
Central Control over Distributed Asynchronous Systems:
A Tutorial on Software-Defined Networks and Consistent Network Updates
Klaus-T. Foerster

• Focus on algorithmic/complexity issues in consistent updates in Software Defined Networks (SDNs)

◦ Not so much on system etc. issues respectively SDNs themselves

• Two “bigger” connections to classic distributed computing halfway-in

◦ Proof Labeling Schemes

◦ Distributed Control Plane

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 2

Brief Preamble

Network Updates

• The Internet: Designed for selfish participants

◦ Often inefficient (low utilization of links), but robust

• But what if eg the Wide-Area Network is controlled by a single entity?

◦ Examples: Microsoft & Amazon & Google …

◦ They spend hundreds of millions of dollars per year

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 3

Network Updates

Think: Google, Amazon, Microsoft

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 4

Also relevant in eg Data Center
Networks, for ISPs etc

Eg update link capacity at runtime?*

*:RADWAN: Rate Adaptive Wide Area Network. R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, P. Gill. ACM SIGCOMM 2018

Software-Defined Networking

• Possible solution:

◦ Software-Defined Networking (SDNs)

• General Idea: Separate data & control plane in a network

• Centralized controller updates networks rules for optimization

◦ Controller (control plane) updates the switches/routers (data plane)

• Logically centralized controller (eg implemented with replication)

Virtual Services Controller Physical Network

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 5

Note: There is also a lot of (prior) research on consistency
before SDNs – can’t cover everything in this tutorial

See history section in:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

old network
rules

new network
rules

network updates

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 6

old network
rules

new network
rules

network updates

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 7

old network
rules

new network
rules

network updates

possible solution: be fast!

e.g., B4 (Google, 2013)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 8

But they deviated from that a
bit in the B4 2018 version…

old network
rules

new network
rules

network updates

Alternative: Be consistent!
• Algorithms with guarantees

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 9

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 10

Toy Example

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 11

Toy Example

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 12

Link should not be used anymore
eg repair, congestion, policy change etc

Toy Example

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 13

Toy Example

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 14

Update!
Update!

Toy Example

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 15

Toy Example

d

v u

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 16

Appears in Practice

“Data plane updates may fall behind the control
plane acknowledgments and may be even reordered.”

Kuzniar et al., PAM 2015

“some switches can ‘straggle,’ taking substantially more time
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014

“…the inbound latency is quite variable with a
[…] standard deviation of 31.34ms…”

He et al., SOSR 2015

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 17

Toy Example

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 18

d

v u

Old and new states exist simultaneously in a limbo state

Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 19

Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 20

Update!

Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 21

Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 22

Ack!

Ordering Solution: Go backwards through the new routing tree

d

v u

d

v u

d

v u

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 23

Update!

Ordering Solution: Go backwards through the new routing tree

• Always works for single-destination rules

◦ Also for multi-destination with sufficient memory (“split“)

• Schedule length: tree depth (up to Ω(n))

◦ Optimal scheduling algorithms?

d

v u

d

v u

d

v u

Round 1Round 0 (old) Round 2 (new)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 24

More on scheduling multiple policies:
Basta et al: Efficient Loop-Free Rerouting of

Multiple SDN Flows. ToN 2018

• Always works ☺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 25

Greedy? Update as many as possible per round

…

a b d

…

a b d

network updates

26

…

a b d

…

a b d

network updates

…

a b d

27

…

a b d

…

a b d

network updates

…

a b d

28

…

a b d

…

a b d

network updates

…

a b d

29

…

a b d

…

a b d

network updates

…

a b d

30

…

a b d

…

a b d

network updates

…

a b d

greedy maximal update
a & b update → all others wait

2 nodes update
31

…

a b d

…

a b d

network updates

…

a b d

greedy maximal update
a & b update → all others wait

2 nodes update

…

a b d

maximum update
a waits→ all others update

all but 1 update
32

…

a b d

…

a b d

network updates

…

a b d

greedy maximal update
a & b update → all others wait

2 nodes update

…

a b d

maximum update
a waits→ all others update

all but 1 update

How hard?

33

Find maximum update?

• Let’s go more general

• Delete all cycles in a graph

V1 V2

V4 V3

34

Find maximum update?

• Let’s go more general

• Delete all cycles in a graph

V1 V2

V4 V3

35

Find maximum update?

• Let’s go more general

• Delete all cycles in a graph

• NP-hard to approximate

– Feedback Arc Set

V1 V2

V4 V3

36

Find maximum update?

• Let’s go more general

• Delete all cycles in a graph

• NP-hard to approximate

– Feedback Arc Set

• And it’s (essentially) equivalent

V1 V2

V4 V3

≅

d

V1 V2 V3 V4 37

Find maximum update?

• Let’s go more general

• Delete all cycles in a graph

• NP-hard to approximate

– Feedback Arc Set

• And it’s (essentially) equivalent

≅

V2

V3

V2 V3 38

• Always works ☺

• Maximizing is NP-hard
◦ Transiently Consistent SDN Updates: Being Greedy is Hard. S. Akhoondian Amiri, A. Ludwig, J. Marcinkowski, S. Schmid. In: SIROCCO 2016

◦ The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. K.-T. Foerster, R. Wattenhofer. In: ICCCN 2016

• Single greedy update: O(1) rounds Ω(n) rounds
◦ Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

• In general: Does a 3-round schedule exist? NP-hard
◦ Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 39

Greedy? Update as many as possible per round

Also NP-hard for any o(n) for 2-destination policies:
F., Wattenhofer, ICCCN 2016

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 40

Two key ideas:

1. destination d based source-destination pairs <s,d>

2. no forwarding loops no loops between <s,d>

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 41

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

[Ludwig et al., PODC 2015]

On its own:
Makes 2-round updates

polynomial, 3 still NP-hard

• Non-relaxed? Ω(n) rounds

• Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 42

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

• Non-relaxed? Ω(n) rounds

• Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 43

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 1

• Non-relaxed? Ω(n) rounds

• Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 44

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 1

• Non-relaxed? Ω(n) rounds

• Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 45

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 1

• Non-relaxed? Ω(n) rounds

• Relaxed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 46

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 2

• Non-relaxed? Ω(n) rounds

• Relaxed? Just 3 rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 47

Scheduling Loop-free Network Updates: It's Good to Relax!

s d…

Round 3

• Non-relaxed? Ω(n) rounds

• Relaxed? Just 3 rounds

◦ In general: 𝑂(log 𝑛) rounds (“Peacock“)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 48

Scheduling Loop-free Network Updates: It's Good to Relax!

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 49

• Non-relaxed? Ω(n) rounds

• Relaxed? Just 3 rounds

◦ In general: 𝑂(log 𝑛) rounds (“Peacock“)

◦ But: Peacock instances with Ω(log 𝑛) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 50

Scheduling Loop-free Network Updates: It's Good to Relax!

Loop-Free Route Updates for Software-Defined Networks. K.-T. Foerster, A. Ludwig, J. Marcinkowski, S. Schmid. In: IEEE/ACM Trans. Netw. 2018

Relaxed:

• Optimal #rounds: NP-hard or in P?

• What is the real lower bound?

Non-relaxed:

• NP-hard for O(1) < k < Ω(n) rounds?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 51

Some Open Questions for scheduling loop free updates:

• For both models: Approximation algorithms for #rounds?

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Eg Congestion?
Network functions?

In a bit..

So Far Everything Was Sort of Centralized…

• …can we make it more distributed?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 52

Decentralized Updates for „Tree-Ordering“

• So far: every round:

◦ Controller computes and sends out updates

◦ Switches implement them and send acks

◦ Controller receives acks

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 53

Decentralized Updates for „Tree-Ordering“

• So far: every round:

◦ Controller computes and sends out updates

◦ Switches implement them and send acks

◦ Controller receives acks

• Alternative: Use dualism to so-called proof labeling schemes

Eg P4 switch
(Verifier)

Centralized Controller
(Prover)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 54

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 55

Proof-Labeling Schemes

Deciding vs Checking

Prove Verify

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 56

Brief Selected Background
• [Naor and Stockmeyer, STOC 1993]:

What can be computed locally?

• [Korman et al., PODC 2005]:
Proof Labeling Schemes (PLS)

• [Göös and Suomela, PODC 2011]:
Locally Checkable Proofs (LCP)

• [Fraigniaud et al., FOCS 2011,…]:
Nondeterministic Local Decision (NLD)

• And many more recent works, e.g., on approximation, randomization etc.o
think of

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 57

Example

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 58

Example

Model

• Each of the 𝑛 nodes is a computer, connected by links

• Synchronous rounds
◦ Simplified: unlimited message size & computational power, unique identifiers for nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 59

Example

• Is 𝑛 even?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 60

Example

• Is 𝑛 even?

• Ω(𝑛) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 61

Example

• Is 𝑛 even?

• Ω(𝑛) rounds

• What if I tell you it is even? Why should you trust me ☺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 62

Example

1 1

1

0

00

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 63

Example

1 1

1

0

00

Yes

Yes

Yes

Yes

Yes

Yes

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit -> Verify in 1 round

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 64

Example

• Is 𝑛 even?

• Ω(𝑛) rounds

• Prover assigns 1 bit -> Verify in 1 round

• Other way to think of it: 1 bit of non-determinism

• General question: How many bits necessary/sufficient?

1 1

1

0

00

Yes

Yes

Yes

Yes

Yes

Yes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 65

Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected

1 1

1

0

00

Yes

Yes

Yes

Yes

Yes

Yes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 66

Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
◦ Prover chose the wrong proof

1 1

1

1

00

Yes

Yes

No

Yes

No

No

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 67

Accepting a proof

• Every node outputs Yes -> Proof accepted

• One node outputs No -> Proof rejected
◦ Prover chose the wrong proof

◦ Property does not hold

1
1

1

0

00

Yes

YesYes

No

1

Yes

Yes

No

Back to SDNs: Switch from a proof to another

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 68

Decentralized Updates for „Tree-Ordering“

When should I update?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 69

Decentralized Updates for „Tree-Ordering“

Once my parent updates!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 70

Decentralized Updates for „Tree-Ordering“

Once my parent updates!

Send parent ID

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 71

Decentralized Updates for „Tree-Ordering“

I updated

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 72

Decentralized Updates for „Tree-Ordering“

I updated

I‘ll update too!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 73

Decentralized Updates for “Tree-Ordering“

+Only one controller-switch interaction per route change

+New route changes can be pushed before old ones done (include “version#”)

+Incorrect updates can be locally detected (include depth in tree, prevents loops)

+/- Speed benefit/penalty depends on update scenario and topology

- Requires switch-to-switch communication e.g., [Nguyen et al., SOSR 2017]

K.-T. Foerster, T. Luedi, J. Seidel, R. Wattenhofer: Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDNs . In: Theoret. Comput. Sci. 2018
K.-T. Foerster, S. Schmid: Distributed Consistent Network Updates in SDNs: Local Verification for Global Guarantees. Under submission.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 74

Can we also make the initial computation decentralized?

• Classic setting of distributed computing (e.g. LOCAL or CONGEST model)

◦ Possible benefit in SDNs:

- We do not need to compute from scratch!

• In wired networks, problems depend on a subset of the network

- Leverage Preprocessing

• Further explored in eg:
◦ Exploiting Locality in Distributed SDN Control. S. Schmid, J. Suomela, HotSDN 2013

◦ On the Power of Preprocessing in Decentralized Network Optimization. K.-T. Foerster, J. Hirvonen, S. Schmid, J. Suomela, INFOCOM 2019

◦ BA: Does Preprocessing help under Congestion? K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, PODC 2019

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 75

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

76

• 2-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

77

• 2-coloring:

◦ Needs Ω(n) rounds

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

78

• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

79

• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:

◦ Needs non-constant time

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

80

• 2-coloring:

◦ Needs Ω(n) rounds

• 3-coloring:

◦ Needs non-constant time

• Cannot improve in the LOCAL model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model)

81

• 2-coloring:

• 3-coloring:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing

82

• 2-coloring:

◦ 0 rounds ☺

• 3-coloring:

◦ 0 rounds ☺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing

83

• 2-coloring:

◦ 0 rounds ☺

• 3-coloring:

◦ 0 rounds ☺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing

84

• How about a coloring of a subgraph?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

85

• How about a coloring of a subgraph?

• Local model: runtime does not change

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

86

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

87

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

88

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

89

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

90

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

• What are further application scenarios?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

91

• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

• What are further application scenarios?

• What else can we do with the SUPPORT of Preprocessing?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Coloring of rings (LOCAL model) – with Preprocessing & Subgraphs

92

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

93

• Decentralization aids scalability

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

94

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

95

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

96

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

97

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

98

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

◦ Often we just react to events, physical topology in wired networks does not grow suddenly

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

99

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Example: Software-Defined Networking, single (logically centralized) controller does not scale

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

100

• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Example: Software-Defined Networking, single (logically centralized) controller does not scale

◦ Create many local controllers that can react quickly, that control small set of “dumb” nodes

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Practical Motivation for Preprocessing

101

• Extends the LOCAL model (w. unique IDs) with preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

102

• Extends the LOCAL model (w. unique IDs) with preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

E.g. MAC-address

103

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model
H

E.g. MAC-address

104

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

E.g. MAC-address

105

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

E.g. MAC-address

106

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

E.g. MAC-address

107

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G in LOCAL model with preprocessed outputs

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

E.g. MAC-address

108

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G in LOCAL model with preprocessed outputs

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

E.g. MAC-address

109

• Extends the LOCAL model (w. unique IDs) with preprocessing

• Original structure given as the SUPPORT graph H=(V(H),E(H))

• Problem instance is a subgraph G=(V,E) of H

• Two phases:

1. Preprocessing: compute any function on H and store output locally

2. Solve problem on G in LOCAL model with preprocessed outputs

- Runtime: Number of t rounds in (2), denoted as SUPPORTED(t)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

The SUPPORTED Model

G

H

Active variant: allow to
communicate on support H

E.g. MAC-address

110

• Task: Leader election (Θ(diameter) runtime in LOCAL model)

◦ Easy if G=H: precompute leader, 0 rounds

◦ But for different G:

- We need to compute a leader for each connected component of G!

• Component has no leader? Re-elect

• Component has multiple leaders? Re-elect

• Components can have asymptotically same diameter

• SUPPORTED model does not provide a “silver bullet”

◦ Not even for the active variant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 111

Does the SUPPORTED Model make everything easy?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

112

• Let the support graph H be a complete graph

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

113

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

114

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

115

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

◦ Problem: G can be arbitrary

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

116

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

◦ Problem: G can be arbitrary

• For example, if a SUPPORTED algorithm has polylogarithmic runtime

◦ ∃ LOCAL algorithm with constant factor overhead

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

117

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

◦ Problem: G can be arbitrary

• For example, if a SUPPORTED algorithm has polylogarithmic runtime

◦ ∃ LOCAL algorithm with constant factor overhead

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

Idea: simulate that support graph H is a
complete graph

118

• Let the support graph H be a complete graph

• What sort of meaningful information (for G) can we precompute?

◦ Upper bound on ID-space / network size…?

◦ Problem: G can be arbitrary

• For example, if a SUPPORTED algorithm has polylogarithmic runtime

◦ ∃ LOCAL algorithm with constant factor overhead

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Maybe even useless in general?

Idea: simulate that support graph H is a
complete graph

In active model:
Congested Clique

119

• Real topologies are usually not complete graphs

• Case study: planar graphs

◦ Remain planar under edge deletions

◦ Are 4-colorable

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

But: Restricted Graph Families are Useful ☺

„Geloeste und ungeloeste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html

120

• Task: Find subset D of nodes s.t. every node

◦ Has a neighbor in D or is in D

• Can we pre-compute?

◦ A bad one yes: everyone in D!

◦ But not an optimal one!

- Graph can look very different

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Dominating Set

121

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

122

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

123

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

124

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

125

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

126

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

127

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

128

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

129

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

SUPPORTED speed-up:
1) precompute 4-coloring
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds

130

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

[constant time SUPPORTED model ☺]

131

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

[constant time SUPPORTED model ☺]

132

• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time]

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]

◦ Also for planar graphs for maximum independent set & maximum matching

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

[constant time SUPPORTED model ☺]

133

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

134

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

135

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

136

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

138

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

139

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

140

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

141

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H

for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

142

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H

for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

143

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

144

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

145

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

146

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

147

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

148

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

◦ Set of size (α(G)-ε)n in O(log1+ε n), respectively (1+ε) approximation if maximum degree Δ constant

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

149

• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

◦ Set of size (α(G)-ε)n in O(log1+ε n), respectively (1+ε) approximation if maximum degree Δ constant

◦ Cannot be approximated by o(Δ/log Δ) in time o(logΔ n) in the active SUPPORTED model

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H
for communication

Best LOCAL algorithm:

2𝑂(log 𝑛)

150

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 151

Bigger Open Question/Opportunity

How to efficiently leverage such
preprocessing/distributed computing

to efficiently scale controllers (and network updates)?

So let‘s get back things we know about☺
Congestion and network functions?So far largely unexplored

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 152

• “Stronger” consistency constraint: also do not violate link capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 153

Congestion?

• “Stronger” consistency constraint: also do not violate link capacities

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 154

Congestion?

s d

1 2

1
1

1

12

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 155

Congestion?

s d

1 2

1
1

1

12

Round 0

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 156

Congestion?

s d

1 2

1
1

1

12

Round 1

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 157

Congestion?

s d

1 2

1
1

1

12

Round 0

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 158

Congestion?

s d

1 2

1
1

1

12

Round 1

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 159

Congestion?

s d

1 2

1
1

1

12

Round 2

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 160

Congestion?

s d

1 2

1
1

1

12

Round 0

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 161

Congestion?

s d

1 2

1
1

1

12

Round 1

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 162

Congestion?

s d

1 2

1
1

1

12

Round 2

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 163

Congestion?

s d

1 2

1
1

1

12

Round 0

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 164

Congestion?

s d

1 2

1
1

1

12

Round 1

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 165

Congestion?

s d

1 2

1
1

1

12

Round 2

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 166

Congestion?

s d

1 2

1
1

1

12

Round 3

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 167

Congestion?

s d

1 2

1
1

1

12

Round 3

• “Stronger” consistency constraint: also do not violate link capacities

◦ Flow size: 1, 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 168

Congestion?

s d

1 2

1
1

1

12

Round 4

• NP-hard already for 2 unit size flows on general graphs

• Also NP-hard on acyclic graphs for 𝑘 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 169

Complexity of Avoiding Congestion?

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

• NP-hard already for 2 unit size flows on general graphs

• Also NP-hard on acyclic graphs for 6 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 170

Complexity of Avoiding Congestion?

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

• Also NP-hard on acyclic graphs for 6 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P (NPH for 6)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 171

Complexity of Avoiding Congestion?

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

• NP-hard already for 2 unit size flows on general graphs

• Also NP-hard on acyclic graphs for 6 flows

◦ But can be FPT characterized for 𝑘 flows on acyclic graphs: 𝑂 2𝑂(𝑘 log 𝑘)|𝐺|

- In other words, linear runtime for constant 𝑘 on DAGs

• For just 2 unit size flows (where old/new individually is a DAG): Optimal schedule in P

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 172

Complexity of Avoiding Congestion?

Congestion-Free Rerouting of Flows on DAGs. S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Widerrecht, ICALP’18
On Polynomial-Time Congestion-Free Software-Defined Network Updates. AA, D., M. Parham, S., S. W., Networking‘19

?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 173

Take a Step Back: No Loops and a Firewall

s s d

Which forwarding rule to update first?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 174

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 175

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 176

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 177

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 178

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 179

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 180

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 181

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 182

Take a Step Back: No Loops and a Firewall

s s d

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 183

Take a Step Back: No Loops and a Firewall

s s d

& can conflict!

Satisfy both & ?

NP-hard!

Transiently Secure Network Updates. A. Ludwig, S. Dudycz, M. Rost, S. Schmid. SIGMETRICS 2016.

However: If packets must either take
the new or the old path (and no mix),

then polynomial-time solvable
(Cerný et al., DISC 2016)

Different model: “tagged” Flows

• Identified by a “tag“ in the packet header, update via

◦ Install new tag‘ rules

◦ Switch from tag to tag‘ at source

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 184

If we move a flow, will there be congestion?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 185

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit: [Reitblatt et al., SIGCOMM’12]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F

186

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F

F’

187

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F

F’

188

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F

F’

189

Respects network functions!

Can also be implemented by
proof-labeling techniques

“hand holding”?

Go backwards with
distance information

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

◦ Clean-up of old rules

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F’

190

If we move a flow, will there be congestion?

• How do we move a flow F? Usually: 2-phase commit:

◦ Deploy new flow rules F’

◦ Change packet tag at source from F to F’

◦ Clean-up of old rules

• First check:

◦ Is the new network state without congestion?

◦ Easy ☺ (flow size versus capacity)

• Is that it?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02

F’

191

Also verifiable by proof-
labeling techniques

A Small Sample Network

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 192

Unit size flows and capacities

Green wants to send as well

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 193

Unit size flows and capacities

Congestion!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 194

Unit size flows and capacities

This would work

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 195

Unit size flows and capacities

So lets go back

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 196

Unit size flows and capacities

But Red is a bit Slow..

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 197

Unit size flows and capacities

Congestion Again!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 198

Unit size flows and capacities

So lets go Back …

Round 0 (old)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 199

Unit size flows and capacities

First, Red switches

Round 1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 200

Unit size flows and capacities

Then, Blue …

Round 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 201

Unit size flows and capacities

And then, Green …

Round 3

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 202

Unit size flows and capacities

Done

Round 3 (new)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 203

Unit size flows and capacities

How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 204

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21
𝒘22

… …

𝑺𝒃 𝑻𝒃

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21 𝒘22

… …

𝑺𝒃 𝑻𝒃

How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 205

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Hardness intuition: find
intermediate path for “storage”

How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows

• Is the problem at least in NP?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 206

Some flows might need to move
back and forth repeatedly°

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

How hard is this (feasibility)?

Flows may only take old or new paths:

• NP-hard via reduction from Partition

Intermediate flow allocations not restricted to old and new:

• NP-hard already for just 2 unit size flows

Not clear if the problem is in NP! (It is known to be in EXPTIME)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 207

How about splittable flows?

On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds (Foerster, NCA 2017)

Consistent Migration of Splittable Flows

Idea: Flows can be on the old or new route w.r.t. an update
For all edges: σ∀𝐹max 𝐨𝐥𝐝, 𝐧𝐞𝐰 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

No ordering exists (2/3 + 2/3 > 1)

2/3

2/3

Captures Asynchrony

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 208

Consistent Migration of Splittable Flows

Approach of SWAN*: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

2/3

2/3

*: Achieving High Utilization with Software-Driven WAN, SIGCOMM 2013

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 209

Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

1/3

1/3Update 1 of 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 210

Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

1/3

1/3Update 1 of 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 211

Consistent Migration of Splittable Flows

Approach of SWAN: use slack 𝑥 (i.e., %)

Here 𝑥 = 1/3

Move slack 𝑥 ⇛ 1/𝑥 − 1 staged partial moves

2/3

2/3Update 2 of 2

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 212

Consistent Migration of Splittable Flows

No slack on flow edges?

1

1

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 213

Consistent Migration of Splittable Flows

Alternate routes?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 214

Consistent Migration of Splittable Flows

Think: variable swapping of 𝑏 & 𝑔

1. 𝑥 ≔ 𝑏, 2. b ≔ 𝑔, 3. 𝑔 ≔ 𝑥

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 215

Consistent Migration of Splittable Flows

Think: variable swapping of 𝑏 & 𝑔

1. 𝑥 ≔ 𝑏, 2. b ≔ 𝑔, 3. 𝑔 ≔ 𝑥

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 216

Consistent Migration of Splittable Flows

Think: variable swapping of 𝑏 & 𝑔

1. 𝑥 ≔ 𝑏, 2. b ≔ 𝑔, 3. 𝑔 ≔ 𝑥

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 217

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

1 update? 2 updates? 4 updates? …

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 218

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

1 update? 2 updates? 4 updates? …

𝜺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 219

Consistent Migration of Splittable Flows

SWAN: LP-approach with binary search

Θ 1/𝜀 updates

𝜺

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 220

Consistent Migration of Splittable Flows

Can we decide in (polynomial) time?

“Halting Problem”Flow migration

LP

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 221

To Slack or not to Slack?

Slack of 𝑥 on all flow edges?
1/𝑥 − 1 updates

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 222

What if not?

Try to create slack

To Slack or not to Slack?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 223

Combinatorial approach
Augmenting paths

To Slack or not to Slack?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 224

Combinatorial Approach

Move single commodities at a time

𝑒

1

1

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 225

Combinatorial Approach

Where to increase flow?

+ +

+

++

𝑒

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 226

Combinatorial Approach

Where to push back flow?

− −

𝑒

−

− − −

−

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 227

Combinatorial Approach

Resulting residual network

𝑒

u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 228

Combinatorial Approach

We found an augmenting path ⇒ create slack on 𝑒

𝑒

−
u v

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 229

High-level Algorithm Idea

• No slack on flow edges? Find augmenting paths
◦ On both initial and desired state (updates can be performed in reverse)

◦ Success? Use SWAN method to migrate

• Can’t create slack on some flow edge?
◦ Consistent migration impossible

By contradiction (else augmenting paths would create slack)

• Runtime: 𝑂 𝐹𝑚³

◦ (𝐹 being #commodities, 𝑚 being #edges)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 230

On Consistent Migration of Flows in SDNs. S. Brandt, K.-T. Foerster, R. Wattenhofer, INFOCOM 2016

Open problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 231

Maybe surprisingly:
If the new flows fit in somehow,

we can migrate consistently!

s1

s2

t

size of each flow: 1
capacity of links: 1 232

s1

s2

t

size of each flow: 1
capacity of links: 1 233

s1

s2

t

size of each flow: 1
capacity of links: 1 234

s1

s2

t

size of each flow: 1
capacity of links: 1 235

s1

s2

t

size of each flow: 1
capacity of links: 1 236

s1

s2

t

size of each flow: 1
capacity of links: 1 237

s1

s2

t

s1

s2

t

s1

s2

t =+

size of each flow: 1
capacity of links: 1 238

s1

s2

t

s1

s2

t

s1

s2

t =-

size of each flow: 1
capacity of links: 1 239

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

240

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

size of flows: 1, 2, 1, 1
capacity of links: 1 (or marked) 241

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

size of flows: 1, 2, 1, 1
capacity of links: 1 (or marked) 242

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

size of flows: 1, 2, 1, 1
capacity of links: 1 (or marked) 243

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

244

size of flows: 1, 2, 1, 1
capacity of links: 1 (or marked)

s1

s3

s4

t

s2

uv
2

2 2

2

3 2

2

2
2

2

2

2

4

x yw

z

size of flows: 1+3=4, 2, 1, 1
capacity of links: 1 (or marked) 245

s1

s2

t2

t1

s1

s2

t2

t1

s1

s2

t2

t1

• Flows end up at the wrong destination!

• So let’s stick with augmenting flows that don’t mix destinations

246

s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1 247

s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1 248

s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1 249

s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1 250

s1

s3 t3

t1

s2 t2

size of each flow: 1
capacity of each links: 1

“it is unlikely that similar techniques can be developed
for constructing multicommodity flows”

[Hu, 1963]

251

Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration:

◦ In general: NP-, PSPACE-, or EXPTIME-complete?
- (recall: flows might need to switch back and forth repeatedly)

◦ ”Interesting“ polynomial cases?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 252

Maybe surprisingly:
If the new flows fit in somehow,

we can migrate consistently!

Maybe further development
needs better understanding of

augmenting flows?

Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration:

◦ In general: NP-, PSPACE-, or EXPTIME-complete?
- (recall: flows might need to switch back and forth repeatedly)

◦ ”Interesting“ polynomial cases?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 253

Maybe surprisingly:
If the new flows fit in somehow,

we can migrate consistently!

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Maybe further development
needs better understanding of

augmenting flows?

Open Problems for scheduling flow migration

• What happens when we can pick the new paths?

◦ Idea: Fit the flows in, does not matter where

- Only studied so far for a single destination and multiple sources [Brand, Foerster, Wattenhofer, PMC 2017]

• Unsplittable flow migration:

◦ In general: NP-, PSPACE-, or EXPTIME-complete?
- (recall: flows might need to switch back and forth repeatedly)

◦ ”Interesting“ polynomial cases?

• What happens when considering Link Latency?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 254

Maybe surprisingly:
If the new flows fit in somehow,

we can migrate consistently!

More open questions and specifics:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, Stefano Vissicchio
IEEE Communications Surveys & Tutorials, 21(2), 2019

Maybe further development
needs better understanding of

augmenting flows?

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 255

ping of new path

ping of old path

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 256

ping of new path

ping of old path

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 257

ping of new path

ping of old path

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 258

UDP

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 259

UDPTCP

The Impact of Latency (in Testbed)

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 260

packet loss equivalent to latency-Δ

Even holds without
asynchrony

Because there is also work that
focuses on better

time synchronization,
notably by Mizrahi et al.

https://sites.google.com/site/timedsdn/

https://sites.google.com/site/timedsdn/

CDF of the Congestion Duration

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 261

Recap

• Common (coarse-grained) model:
◦ Sum for all flows: Max(old flow rules , new flow rules) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows

• Does not capture congestion due to flows congesting themselves!
◦ How hard?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 262

How hard?

• Unit latencies and splittable flow of unit size:

◦ Already NP-hard for a single flow!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 263

𝒘

capacity = 1

size = 1

size = 1

𝒖𝒔

𝒖′

𝑮

Latency of x
𝒕

𝒘′

𝒛

Find a temporary path to
offload parts of the flow

Recap of the last few slides

• Common (coarse-grained) model:
◦ Sum for all flows: Max(old flow rules , new flow rules) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows

• Does not capture congestion due to flows congesting themselves!
◦ How hard?

- NP-hard for unit size/latency and splittable flows

• How to fix?

◦ Treat old and new flow rules as separate flows?

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 264

Old and New as Different Entities

• Idea: We can handle interplay between different flows

◦ Handle old and new as different flows?

- Prevents such congestion in popular approaches, eg SWAN, Dionysus, zUpdate etc.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 265

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 266

Relax for Polynomial-Time Lossless Updates

• Idea: Relax the problem formulation

◦ Be congestion-free for any set of latencies

- (I.e., adversary may change latencies at any time)

• Now congestion-free intermediate steps become reversible

• Rough structure of the algorithm (for splittable flows):

◦ Take old (new) state, reach intermediate state where critical set of edges have spare capacity

- Not possible? No congestion-free migration possible.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 267

Achieved by spreading
the network load

Recap of the last few slides

• Common (coarse-grained) model:
◦ Sum for all flows: Max(old flow rules , new flow rules) does not violate capacity [SWAN, SIGCOMM’13]

◦ Decidable in polynomial time [Brandt et al., INFOCOM’16]

- For unsplittable flows: NP-hard already for 2 flows

• Does not capture congestion due to flows congesting themselves!
◦ NP-hard for unit size/latency and splittable flows

• By relaxing latency constraints:

◦ Again polynomial-time decidable

• Interestingly: Augmenting flow idea still works even without relaxing latency constraints!

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 268

But requires non-fixed
new flow paths

How to extend beyond
a single destination?

Open Problems and Outlook in General

• Various algorithmic and complexity questions for a centralized controller

◦ See recent survey

• First connections to more classic distributed computing topics are made

◦ Proof-labeling

- Very basic right now, how to build more complex/efficient systems?

• Maybe the bigger question: How to properly distribute the centralized controller

◦ Opportunity: The SUPPORTED model / preprocessing

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 269

• Survey of Consistent Software-Defined Network Updates. Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. IEEE Communications Surveys and Tutorials (COMST), Volume 21, Issue 2, pp. 1435-1461, secondquarter 2019.

• Brief Announcement: Does Preprocessing Help under Congestion? Klaus-Tycho Foerster, Janne Korhonen, Joel Rybicki, and Stefan Schmid. ACM Symposium on Principles of Distributed Computing (PODC), Toronto, Ontario, Canada, July 2019.

• On Polynomial-Time Congestion-Free Software-Defined Network Updates. Saeed Akhoondian Amiri, Szymon Dudycz, Mahmoud Parham, Stefan Schmid, and Sebastian Wiederrecht. IFIP Networking, Warsaw, Poland, May 2019.

• Latency and Consistent Flow Migration: Relax for Lossless Updates. Klaus-Tycho Foerster, Laurent Vanbever, and Roger Wattenhofer. 18th IFIP Networking Conference (IFIP Networking), Warsaw, Poland, May 2019.

• On the Power of Preprocessing in Decentralized Network Optimization. Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. 39th IEEE International Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

• RADWAN: Rate Adaptive Wide Area Network. Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), Budapest, Hungary, August 2018.

• Congestion-Free Rerouting of Flows on DAGs. Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht. 45th International Colloquium on Automata, Languages, and Programming (ICALP), Prague, Czech Republic, July 2018.

• Loop-Free Route Updates for Software-Defined Networks. Klaus-Tycho Foerster, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. IEEE/ACM Transactions on Networking (ToN), Volume 26, Issue 1, pp. 328-341, February 2018.

• Efficient Loop-Free Rerouting of Multiple SDN Flows. Arsany Basta, Andreas Blenk, Szymon Dudycz, Arne Ludwig, and Stefan Schmid. IEEE/ACM Transactions on Networking (ToN), 2018.

• Local Checkability, No Strings Attached: (A)cyclicity, Reachability, Loop Free Updates in SDNs. Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer. Theoretical Computer Science (TCS), Volume 709, pp. 48-63, January 2018.

• On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds. Klaus-Tycho Foerster. 16th IEEE International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, November 2017.

• Augmenting Flows for the Consistent Migration of Multi-Commodity Single-Destination Flows in SDNs. Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. Pervasive and Mobile Computing (PMC), Volume 36, pp. 134-150, April 2017.

• Optimal Consistent Network Updates in Polynomial Time. Pavol Cerný, Nate Foster, Nilesh Jagnik, Jedidiah McClurg. DISC 2016

• The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. Klaus-Tycho Foerster and Roger Wattenhofer. 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, Hi, USA, August 2016.

• Transiently Consistent SDN Updates: Being Greedy is Hard. Saeed Akhoondian Amiri, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. 23rd International Colloquium on Structural Information and Communication Complexity (SIROCCO), Helsinki, Finland, July 2016.

• Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes. Klaus-Tycho Foerster, Ratul Mahajan, and Roger Wattenhofer. 15th IFIP Networking Conference (IFIP Networking), Vienna, Austria, May 2016.

• On Consistent Migration of Flows in SDNs. Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. 36th IEEE International Conference on Computer Communications (INFOCOM), San Francisco, California, USA, April 2016.

• Exploiting Locality in Distributed SDN Control. Stefan Schmid and Jukka Suomela. ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Hong Kong, China, August 2013.

• Achieving High Utilization with Software-Driven WAN. Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri and Roger Wattenhofer. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM) 2013.

• Abstractions for network update. Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, David Walker. Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM) 2012.

• Fast Distributed Approximations in Planar Graphs : Andrzej Czygrinow, Michal Hanckowiak, Wojciech Wawrzyniak:.. DISC 2008: 78-92

• Multi-Commodity Network Flows. T. C. Hu. Operations Research 11(3):344-360, 1963.

Central Control over Distributed Asynchronous Systems: A Tutorial on Software-Defined Networks and Consistent Network Updates, 19-08-02 Page 270

Some References

Not all, if some are
missing, should be

listed on slides directly

Central Control over Distributed Asynchronous Systems:
A Tutorial on Software-Defined Networks and Consistent Network Updates
Klaus-T. Foerster

