𝜀 updates

𝜺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 220



Consistent Migration of Splittable Flows

Can we decide in (polynomial) time?

“Halting Problem”Flow migration

LP

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 221



To Slack or not to Slack?

Slack of 𝑥 on all flow edges? 
1/𝑥 − 1 updates

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 222



What if not? 

Try to create slack

To Slack or not to Slack?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 223



Combinatorial approach
Augmenting paths

To Slack or not to Slack?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 224



Combinatorial Approach

Move single commodities at a time

𝑒

1

1

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 225



Combinatorial Approach

Where to increase flow?

+ +

+

++

𝑒

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 226



Combinatorial Approach

Where to push back flow?

− −

𝑒

−

− − −

−

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 227



Combinatorial Approach

Resulting residual network

𝑒

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 228



Combinatorial Approach

We found an augmenting path ⇒ create slack on 𝑒

𝑒

−
u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 229



High-level Algorithm Idea

• No slack on flow edges? Find augmenting paths
◦ On both initial and desired state (updates can be performed in reverse)

◦ Success? Use SWAN method to migrate

• Can’t create slack on some flow edge?
◦ Consistent migration impossible

By contradiction (else augmenting paths would create slack)

• Runtime: 𝑂 𝐹𝑚³

◦ (𝐹 being #commodities, 𝑚 being #edges)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 230

On Consistent Migration of Flows in SDNs. S. Brandt, K.-T. Foerster, R. Wattenhofer, INFOCOM 2016



Open problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 231

Maybe surprisingly:
If the new flows fit in somehow, 

we can migrate consistently! 
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t2

t1

s1

s2

t2

t1

s1

s2

t2

t1

• Flows end up at the wrong destination!

• So let’s stick with augmenting flows that don’t mix destinations
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s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1

“it is unlikely that similar techniques can be developed
for constructing multicommodity flows”

[Hu, 1963]
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Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration: 

◦ In general: NP-, PSPACE-, or EXPTIME-complete? 
- (recall: flows might need to switch back and forth repeatedly)

◦ ”Interesting“ polynomial cases?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 252

Maybe surprisingly:
If the new flows fit in somehow, 

we can migrate consistently! 

Maybe further development 
needs better understanding of 

augmenting flows?



Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration: 

◦ In general: NP-, PSPACE-, or EXPTIME-complete? 
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Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration: 

◦ In general: NP-, PSPACE-, or EXPTIME-complete? 
- (recall: flows might need to switch back and forth repeatedly)

◦ ”Interesting“ polynomial cases?

• What happens when considering Link Latency?
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Maybe surprisingly:
If the new flows fit in somehow, 

we can migrate consistently! 

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates 
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Maybe further development 
needs better understanding of 

augmenting flows?



The Impact of Latency (in Testbed)
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The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 258

UDP



The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 259

UDPTCP



The Impact of Latency (in Testbed)
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packet loss equivalent to latency-Δ

Even holds without
asynchrony

Because there is also work that
focuses on better

time synchronization, 
notably by Mizrahi et al.

https://sites.google.com/site/timedsdn/

https://sites.google.com/site/timedsdn/


CDF of the Congestion Duration
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Recap

• Common (coarse-grained) model: 
◦ Sum for all flows: Max( old flow rules , new flow rules ) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows 

• Does not capture congestion due to flows congesting themselves!
◦ How hard?
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How hard?

• Unit latencies and splittable flow of unit size:

◦ Already NP-hard for a single flow!
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Recap of the last few slides

• Common (coarse-grained) model: 
◦ Sum for all flows: Max( old flow rules , new flow rules ) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows 

• Does not capture congestion due to flows congesting themselves!
◦ How hard?

- NP-hard for unit size/latency and splittable flows 

• How to fix?

◦ Treat old and new flow rules as separate flows?
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Old and New as Different Entities

• Idea: We can handle interplay between different flows

◦ Handle old and new as different flows?

- Prevents such congestion in popular approaches, eg SWAN, Dionysus, zUpdate etc. 
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Relax for Polynomial-Time Lossless Updates

• Idea: Relax the problem formulation

◦ Be congestion-free for any set of latencies

- (I.e., adversary may change latencies at any time)

• Now congestion-free intermediate steps become reversible

• Rough structure of the algorithm (for splittable flows):

◦ Take old (new) state, reach intermediate state where critical set of edges have spare capacity

- Not possible? No congestion-free migration possible. 

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 267

Achieved by spreading
the network load



Recap of the last few slides

• Common (coarse-grained) model: 
◦ Sum for all flows: Max( old flow rules , new flow rules ) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows 

• Does not capture congestion due to flows congesting themselves!
◦ NP-hard for unit size/latency and splittable flows 

• By relaxing latency constraints: 

◦ Again polynomial-time decidable

• Interestingly: Augmenting flow idea still works even without relaxing latency constraints!
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But requires non-fixed
new flow paths

How to extend beyond
a single destination?



Open Problems and Outlook in General

• Various algorithmic and complexity questions for a centralized controller

◦ See recent survey

• First connections to more classic distributed computing topics are made

◦ Proof-labeling

- Very basic right now, how to build more complex/efficient systems?

• Maybe the bigger question: How to properly distribute the centralized controller

◦ Opportunity: The SUPPORTED model / preprocessing
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