Deterministic Leader Election
in Multi-Hop Beeping Networks

Klaus-Tycho Foerster®, Jochen Seidel®, Roger Wattenhofer®

C*ETH Zurich, Zurich, Switzerland

Abstract

We study deterministic leader election in multi-hop radio networks in the beep-
ing model. More specifically, we address explicit leader election: One node is
elected as the leader, the other nodes know its identifier, and the algorithm ter-
minates at some point with the network being quiescent. No initial knowledge
of the network is assumed, i.e., nodes know neither the size of the network nor
their degree, they only have a unique identifier. Our main contribution is a de-
terministic explicit leader election algorithm in the synchronous beeping model
with a run time of O(Dlogn) rounds. This is achieved by carefully combining
a fast local election algorithm with two new techniques for synchronization and
communication in radio networks. We also extend our results to synchronized
wake-up protocols and to a Monte Carlo algorithm for anonymous networks.

1. Introduction

Distributed computing and wireless communication are prime application
areas for randomization, as randomized algorithms are often both simpler and
more efficient than their deterministic counterparts. However, in some cases the
randomized algorithm is only of Monte Carlo nature, i.e., with some probability
the algorithm fails. This is a problem if the randomized algorithm is used
as a starting point for other (deterministic and Las Vegas) algorithms, as the
algorithm as a whole can also not provide any guarantees anymore. A classic
example for such a basic problem is leader election, which is often used to
as a first step for other wireless algorithms. We would argue in this article
that leader election deserves to be understood deterministically as well, and we
present a new algorithm that solves leader election in the wireless beeping model
— our algorithm is slower than the fastest known randomized algorithm, but the
overhead is bearable.

The beeping model has emerged as an alternative to the traditional radio
network model. The beeping model is binary, in a synchronous time step nodes

*An extended abstract appeared in the proceedings of the 28th International Symposium
on Distributed Computing (DISC’14), Austin, Texas, USA, October 2014 [14].

can only choose to beep or not to beep. If a node is beeping, it does not get any
feedback regarding other nodes. On the other hand, if a node is silent, it will
learn whether all its neighbors are also silent, or whether at least one neighbor
is beeping. The beeping model was introduced to the distributed computing
community by Cornejo and Kuhn [7] shortly after it was implemented [13].

In this model, we deterministically solve leader election: All the nodes in
the multi-hop network have to agree on a single leader. As leader election is
impossible without nodes having unique identifiers [I], we assume that each
node is equipped with a unique ID. We want our algorithm to be uniform, i.e.,
apart from their ID, nodes have no knowledge about any global or local network
properties (e.g., the network size, or their degree).

Our main result is an algorithm that deterministically solves the leader elec-
tion problem in O(Dlogn) time, where D is the diameter of the network and n
is the number of nodes. Once a leader is elected, all nodes in the network know
the leader’s ID, and the network is quiescent. We achieve this task by carefully
combining several methods.

1.1. Overview

First, we describe a Campaigning algorithm (Section |3) that can be com-
pared to one iteration of a real word political campaign: Every node is equipped
with a candidate leader and attempts to convince its neighborhood that this can-
didate would make a great leader. The idea is that, if enough campaigns are
performed, everyone will be convinced of the same leader, since her influence
spreads at least one hop per iteration. In other words, we would like to perform
multiple campaigns, one after another.

As it turns out, in the beeping model ensuring that the next algorithm starts
synchronized is a non-trivial task. We thus develop a technique that allows us
to sequentially execute algorithms (Section [4]) and apply it to the Campaigning
algorithm (Section |4.3)).

The third method establishes a “back-channel” (Section that directs mes-
sages towards a specific node, in our case the current candidate leaders. This
allows the last remaining candidate to detect its election and turn the network
quiescent. Our main result is now obtained by executing the Campaigning algo-
rithm multiple times sequentially, while at the same time using the back-channel
to notify the global leader when its successful election is detected. Lastly, we
briefly sketch how our algorithm can be extended to include a simple synchro-
nized wake-up protocol (Section @ and to anonymous networks (Section .

1.2. Related Work

Leader election is one of the fundamental problems in distributed computing,
often used as the first step for solving a myriad of other problems in networks.
As such, the problem was studied over decades in various communication and
network models [25].

In radio networks, communication takes usually place in synchronous rounds,
and nodes may either transmit or listen in every round. If a node transmits,

it cannot hear incoming messages, but the message is sent to all its neighbors
at once. If a node listens, it receives messages from all its neighbors, but the
message obtained depends on the model of collision detection. Should collision
detection be available, then a node can separate between no message sent, ex-
actly one message sent, or a collision of multiple messages. With no collision
detection available nodes can only distinguish between exactly one message sent
to it or just noise.

Leader election in radio networks was first considered in single-hop radio
networks, followed by the study of multi-hop radio networks. We start with a
short coverage of the single-hop case:

For deterministic algorithms in single-hop radio networks, the run time
highly depends on the availability of collision detection: With collision detection,
it is ©(logn) [3, 20, 2] 28], while without collision detection, it is O(nlogn)
[6]. A similar case can be made for randomized algorithms in single-hop radio
networks: With collision detection, the expected run time is O(loglogn) [30].
The expected run time goes to O(logn) if w.h.p. is desired. Should no collision
detection be available, then the run time increases to ©(logn) in the expected
case [2, 24], and to ©(log”n) w.h.p. [22]. In the context of single-hop beep-
ing networks, Gilbert and Newport [I8] also studied the size constraints on the
leader election algorithm’s state machine representation, recently also consider-
ing so-called noisy processes [19], inspired by biological distributed algorithms.

We would argue that the study of leader election in multi-hop radio networks
can be divided into the following fields for related work to our results. One can
consider (1) radio networks with or (2) without collision detection, and (3) the
beeping model. Second, the used algorithms can be either deterministic or
randomized. We refer to [4, [16], (23] for an extended overview of these areas.

For deterministic algorithms, Kowalski and Pele [23] displayed the discrep-
ancy between models with and without collision detection. They showed that
if collision detection is available, the run time is ©(n), while without collision
detection, there is a lower bound of Q(nlogn). Their O(n) algorithm with
collision detection relies on a careful combination of multiple innovative tech-
niques, e.g., remote token elimination and distributed fuzzy-degree clustering.
In contrast to the model in this article, they require messages of logarithmic
size, collision detection, and the knowledge of an upper bound polynomial in
the number of identifiers. Our algorithm can be simulated therein since their
model is strictly stronger. Asymptotically, we achieve a better run time for
graphs with a diameter D € o(n/logn), cf. [16].

For randomized algorithms in radio networks without collision detection,
Chlebus, Kowalski, and Pelc [4] broke the Q(nlogn) barrier: They present a
randomized algorithm with O(n) expected time and prove a lower bound of
Q(n). Furthermore, they give a deterministic algorithm for the model without
collision detection with a run time of O(nlog®?ny/loglogn). They use loga-
rithmic size messages and also assume that an upper bound on the network size
is known. Czumaj and Davies [I1] improve the running time for small diameter
networks and consider directed networks, see [I0] for further recent advances.

Ghaffari and Haeupler [16] considered randomized leader election w.h.p. in
the beeping model. Their algorithm runs in O((D+logn loglogn)-min(loglog n,
logn/D)) time, with a lower bound of Q(D + logn). To choose the random
starting set of candidates, they rely on knowledge of n, while we assume our
algorithms to be uniform. To cope with overlapping transmissions, they present
a sophisticated technique using superimposed codes. Czumaj and Davies com-
plement their result by presenting an algorithm with an expected run time of
O(D +1logn) [9]. We deem our overhead of O(logn) in the worst case bearable.

The authors of [I6] also consider a variant of the beeping model in which
only a subset S C V of the nodes wakes up in round 0 [I7]. We adapt our
algorithm to this setting in Section [f] The difficulty is to allow nodes that are
being woken up by neighbors to synchronize their execution with that of nodes
already awake. The related wake-up problem, where nodes may also activate
spontaneously and no collision detection is available was studied in its own right,
for single-hop [I5] as well as multi-hop [5] networks, see also [12]. In [27] the
goal is to activate the whole network if exactly one node is active initially.

Lastly, we note that the results from this article (in the form of the prelim-
inary extended abstract [14]) are already employed in the work of Czumaj and
Davies [8], where our deterministic leader election algorithm is used as an initial
subroutine for their broadcast and gossiping algorithms.

2. Preliminaries

Network Model. The network is modeled as a connected undirected graph G =
(V, E) with node set V and edge set E. We denote by D the diameter of G,
and by n the number of nodes in V. All nodes v € V have a unique identifier
(ID), denoted by id(u), from the range {1,2,...,0(n")}, with v > 1 being a
constant [29, §2]. We denote by I(v) the length of w’s identifier in bits, i.e.,
I(u) = [logy(id(u))]. The neighborhood N (u) of u is the set {u} U {v : (u,v) €
E}. In a similar fashion, the d-neighborhood N (u,d) of a node u contains all
nodes with a distance of at most d to u, e.g., N'(u,1) = N (u).

Beeping Model. We consider one of the most basic communication models, the
synchronous beeping model: All nodes start synchronizedﬂ in round 0, and
communication between nodes proceeds in synchronous rounds, where messages
are transmitted via the edges of the network. In every round, each node may
choose to either beep or listen to incoming messages. If a node v beeps, the
beep will be transmitted to all nodes in A (v). Otherwise, if v listens, then the
message received by v in a round is defined as follows:(i) if no node in N (v)
beeps, then v receives a 0 (silence), and (ii) if one or more nodes in N (v) beeps,
then v receives a 1 (beep).

n Section @ we also handle the case in which only a subset of the nodes wakes up.

Uniform Algorithms. We only consider uniform algorithms. That is, unless
mentioned otherwise, the input for a node v consists of only id(v) (but not the
value of 7). Note that neither n, nor D, nor any upper bounds on those network
parameters, can be inferred from the value id(v) (or {(v)) of a single node v.
Nodes also do not have any knowledge about the network topology, e.g., the
IDs of their neighbors, or even their own degree. Moreover, we require that in
every network the algorithm reaches a quiescent state, i.e., a state in which no
node transmits beeps anymore.

3. Convincing Your Neighbors

In this section, we give an algorithm called Campaigning that can be com-
pared to a political campaign at a word of mouth level. Everyone is convinced
that either she herself is a good candidate, or that she knows the name of a good
candidate. If you know a better candidate than all of your neighbors and their
neighbors, you will try to convince your direct neighbors. However, if they are
aware that a better candidate is out there — they will ignore your conversion
attempts. Some candidates might reach a good deal of local followers, but only
a globally best candidate can guarantee to spread her sphere of influence all the
time.

The algorithm Campaigning can be seen as one iteration of this process,
where nodes exchange information only with their local neighborhood. The
general idea is that after D iterations are performed, “There can be only one! ’El,
and all nodes will be convinced of the same leader. Hence, the candidates of the
different nodes do not have to be unique, e.g., the algorithm works with just
one candidate for all nodes or n different candidates.

We have to reach a state where nodes can transmit information to their
neighbors, without other nodes disturbing them, since beeps do not encode
relevant further information. Particular challenges arise from the facts that the
algorithm has to be uniform, i.e., that n is not known, and that we are confined
to the restricted beeping model. E.g., one cannot just “beep the identifier” and
then proceed with another part of the algorithm, since any receiving node will
hear all its neighbors — and cannot distinguish if all sent a beep or just one.

The main idea is to first reach local consensus on the longest identifier,
then to agree locally on the highest identifier, and finally, to let those with the
locally highest identifier transmit their identifier to their neighbors. To reach a
state of local consensus, we turn some nodes into buffer-nodes that no longer
participate. Therefore, we divide our algorithm into three separate procedures
campaign longest_id, campaign highest_id, and campaign transmit_id.

We first give an overview of the three procedures in Subsection followed
by a detailed mode of operations for Campaigning in Subsection 3.2} In the
appendix a pseudo code description of our algorithm is presented in Figure [A24]

2Connor MacLeod, 1985. In Highlander.

We conclude by stating correctness and run time results in Subsection pre-
senting the formal proof details in Subsection

8.1. Qverview of the Procedures

Every node v gets as input an id, referred to as campaigning-identifier, that
is stored in v’s variable id;,. Also, all nodes start in an active role, but can
change to be passive or inactive during the algorithm. Active nodes might
convince their neighbors at the end and passive nodes might receive a new
candidate, but it can be necessary to turn nodes inactive to let them act as
local separators.

After the first procedure, campaign longest_id, exactly those nodes v with
the longest id;, in their 2-neighborhood are still active. If a node v is not
active, but has an active neighbor w, then v turns passive, since it is inter-
ested in the campaigning-identifier of w. Nodes not fulfilling either of these
requirements turn inactive. Furthermore, to separate clusters of active nodes
with campaigning-identifiers of different length, the procedure creates buffers
of inactive nodes between them. Thus, inside a cluster, all active campaigning-
identifiers are of equal length, allowing each cluster to agree on a common
starting time for the following procedure.

The second procedure campaign highest_id mimics the first procedure,
but now for the highest instead of the longest identifier. After campaign_
highest_id, exactly those nodes v with the highest id;,, in their 2-neighborhood
remain active. The buffer of inactive nodes is extended to separate active nodes
with different campaigning-identifiers. Hence, in the third procedure campaign_
transmit_id, all still active nodes can convince their passive neighbors unhin-
dered.

3.2. Details of the Algorithm

In this subsection, we describe the algorithm Campaigning and each of its
three procedures for a node v € V. We describe the algorithm from the per-
spective of a single node v. The input campaigning-identifier for v is stored in
id;p, and the length of id;,, in bits is stored in the variable l;,. Furthermore,
v initializes the variables role < active, loys < lin, and idyy: < id;,. Then,
the node v executes campaign longest_id, campaign highest_id, campaign_
transmit_id, and the output of node v is idy,¢. Should a node become inactive
at any time, i.e., if role = inactive, then the algorithm immediately terminates
and the value currently stored in id,,; is returned as v’s output.

Each procedure consist of phases, which are divided into three rounds each.
For ease of notation, we call the rounds in one phase slots, i.e., slot 0, slot 1,
and slot 2. Conceptually, the first two slots 0 and 1 of each phase are used to
transmit data, while slot 2 will exclusively be used for notification signals from
active nodes. Recall that v hears a beep only if some node u € N (v), u # v
transmits a beep, i.e., v does not hear beeps of itself.

campaign_longest_id. The length of campaign longest_id may vary; at the
end of the procedure, node v stores the number of elapsed phases in [, if at
the end of the procedure v is active or passive. Node v starts by beeping in
slots 0 and 1 for the first [;,, — 1 phases. Then, v listens in slot 0, and beeps
received in slot 0 are relayed in slot 1. If v relays at least one beep, it turns
passive. Should a beep be heard in the next slot 2, the node v turns inactive.
Otherwise, already in phase [;, there was no beep to relay. In that case, if a
(relayed) beep is received in slot 1, then v turns inactive. Else v beeps in slot 2
of that phase and finishes the procedure as active. Should after phase l;,, a beep
be heard in slot 1, the passive relaying node v turns inactive as well. Should
there be a phase where the passive node v hears no beeps in slot 0,1, it either
i) turns inactive if no beep is heard in slot 2, or i) finishes the procedure as
passive if a beep is heard in slot 2.

campaign_highest_id. This procedure consists of [,,; phases, and we denote
the current phase of node v by p.

If v is passive at the beginning of phase p, then beeps heard in slot 0 are
relayed in slot 1. Should no beep be heard in slot 0, but a beep is heard in slot
1, v turns inactive. Also, if no beep is heard in slot 2 of phase l,,:(v), then v
turns inactive.

We denote by the positions 1,...,l;, the bits of id;,, starting from the most
significant bit. If v is active at the beginning of phase p, then v beeps in slots
0 and 1 if position p in id;, is a 1 bit. Else, when a beep is heard in slot 0 or 1,
v turns passive. If the current phase is l,,; and v is still active, then v beeps in
slot 2.

campaign_transmit_id. Much like campaign highest_id, this procedure con-
sists of l,,; phases. An active node v uses the l,,; phases to transmit the I,
bits of id;,, whereas passive nodes store the [,,; received bits in id ;.

3.3. Convincing via Campatigning

We can now state some important properties of the algorithm Campaigning,
which will be used in the next sections to prove our main result. All proofs are
presented in Subsection [3.41 We begin with the following correctness lemma,
which essentially states that nodes may only adopt identifiers from their neigh-
borhood, i.e., identifiers spread only locally and no new identifiers are created.

Lemma 1. Let v be a node that just finished algorithm Campaigning (id;y,(v)).
Then idout (v) < MaXyepnr(v,1) idin(w) and 3z € N(v,1) s.t. idout(v) = idin ().

The proof to Lemma (1| consists of a careful case distinction based on the
node’s role in the Campaigning algorithm. In Theorem [T we show that the
influence of a potential leader will spread one hop per round. This is crucial for
the whole leader election process, since it will be extended later on to show that
D executions of the algorithm suffice to convince all nodes of the leader.

Theorem 1. FEzecute algorithm Campaigning(id;,(v)) forVv € V. Letv' € V
be a node with id;, (v") = max,,cpr(v,3) idin(w). Then for all nodes u € N(v',1)
holds: idyyt(u) = ids, (V).

The above theorem is established by observing that a node v with a locally
highest campaigning-identifier (i.e., the highest id;, in A (v, 3)) remains active,
its neighbors do not turn inactive, and thus the campaigning-identifier is prop-
agated one hop. Finally, Theorem [2] states that the run time of Campaigning
depends only on the largest campaigning-identifier length in the 1-neighborhood.

Theorem 2. Ezxecute algorithm Campaigning(id;,(v)) for Yv € V. The run
time for each node v is O(maxyepr(v,1) lin(w)) rounds.

This is true since the maximum run time of a node is completely determined
after campaign_longest_id has finished. Recall that all identifiers are at most
in O(n"), and hence the run time is bounded by O(logn) rounds. Since Lemma
ensures that no new identifiers are created in the network, we obtain the
following corollary.

Corollary 1. Let maxyey lin(v) € O(logn). It holds that the run time of algo-
rithm Campaigning(id;,(v)) is O(logn) rounds for Vv € V.

8.4. Proof Details

In this subsection we present the proofs for Lemma, |1, Theorem (I and The-
orem [2l To this end, we first present some preliminarly statements in Subsub-
section [3.4.1] which are used for the proof of Lemma [I] in Subsubsection [.4.2]
and the proof of Theorem [1]in Subsubsection before we prove Theorem
in Subsubsection [B.4.4l

8.4.1. Supporting Statements
We begin by stating that after finishing campaign longest_id, two non-
inactive neighboring nodes will have reached consensus on a common [,,;:

Lemma 2. Let a # b be two neighboring nodes, i.e., a € N(b,1) that just
finished the first procedure campaign longest_id of Campaigning(id;,(v)). If
neither a nor b is inactive, then lyyui(a) = lout (D).

PROOF (OF LEMMA . We prove the lemma by case distinction, since the role
of each of the two nodes is active or passive.

Let a and b be both active, then they finished the first procedure after
phase loyi(a) = lin(a) and loyu(b) = ln(b) respectively. Assume w.lo.g. for
contradiction that l,u¢(a) < lowi(b). Then a heard a beep in slot 0 of phase
lout(a) and thus would have turned passive.

Let w.l.o.g. a be active and b be passive. If l,y:(a) < lput(b), then b would
have heard a beep in slot 2 of phase l,,:(a), and would have become inactive.
Thus, assume that lyt(a) > loys(b). b may only finish the first procedure as an
active node if no beep is heard in a successive slot 0 and 1. However, in phase

lout (D), the node b would have heard a beep from node a in slot 0. Therefore, b
could not have finished after phase I,y ().

Let a and b be both passive. Again, assume w.l.o.g. that l,yui(a) > lou (D).
Both a and b have an active neighbor (else they would not be passive) a’ and v’
with lout(a) = lour(a’) and loyu (D) = loyi(b'), see the item above. It holds that
aeNUV,2),aeN(,1)and be N(d',2), b€ N(da’,2). Consider phase Iy (b)
of campaign longest_id: b’ beeped in slot 2, a’ beeped in slot 0, and a relayed
the beep of @’ in slot 1. Thus, b heard a beep in slot 1 and 2, and would have
become inactive, a contradiction. O

In the same spirit, we state that after Campaigning was run, two non-inactive
neighboring nodes will have reached consensus on a common idq;:

Lemma 3. Let a # b be two neighboring nodes, i.e., a € N(b,1), that just
finished the Algorithm Campaigning(id;,(v)). If neither a nor b is inactive,
then idgyt(a) = ideye (b).

PRrROOF (OF LEMMA . Again, we prove the Lemma by case distinction, since
the role of each of the two nodes is active or passive. Conceptually, the proof is
similar in some items to the proof of Lemma 2] We know from Lemma [2] that
lout(a) = lout (b)

Let a, b be both active. Being active, they only transmit their campaigning-
identifier in campaign_transmit_id (never changing their campaigning-identifier
in the algorithm). Thus, we look at campaign highest_id. For each phase p’
of campaign highest_id holds: If a had a 0 at position p’ of id;,(a), then a
heard a 0 in slot 0 and a 0 in slot 1 of phase p’. Else, a would have changed its
role to not active. The same holds for b. Now assume for contradiction w.l.o.g.
that loyui(a) > lout(b). Consider the most significant bit p* where a has a 1 in
id;n(a) and b’ has a 0 in id;,(b'). Then there would have been a phase p* in
campaign transmit_id s.t. a beeps a 1 in slot 0, but b listens in slot 0 and hears
a 1. This would lead to b turning not active in the algorithm, a contradiction.

Let w.l.o.g. a be active and b be passive. We start with idyye(a) > idoyu ().
After the procedure campaign transmit_id, node b has a 1 in its campaigning-
identifier at every position where @ has a 1 in its campaigning-identifier. Thus,
idoyt(a) > idoys () is a contradiction. We now consider the remaining case: If
idoyt (D) > idoyi(a), then some active node ¢ € N(b,1) transmitted a beep in
slot 0 in campaign transmit_id in some phase where a transmitted no beep.
Note that there is a 2-hop path from a to ¢ via b. We distinguish between the
cases idpye(c) > idput(a) and idyys(c) < idoyt(a). If idoui(c) > idoue(a), then b
would have relayed a 1 to a in campaign highest_id from c in a phase where a
listened in slot 1. Then a would have changed its role to not active. In the same
fashion, if idyys(a) > ideyt(c), then b would have relayed a 1 to ¢ in campaign_
highest_id from a in a phase where c listened in slot 1. Then ¢ would have
changed its role to not active. Both cases lead to a contradiction.

Let a and b be both passive. Again, assume w.l.o.g. that idyyut(a) > idoy: (D).
Both a and b have an active neighbor after campaign highest_id (else they
would not be passive, since only an active neighbor would have beeped in slot

2 in the last phase of campaign highest_id). After campaign highest_id, for
every active neighbor a’ € A (a,1) and every active neighbor & € N(b,1) holds:
idout(a) = idoye(a’) and ideyt (D) = idgyt(b'). This holds due to the item above
and the fact that, if a node is active after campaign highest_id, it stays active
and never changes its campaigning-identifier. Thus, by assumption, id,¢(a’) >
idoue(b'). Also, a € N(V,2), a € N(d',1) and b € N(d',2), b € N(d,2).
Consider the most significant bit p’ where a’ has a 1 in id;,(a’) and ¥’ has a 0
in id;,, (). Le., in all phases of campaign highest_id before p’, both ¢’ and V'
sent a 1 in each slot 0 and 1. In phase p’ of campaign highest_id, the node
a received a 1 in slot 0 and the node b received a 0 in slot 0, since each active
neighbor of b has the same campaigning-identifier Thus, a beeps in slot 1 and b
hears a 1, relayed by a. Therefore, b turns inactive, a contradiction to b being
passive.

From Lemma [3|it follows that if a node is adjacent to a node with another
identifier, at least one of the two nodes has to be inactive:

Corollary 2. Let a # b be two neighboring nodes, i.e., a € N(b,1), that just
finished the Algorithm Campaigning(id;,(v)). If idout(a) # idout(b), then at
least one of the nodes a,b is not active.

We continue with lemmas that show that the algorithm does assign new
identifiers in a correct fashion. We start by stating that nodes can never get a
smaller identifier:

Lemma 4. Letv be a node that just finished Algorithm Campaigning (id;y,(v)).
Then v did not get a smaller campaigning-identifier as its output, i.e., id;n(v) <
idout (U)

PROOF (OF LEMMA . If v is inactive or active after Campaigning, then it
holds that iyt (v) = id;pn (v), since only passive nodes receive a new identifier in
Campaigning. The assignment of an idyy:(v) with idyy:(v) # id;n(v) can only
happen in campaign_transmit_id to a passive node. Assume for contradiction,
that idy:(v) < id;p,(v) for a passive node after campaign transmit_id. Then
there would have been an active node w € N (v,1) with id;,(w) < id;, (v) that
transmitted its id;, (w) to v in campaign transmit_id.

We first consider the special case l;, (w) < l;,(v): In that case, v would have
beeped in slot 0 of phase l;,(v) — 1 of campaign longest_id, while w would
have listened in slot 0 of the same phase. Thus, w would have heard a 1 in slot
1 and turned inactive, a contradiction.

We can therefore assume l;, (w) > 1y, (v), but l;n(w) > l;n(v) is impossible
due to the assumption id;,(w) < id;,(v). Hence, we only need to consider
lin(w) = lin(v) (meaning that v is still active at the beginning of campaign_
highest_id) and id;, (w) < id;,(v). With Lemmal3] there can be no active node
u € N(v,1) with idpye(w) = idsp(w) # idin(u) = idoyt(u) after Campaigning,
since we assumed idyy: (v) = idgys(w). Thus, the only active nodes = € N (v,1)
after campaign highest_id will have id;,(z) = id;,(w). However, v was active

10

at the beginning of campaign highest_id and is passive at the end of campaign_
highest_id. v therefore heard a beep in a slot 0 of campaign highest_id, which
caused v to change its role to passive from active. Those beeps in slot 0 must
have come from an active node, i.e., a node = with id;,(x) = id;,(w). Since
id;p (w) < idyp, (v), consider the most significant bit p” where id;,, (v) has a 1, but
id;n(w) has a 0. Then, the node v will beep in slot 0 of phase p’ of campaign_
highest_id and node x will listen in slot 0 of phase p’ — leading to node x
turning passive. Actually, every active node y € N (v,1) with id;,(y) = idn ()
will turn passive, and thus w with id;, (w) = id;, (w) too. This is a contradiction
to w being active in campaign transmit_id. O

Furthermore, nodes that were convinced will receive a higher identifier:

Lemma 5. Let v be a node that just finished Algorithm Campaigning(id;,(v))
with the role of being passive. Then v got a larger campaigning-identifier as its
output, i.e., idy, (V) < idoyt(vV).

PRrROOF (OF LEMMA . Again, v can only receive a new id,,; in campaign_
transmit_id() — and only from one of its active neighbors z € N(v,1). From
the proof of Lemmal[d]it follows that all active neighbors in (v, 1) have the same
campaigning-identifier. It also follows from the same proof that these active
neighbors cannot have a smaller campaigning-identifier than v. Le., id;,(z) <
id;n (v) is false.

This only leaves to show that the case of id;,(z) = id;,(v) leads to a con-
tradiction: But if id;, (x) = id;, (v), then v listened in slot 0 and 1 in the phase
lout(v) of campaign highest_id, and did not hear a beep in the two slots. Thus,
v beeped in the following slot 2 and stayed active, a contradiction.

Hence, id;n(z) > idin(v), and v received a larger campaigning-identifier
idoyt(v) = idoyt(x) > idp (v). O

Also, active nodes do not change their identifier:

Lemma 6. Let v be a node that just finished Algorithm Campaigning (id;,(v))
with the role of not being passive. Then v kept its campaigning-identifier as its
output, i.e., idin(v) = idoys(v).

PROOF (OF LEMMA @ v only receives a new id,,; in campaign transmit._id,
but only if v is passive. Since v is not passive, id;, (v) = idyyus(v) holds. O

3.4.2. Construction for the Proof of Lemmal[]]
We can now prove Lemma [T making use of the proofs of Lemmas [3] [4]

PROOF (OF LEMMA . If v is inactive or active, then id;,(v) = ideyt(v) holds
due to Lemma [l The passive node v may only have received its new and
larger campaigning-identifier in campaign transmit_id from an active neighbor
x € N(v,1), see the proofs of Lemma [4] and With Lemma (3] it holds that
idout(v) = idout () = idin (). O

11

8.4.3. Construction for the Proof of Theorem

We begin by stating Lemmas [7] and [§] which in turn leads to Corollary
which in turn implies Theorem [I} To this end, the proof of Lemma [7] will make
use of the Lemmas 2] and

If an active node had the highest campaigning-identifier in its 3-hop neigh-
borhood, it will convince all of its neighbors:

Lemma 7. Let v be a node that just finished Algorithm Campaigning (id;y,(v)).
If v is active and idi, (v) = MaxX,epr(v,3) idin(2), then for all nodes x € N(v,1)
holds: idyy:(z) = id;p (v).

PROOF (OF LEMMA [7)). Let us assume that there is a node y € N(v,1) with
idout(y) < idoyt(v) = idjp(v). Then y must be inactive due to Lemma [3| The
node y could have only gone inactive in the procedure campaign _longest_id or
campaign highest_id.

We start with campaign longest_id: If l;,(v) < l;(y), then v could have
never heard a beep in slot 1 until phase l;,(v), since v would have beeped in
every phase before in slot 0 — and y either beeps itself or relays the beep in these
slots 1. Furthermore, no node in A/ (y, 2) can beep in slot 1 in phase l;;,(v), since
this would violate the condition that v has the highest campaigning-identifier
in its 3-hop neighborhood. However, y could turn inactive if it hears a beep
in slot 2 in any phase before phase l;,(v). This is prevented by y beeping in
every slot 1 of these phases before phase [;,,(v), since a node is prevented from
beeping in slot 2 of a phase if it hears a beep in slot 1 or beeps in slot 1. Also,
v beeps in every slot 0 before phase l;,(v) and beeps in slot 2 of phase I;,(v),
thus preventing the last possible option for y going inactive.

This leaves only campaign highest_id: We know that y is either active or
passive after campaign longest_id. Thus, lyu:(v) = low(y) with Lemma
While it is active, it can only change its role to passive. y can only change
to being inactive if its role is passive in campaign longest_id. There are two
options for a passive node to become inactive in campaign longest_id: First,
y could have heard a beep in slot 1 in some phase p’. This can only happen if v
has a 0 at the most significant position p’ of its campaigning-identifier id;, (v),
because else y would relay the beep in slot 1. Consider such a phase p’ where
y would hear a beep in slot 1. There must be an active node u € N (y,1) that
beeps in phase p’, but we know that id;,(u) < id;,(v). Hence, y would have
relayed a beep to u in some previous phase before p’ where u listens, turning u
passive, which is a contradiction. Second, the last option for y to turn inactive
would be to not hear a beep in slot 2 in phase lyu:(y) = lout(v). This is not
possible, since v will beep in slot 2 of phase l,,:(v) of campaign highest_id.

This concludes the proof, since y cannot be inactive. O

Also, if a node had the highest campaigning-identifier in its 3-hop neighbor-
hood, it will end the algorithm being in an active role:

Lemma 8. Letv be a node that just finished Algorithm Campaigning (id;,(v)).
If idsn, (v) = max e nr(v,3) idin(2), then v is active.

12

PRrROOF (OF LEMMA . The node v can become inactive or passive either dur-
ing the procedure campaign longest_id or during the procedure campaign_
highest_id.

We begin with analyzing campaign longest_id: v cannot become inactive
or passive until phase l;,(v). In phase l;,(v), v can only become inactive or
passive if v hears a beep in slot 0 or 1. But a beep in that phase in slot 0 or 1
can only happen if there is a node z € N (v,2) with l;,(2) > l;(v), which is a
contradiction.

We now analyze campaign highest_id: In order to change the role from
active, v has to become passive first. v this can only happen in phases where v
listens in slot 0 and 1. Let p’ be the first phase of campaign highest_id where
v hears a beep in slot 0 or 1. If a beep is heard in slot 0, then there must be
a node y € N(v,1) with id;,(y) > id;,(v), because else v would have turned y
passive before. The same argument can be made for slot 1: If v hears a beep in
slot 1 of phase p/, then it must have been relayed by a passive node u € N'(v, 1),
originating from a node z € N (v, 2) with id;,, (z) > id;, (v), because else v would
have turned x passive before via u. O

Combining Lemma [7] and Lemma [§] yields:

Corollary 3. Letv be a node that just finished Algorithm Campaigning (id;,(v)).
If idin (v) = max,enr(v,3) idin(2), then v is active and for all nodes x € N(v,1)
holds: idyye(z) = id;n (v).

PROOF (OF THEOREM . The theorem holds by applying Corollaryto every
node v € V for one run of the Algorithm Campaigning. O

3.4.4. Construction for the Proof of Theorem[3
We now prove the last open statement from Section

PROOF (OF THEOREM [2)). The value Iy, (v) after the first procedure campaign_
longest_id is exactly the number of phases it took to finish the first procedure.
The following procedures campaign highest_id and campaign transmit_id
also take [y, (v) phases. Thus, the total run time is in O(lyy:(v)) rounds.

Since the value of l,,:(v) is determined in campaign longest_id, we now
consider now the behavior of v in only this procedure:

If v was active after campaign longest_id, then l,,:(v) = l;n(v), and Loy (v)
< maxXye N (v,1) lin (w)

If v was passive after campaign_longest_id, then v terminated campaign_
longest_id by hearing a beep in slot 2 from one of its active neighbors = €
N(v,1). Then, lout(v) = lin(z) and lowv < max,epnr(v,1) lin(w).

The remaining case is that v turned inactive in campaign_longest_id. If
v turned inactive due to a beep heard in a slot 2, then this beep came from
one of its active neighbors @ € N (v,1). Then, lyut(v) = lin(x) and Loy (v) <
maXyeN (v,1) lin (w)

If v turned inactive due to no beeps heard in consecutive slots 0,1,2, then
v must have been passive before — else v would have beeped in slot 2 after not

13

hearing/sending a beep in slot 0 and 1. Let the phase where this happens be
p* > 1. In phase p* — 1, v heard a beep in slot 0 (thus remaining/becoming
passive) and relayed the beep in slot 1, and did not hear a beep in slot 2.
Thus, v had an active neighbor u € N (v,1) that beeped in slot 0 of phase
p* — 1. Hence, lout(v) < lin(u). If v now hears no beeps in slots 0,1,2 of
phase p*, it turns inactive, and for its l,,; now holds lyy:(v) < I (u). Thereby,
lout(v) < maXyeN(v,1) lzn(w>

The only other option for v to turn inactive would be to hear a beep in a slot
1. If a beep was heard in slot 1 in phase l;,, then I, = l;,. Thus, let p’ > l;,
be the phase where v turned inactive by hearing a beep in a slot 1. If v hears
a beep in slot 1, no beep was sent in slot 0 and no beep was heard in slot 0 by
v in phase p’. Assume that a node u € N(v,1) sent a beep in slot 1 of phase
p’. Then u was passive in phase p’, but for all phases before p’, the node u was
active. Thus p’ — 1 < [;,(u). Since v turns inactive in phase p’, we can deduce
that p’ < i, (u) + 1. Hence, loy:(v) < maxyen(v,1) lin(w) + 1 O

More precisely, the proof yields the following corollary.

Corollary 4. Let v be a node. If id;,(v) = maz,ecy id(u), then the run time
of Campaigning is exactly 9 - l;(v) = 9 lout(v). In any case, the run time of
Campaigning is at most 9 - max,ecyvl(u).

4. Convincing Your Network

We would like to apply the campaigning method presented in the previous
section to propagate the highest ID further. In other words, we need to execute
Campaigning multiple times in succession. This task would be easy if there
was some kind of global synchronization in order to guarantee that all nodes
can start the next invocation of the campaigning algorithm at the same time.
However, since the node labels have different lengths, so does each campaign.
To overcome this obstacle, we design a generic approach to sequentially execute
arbitrarily many algorithms in the beeping model. The key ingredient in our
approach is the following balanced counter technique.

4.1. Balanced Counters

We present a method that enables the network to manage a balanced counter
for every node u. At every node u, our balanced counter technique stores an
integer value denoted by counter. To manipulate counter the two methods
increment and reset, which instruct the counter to increment its value by one
or reset it to zero, respectively, are provided. Our goal is to satisfy the following
balancing property: For any two neighboring nodes w,v participating, i.e., not
currently resetting their counters, the counter values of u and v shall differ by
at most 1.

Note that transmitting the whole counter value in every round is not feasible
due to the limited nature of the communication means the nodes have at their
disposal. However, it turns out that transmitting the counter value modulo 3

14

suffices to ensure the balancing property. The transmission technique we use
requires three reserved rounds, and allows a node to determine whether their
neighbors have a lower counter value than themselves. The idea is now that
nodes refrain from incrementing the counter as long as there are neighbors that
are still behind.

We describe the balanced counter technique from the perspective of some
node u using a state machine. Each node may be in one of the following states:
CouNT, RESET-NOTIFY, or RESET-WAIT, and we denote u’s current state by
state. If state = COUNT, then u is considered to be a participating node,
and either increment or reset may be invoked at u. In the other two states
those operations are not available to u. The only allowed state transitions for
node u are
1. CouNT — RESET-NOTIFY if no node v € M (u) is in RESET-WAIT,

2. RESET-NOTIFY — RESET-WAIT if no node v € N(u) is in COUNT, and

3. RESET-WAIT — COUNT if no node v € N(u) is in RESET-NOTIFY.
Communication of the balanced counter technique is subdivided into phases in-
dexed by the positive integers. Each individual phase consists of 6 rounds; to
avoid confusion we use the term slot to refer to the individual rounds within
a phase. The role of the first three slots (0,1,2) is to transmit the counter
increments, whereas the last three slots (3,4, 5) are used to transmit the node’s
current state. We now give a detailed description of the balanced counter tech-
nique; for convenience, in the appendix we also include a pseudo-code description
(Figure [A.1)).

Initially, the state of u is COUNT, and counter = 0. In each phase, the

operation at node w is as follows:

1. If state = COUNT, then u beeps in slot counter (mod 3) and in slot 3;

2. If state = RESET-NOTIFY, then u beeps in slot 4; and

3. If state = RESET-WAIT, then u beeps in slot counter (mod 3) and in slot 5.
Node u listens in all slots in which it does not beep.

Increment. The purpose of this operation is to increment counter by one with-
out violating the balancing property. When increment is invoked at node wu,
then u waits for the first phase in which no beep is received in slot counter — 1
(mod 3) (note that u never transmits in slot counter — 1 (mod 3)). Node v in-
crements counter by 1 at the end of that phase and returns from the increment
operation.

Reset. The purpose of this operation is to reset node u’s value of counter
to zero in accord with neighboring nodes v € N(u), while allowing nodes v
to proceed participating before invoking reset themselves. Specifically, when
reset is invoked at node u, then wu successively transitions (1) from COUNT
to RESET-NOTIFY, thereby setting counter + 0, (2) from RESET-NOTIFY to
RESET-WAIT, and eventually (3) from RESET-WAIT back to COUNT. In this
process u respects the aforementioned restrictions for state transitions, utilizing
the transmissions in slots 3 to 5. In particular, the aforementioned transition

15

(i), 1 <14 < 3, is consummated in the first phase in which no beep is received
in slot 2 + 1.
We establish the following lemma, whose proof is deferred to Subsection [£.4]

Lemma 9. The balanced counter technique satisfies the balancing property.

4.2. Balanced Ezxecutions

Consider two algorithms A and B that shall be simulated sequentially. To
achieve our goal, we intend to simulate the execution of A and B in the network.
In A’s simulation, the balanced counter is used as a round counter. Since the
round counter satisfies the balancing property, it is ensured that the simulations
performed by neighboring nodes progress at the same rate. When at some node
u the simulation of A terminates, the round counter is reset by u. Node u then
waits until its round counter returns to the COUNT state and thereupon starts
the simulation of B.

One needs to ensure that when round r of A (or B) is simulated at node
u, then u can determine whether one of its neighbors transmitted a beep in
round 7 — 1 of the simulation. To that end, we extend each phase of the counter
technique by three additional slots and reserve the first 6 slots (0-5) for the bal-
anced counter technique. Consider a phase p and a node u currently simulating
algorithm A, and denote by r the counter value for node u at the beginning of
phase p. The three new slots (6-8) are used to transmit and receive the beeps
emitted during the simulation as follows.

Assuming that A did not terminate in round r — 1, the goal in phase p is
to simulate A’s round r. Node u simulates round r of algorithm A utilizing
slot r (mod 3) + 6 to replace A’s access to the communication channel, where
beeps received in slot (r —1 (mod 3) 4+ 6) replace the beeps received by v in the
simulation if node w listened in round r—1 of .A. Moreover, in slot r—1 (mod 3),
node u re-transmits a beep if u beeped in the last simulated round r — 1 under
A. If u incremented the counter to the value r in the current phase, i.e., the
counter progressed from r — 1 to 7, then v invokes increment again. Note that
increment may delay incrementing r for several phases; in that case, the same
round r of A is simulated in phase p multiple times, and if the beeps received
in slot 7 — 1 change, then so does the simulated execution of A’s round r.

Otherwise, if A terminated its execution in the previous round r —1, the goal
is to safely start the simulation of the next algorithm 5 at node u. To that end,
node u invokes the reset operation. However, the simulated execution of the
next algorithm B (possibly using u’s output of A as input) only starts once u
continues participating in the balanced counter, i.e., when state = COUNT. We
establish the following lemma, the proof of which is deferred to Subsection [£.4]

Lemma 10. Let A= (Ay,...,Ax) be a finite sequence of algorithms. Denote,
for every v € V, by 61(v) the output produced at v by A; when executed on G.
For i > 1 and for every v € V, denote by 6;(v) the output produced at v by
A; when executed on G, where the input to every u € V for A; is specified as
6i,1(u).

16

It holds that for every node v, the output o(v) produced at v when using the
balanced execution technique for A is o(v) = o (v).

4.3. Leader Election through Campaigning

We now have the tools available to design a non-quiescent leader election
algorithm. Utilizing the balanced execution technique, every node executes the
Campaigning algorithm sequentially, again and again. For every node u, the
input to the first invocation of Campaigning is id(u), and the input to every
following invocation of Campaigning is the output of the previous one. In the
following we refer to this basic protocol as the Restless-LE (for leader election)
algorithm. It is immediate from the design of Restless-LE, that the network
will never reach a quiescent state — for instance, the balanced counter technique
never ceases to transmit. The following lemma states that Restless-LE obtains
the desired result after at most D invocations of Campaigning.

Lemma 11. If network G executes Restless-LE, then for every node u € V,
the output produced at u by the D-th invocation of Campaigning is max,cy id(v).

Utilizing the balanced execution technique, Lemma can be obtained by
inductively applying Lemma (1] and Theorem [l| for D times. Simulating D in-
vocations of Campaigning takes O(Dlogn) rounds, as is stated in Theorem
The proofs to both Lemma [T and Theorem [3] appear in Subsection

Theorem 3. If network G executes Restless-LE, then for every node u € V,
the D-th invocation of Campaigning terminates after O(D logn) rounds.

Note that the network never reaches quiescence since the balanced counter
technique continues to beep even after the D-th invocation of Campaigning has
terminated. Moreover, without knowledge of D, node u has no means to decide
when sufficiently many campaigns have been run.

4.4. Proof Details

in this subsection, we give the promised proofs of Lemmas [9 and
Theorem Bl We start with Lemma [0l in Subsubsection 4.1

4.4.1. Construction for the Proof of Lemmal[g

For the analysis, we use the identifiers of variables in the balanced counter
technique, parametrized by node u and phase p, to refer to the variable’s value
for u at the end of phase p. Specifically, state(u,p) and counter(u,p) denote
the value of the corresponding variables for node u at the end of phase p.

Our analysis begins with the observation that for every node w in every
phase p, if state(u,p) = RESET-NOTIFY or state(u,p) = RESET-WAIT, then
counter(u,p) = 0. Moreover, the balanced counter technique respects the afore-
mentioned state transition restrictions due to the beeps emitted in slots 3-5 in
combination with the implementation of reset. It follows that if in phase p there
is a pair (u,v) € E with state(u,p) = RESET-WAIT and state(v,p) = COUNT,

17

then state(v,x) = RESET-NOTIFY in some phase < p. Let ¢ be the largest
such . The state transitions for node v after round ¢ were RESET-NOTIFY —
RESET-WAIT — COUNT, and when v arrived in COUNT in some phase r, it is
guaranteed that counter(v,r) = 0. In all phases y, r < y < p, node v received a
beep in slot 0 (sent by), thus ensuring that counter(v,y) < 1. We summarize
our findings in the following lemma.

Lemma 12. Let p be a phase. If state(u,p) = RESET-WAIT for some node
u €V, then for all v € N(u) either counter(v,p) =0 or counter(v) = 1.

We can now establish that the two counters of neighboring participating
nodes (i.e., nodes in state COUNT) differ by at most 1.

PROOF (OF LEMMA @ One needs to show that at the end of every phase p
for every participating node u € V, |counter(u,p) — counter(v,p)| < 1 for all
participating v € N(u). (Recall that a node is considered to be participating in
phase p if state(u, p) = COUNT.) Our proof is by induction on the phases p, and
the induction is based on phase p = 1 as follows. At the beginning of phase 1
the variable counter of all nodes is initialized to be 0, and the state of all nodes
is COUNT. Thus, at the end of phase 1, for all v € V' counter(v,0) < 1, and the
induction hypothesis holds for p = 1.

For the induction step, consider some p > 1, and an arbitrary edge (u,v) €
E. Our goal is to show that the balancing property holds for (u,v) at the end of
phase p. Since we install the aforementioned for arbitrary (u, v), this is sufficient
to establish the induction.

If state(u,p) # COUNT or state(v,p) # COUNT, the induction hypothesis
holds. Otherwise, if state(u,p) = state(v,p) = COUNT, then there are two
cases. The first case is that state(u,p — 1) = state(v,p — 1) = COUNT. Then,
by the induction hypothesis, |counter(u,p — 1) — counter(v,p — 1)| < 1 holds.
Assume without loss of generality that counter(u,p — 1) > counter(v,p — 1).
The increment method increases the counter variable of node u in phase p only
if no beep is received in slot (counter(u,p—1)—1 (mod 3)). If counter(v,p) =
counter(u,p—1)—1, then v transmits a beep in slot (counter(v,p)—1 (mod 3)).
Otherwise, if counter(v, p) = counter(u, p—1), then counter(u,p) < counter(v,p)+
1. It follows that the assertion holds for phase p.

In the second case, at least one of the two nodes was not in COUNT in
the previous phase. Assume without loss of generality that state(u,p — 1) #
COUNT. Due to the allowed state transitions we conclude that state(u,p —
1) = RESET-WAIT, and thus, due to Lemma count(v,p — 1) < 1. Since
count(u,p — 1) = 0, the same line of arguments as above shows that the logic
of increment guarantees that counter(u,p) = counter(u,p — 1) + 1 only if
counter (v, p) < counter(u,p) + 1, and the assertion holds for phase p. O

Combining Lemmas [J] and [I2] yields that nodes in state RESET-WAIT stall
the counters of neighbors that are in the COUNT state. Note that a node v
in the COUNT state may only transition to RESET-NOTIFY if v has no more
neighbors in state RESET-WAIT. In conclusion, two nodes (u,v) € E that satisfy

18

state(u, p) = state(v, p) = COUNT in some phase p have reset their counter the
same number of times. We cast this insight in the following Lemma

Lemma 13. Let p be a phase and let u and v be nodes with (u,v) € E. If
state(u, p) = state(v, p) = COUNT, then u and v invoked reset the same num-
ber of times.

Achieving our initial goal, namely, to execute multiple algorithms in se-
quence, will rely heavily on the properties guaranteed by Lemmas 0] and

4.4.2. Construction for the Proof of Lemma[I0)
Armed with Lemmas [0} [[2] [I3] we can now prove Lemma [I0]

PROOF (OF LEMMA . For 1 < i < k and for every node v € V, denote
by 7;(v) the execution of A; at node v obtained by executing A; on G when
using 6;—1(v) as input for node v. For the special case i = 1 we set og(v) to
the reserved symbol e, indicating that no input other than the node’s ID is
available to v in A;. Note that the first round in 7;(v) is fully specified by v’s
input. Every following round r in #;(v) is fully specified by the previous rounds
r’ < r of every 7);(u), u € V, and the choice whether v beeps or not.

We establish the statement by induction on k. The induction hypothesis
is as follows. There is some k so that for every node v € V the following two
assumptions hold:(1) 6x(v) = og(v), where og(v) is the output observed by node
v after Ay terminated at v; and (2) after Ay terminated at node v the reset
operation was invoked exactly k times by v.

If k = 0, we are free to set 6p(v) = € and the induction hypothesis holds
vacuously. For k > 0, denote by 7 (v) the execution of A obtained from v as
follows. We claim that nx(v) = 7, (v) for every node v. Note that v transmits a
beep in round 7 of ng(v) if a beep is transmitted in slot » (mod 3) of the first
phase p in which counter(v,p) = r+1. Using the induction hypothesis for k—1,
we conclude that for every node v € V:(1) the input to Ay in 7 (v) is the same
as in 7ji(v); and (2) when v starts Ay, the reset operation was invoked k — 1
times by v.

For the first part of the induction hypothesis it remains to show that v beeps
in round r under 7 (v) if and only if v beeps in round r under 7j;(v). To that
end, it is sufficient to argue that if for all nodes v, the first — 1 rounds of ny (v)
are equal to the first » — 1 rounds of 7j;(v), then the same statement is true for
round r. Observe that A proceeds from round r to r + 1 only in a phase p if
none of its participating neighbors are still in round » — 1 due to the balancing
property (Lemma E[) Therefore, a beep transmitted by a participating node
w € M(v) in round 7 — 1 of n(u) arrives at node v in phase p. If v has a
non-participating neighbor u, then there are two cases.

In the first case, node u is in the RESET-WAIT state. From Lemma (13| we
conclude that u’s execution of A has not yet terminated, since reset is only
invoked if that is the case. It follows from Lemma[I2]that v may only proceed to
the round r = 1 of Aj. We already concluded that round 0 of 7 (v) corresponds
to round 0 of 7j(v).

19

In the second case, node u is in the RESET-NOTIFY state. This means that
Nk (w) has terminated and hence u invoked reset k times, whereas u invoked
reset only & — 1 times. Since u does not proceed from RESET-NOTIFY to
CoUNT while v remains in COUNT, u does not beep in slots 3-5, and hence
no interfering beeps are received from u. This establishes the first part of the
induction hypothesis.

For the second part of the induction hypothesis, consider a node v that
invokes reset. Since 1 (v) = 7j;(v) is already established, we conclude that the
output og(v) obtained at node v satisfies ox(v) = 6g(v). We have established
the lemma. O

Lemma states that the final result of a finite sequence of sequentially
executed algorithms is correct. We will, however, also require a slightly different
statement that involves the intermediate results of an arbitrarily long sequence
of algorithms. From the proof of the above lemma we obtain the following
corollary.

Corollary 5. Let A = (A1, As,...) be a sequence of algorithms. Denote, for
every v € V, by 61(v) the output produced at v by Ay when executed on G. For
i > 1 and for every v € V, denote by 6;(v) the output produced at v by A; when
executed on G, where the input to every u € V for A; is specified as 6;—1(u).

It holds that for every node v, and for every i € N,i > 1, the output 0;(v)
produced at v by algorithm A; when using the balanced execution technique for
A is 0;(v) = 6;(v).

4.4.3. Construction for the Proof of Lemma
Using the previously stated Corollary |5, we can now prove Lemma

PROOF (OF LEMMA [11)). For i > 1 and for every v € V, denote by 0;(v) the
output produced at v by the i-th invocation of Campaigning. Set further
m = maxycy id(v). Due to Corollary [5| we may reason about the output of
Restless-LE as if the next invocation of Campaigning starts synchronized af-
ter the previous algorithm reached a quiescent state. The statement can now
be obtained by applying Lemma[I]and Theorem [T} for D times: Lemmal[l]states
that every output that is generated by Campaigning is identical to the identifier
of some node in the network. It follows that m = max,cy 0;(v) for every integer
¢ > 1. This is sufficient to guarantee that after invocation ¢ of Campaigning it
holds that o;(v) = m for node v € V if 0;_1(u) = m for some u € N (v) due to
Theorem |1} By repeating this process D times, we obtain the assertion. O

4.4.4. Construction for the Proof of Theorem[3
We now prove Theorem [3] using Corollary [from Subsubsection

PROOF (OF THEOREM . Since a phase of the balanced execution technique
has constant length, it suffices to show that the D-th invocation of Campaigning
terminates after O(D logn) phases. Let m = max, id(v) be the highest ID in G.
For i € N, i > 1, denote by S; the set of nodes v starting the i-th Campaigning

20

invocation with idi, (v) = m, by ¢; the phase in which the first node in S; begins
the i-th Campaigning invocation, in particular, t; = 0. We claim that, for i > 1,
1. i1 =t + 9l(m) + 3;

2. for all v € S;, invocation 4 of Campaigning starts in phase ¢;; and

3. for all v € V'\ S;, in phase ¢;, node v is either simulating invocation %, or v

invoked reset j times with j > 1.

The claim is established by induction on i. The induction is based at ¢ = 1.
Due to Corollarythe first Campaigning invocation takes at most 9!(m) phases
for any node. Moreover, for z, the invocation takes exactly 91(m) phases. At
every node v, in phase 9l(m) + 3, the first reset operation has terminated and
either invocation ¢ + 1 or a later one is simulated; At node z, the latter is not
the case.

For the induction step, consider some ¢ > 2 and assume that the assertion
holds for i — 1. Let 7 be the set of nodes v simulating invocation ¢ — 1, and
consider phase t;_1. For k € N, let T, C T be the nodes v € T for which
counter(v,t;_1) = k. Since nodes in T are free to increase their counter,
in phase t;_1 + 1 the set Ty is empty. Similarly, in phase t;_1 + x, the sets
To, - .-, Tp—1 are empty, and hence nodes in T}, are free to increase their counter.
Thus, in phase t;_1 + 91(m), invocation (i — 1) has terminated for all nodes in
T. Following the same line of arguments used in the induction base, after
three additional rounds, nodes in S; start invocation i. Moreover, in phase
ti—1+91(m) + 3, nodes in T \ S; are either simulating invocation ¢, or invoked
reset j times with j > 7. We have established the induction hypothesis for ¢,
and since [(m) € O(logn) conclude that tp € O(Dlogn), thus establishing the
theorem.

5. Terminating & Achieving Quiescence

It seems that in the previous section we robbed Peter to pay Paul: We
obtained Restless-LE which finds a leader in time O(D logn), but now our al-
gorithm does not achieve quiescence, nor does a node know when to terminate.
These two flaws could be considered a major drawback if one wishes to use the
leader election algorithm as a foundation for another algorithm, since it is un-
clear when the latter can be started. To overcome this obstacle we implement
an overlay network protocol that executes concurrently to the Campaigning
invocations. The overlay network we establish on top of the original communi-
cation graph resembles the layers of an onion with the elected leader at its core.
Utilizing the overlay network, we then describe how candidates detect whether
the leader election process has terminated. Causing all non-elected nodes to
terminate is now achieved by sending a broadcast message.

In order to form the overlay network, each node u keeps track of one addi-
tional variable depth taking values from the set {0, 1,2}, initially set to 0. We
say that a path p = (u1,...,ug), (ui—1,u;) € E for 2 < i < k, is a downward
overlay path if for all ¢ > 2 it holds that depth(u;) = depth(u;—1) + 1 (mod 3),
and we denote the length k of a path p by length(p). Conversely, we say that p is
an upward overlay path if p reversed is a downward overlay path. One can think

21

of downward overlay paths as leading away from the network’s core, whereas
upward overlay paths lead towards it. Note that initially, all overlay paths con-
sist of only a single node. The general idea is to relay beeps along upward
and downward overlay paths. Before extending the Restless-LE algorithm to
utilize the overlay network, thus obtaining the quiescent terminating leader elec-
tion algorithm Quiescent-LE in Section [5.1} we describe the operation of our
overlay network technique in more detail. Note that in the appendix, we include
a pseudo-code representation of the overlay network technique in Figure

Every round r of the leader election algorithm is replaced by phases con-
sisting of 10 slots, one single slot and three triplets of slots. The single slot is
reserved to execute the non-terminating leader election algorithm we obtained
in Section [£.3] For clarity, we refer to the first slot triplet as control slots, to the
second triplet as up channel slots, and to the last triplet as down channel slots.
The control slots, up channel slots, and down channel slots are numbered from
0 to 2 (e.g., up channel slot 2 is the last slot in the second triplet of slots in a
phase). While the role of the control slots is to establish the overlay network,
the up and down channel slots are used to transmit beeps to nodes with smaller
and higher depth, respectively.

More specifically, in every phase p, node w listens in the up channel depth —1
(mod 3) and in the down channel depth+1 (mod 3). If a beep is received in one
of those slots, then in the following phase p+ 1, u beeps in the up channel depth
or in the down channel depth, correspondingly. The overlay network further
provides the two operations beep_depth and join, which are implemented as
follows. When beep_depth is invoked by node u, then u transmits a beep in
control slot depth. The corresponding join operation causes u to listen in the
three control slots; node u then sets depth < i+ 1 (mod 3), where i denotes
the index of the first control slot in which a beep was received, thereby joining
the overlay network of one of its neighbors that invoked beep_depth.

5.1. Quiescent Leader FElection

In this section, we describe the Quiescent-LE algorithm that utilizes the
overlay network technique in conjunction with the Restless-LE algorithm.
Formation of the overlay network is tightly coupled with Restless-LE and
the invocations of Campaigning therein. Namely, whenever an invocation of
Campaigning at node u returns a new ID z, node u joins the overlay network of
a neighbor that transmitted x to u. Nodes that are currently being convinced of
a new leader emit a signal into the upward channel of neighboring nodes, thus
ensuring that no candidate terminates unless a consensus on the leader’s ID has
been reached.

In particular, for a node u in phase p, denote by o the state in which the
last Campaigning invocation that terminated for node u was upon termination.
Denote further by last_role, last_in, and last_out the values of the corresponding
variables role, idj, and idyy in o. In phase p a node u is called a candidate if
last_in = id(u), and we say that node c is the candidate of u if last_in = id(c).
The idea is now to utilize the overlay network so that nodes may join the overlay

22

network of their corresponding candidate. This is accomplished by setting the
depth variable accordingly whenever the value of last_out changes.

In Quiescent-LE, the operation of node w is as follows (for convenience a
pseudo-code description appears in Figure in the appendix). If last_role =
active, then u invokes beep_depth, thus allowing nodes v € N (u) to set their
depth. Correspondingly, u invokes join if its candidate has changed (i.e., if
last_role = passive), in order to assign a new value to its depth variable. In
any case, if last_role # active, then node u beeps in all three up channel slots in
contrast to the normal up channel operation. A candidate that has not received
a beep through the up channel for 18 consecutive rounds emits a signal in the
down channel, thus instructing nodes to terminate.

5.2. Analysis of Quiescent-LE

For the analysis, we use the same identifiers as in the Quiescent-LE algo-
rithm, parametrized by node and phase, to refer to a variable’s value at the end
of phase p. Namely, we denote by last_role(u, p), last_in(u, p), and last_out(u, p)
the three corresponding values for node u at the end of phase p. For a node
u, we further denote by o;(u) the state of Campaigning stored in variable o at
u after the i-th invocation of Campaigning has terminated for u. If var is a
variable in o;(u), then we write var® (") to denote the value of that variable in
oi(u). For example, last_role(u, p) = role” () if 4 is executing invocation i 4 1
of Campaigning in phase p.

For a candidate ¢, we call the nodes v € V with last_out(v,p) = id(c) the
followers of ¢ in phase p. The coalition of ¢ in phase p is the set C(c,p) =
{v € Vv is a follower of ¢ and there is a downward overlay path from c to v}.
Observe that every node is a member of at most one coalition, and that at the
beginning of the leader election algorithm the coalitions are exactly all singleton
sets {u} where u € V. It follows from Lemma [11] that after D invocations of
Campaigning, there is only the grand coalition V.

Consider some coalition C' of a candidate c. We say that a node b € C' is a
border node (of C) in phase p if there is a node v € N'(b) so that last_in(b, p) #
last_in(v,p). Our analysis starts with the following lemma, which essentially im-
plies that up channel beeps are generated in the neighborhood of a border node.

Lemma 14. Letp be a phase. If b is a border node in phase p and last_role(b,p)
L, then there is a node v € N(b) and a phase p’ with p < p' < p+9 for which
last_role(v,p') is either inactive or passive.

PROOF (OF LEMMA . Let b be a border node in phase p, i.e., there is a
node v € N(b) with last_out(b,p) # last_out(v,p). If b and v both terminate
the invocation of Campaigning in phase p, then by Corollary [2] either b or v
satisfy that the claim for phase p.

Otherwise, the simulation of Campaigning at node b is delayed from node u
by at most 1 round due to Lemma[9] Without loss of generality assume that b
is ahead. In that case, b updated last_role(b,p), and if last_role(b,p) # active
the statement follows. If otherwise last_role(b,p) = active, then denote by ¢

23

the round of Campaigning in which b terminated, and by ¢ the phase in which
Quiescent-LE finished simulating round ¢ of Campaigning at node u. We argue
that then v is either inactive or passive in phase ¢+9. Observe that v’s invocation
of Campaigning terminates in the simulated round ¢, and that by Corollary [2]
node v finishes the Campaigning algorithm in an inactive role in round ¢. Since
simulating one round of Campaigning takes 9 rounds for node v, we conclude
that last_role(v, g + 9) = inactive, thus establishing the claim. (]

Consider a node v in phase p, and let v be executing the (i + 1)-st invocation
of the campaigning algorithm. We say that v is unhappy in phase p if v is a
border node, last_role(v, p) € {active,inactive}, and there is a w € N(v) such
that id(‘jflﬁ“’). In other words, v is unhappy if it tried to, but could not convince
all its neighbors of its candidate in the last invocation of Campaigning. In
any other case, v is called happy. Correspondingly, a candidate c is said to be
progressing in phase p, if in all phases p’ < p all nodes in C(c,p’) were happy,
otherwise we refer to ¢ as being stalled.

Lemma 15. Let ¢ be a candidate in phase p. If ¢ is progressing in phase p,
then there is a downward overlay path from c to all its followers.

PROOF (OF LEMMA [15]). The proof to this lemma is based on induction over
p. Initially, in phase 0, the coalition of ¢ is C' = {¢}. Unless V = {c}, the
candidate c itself is a border node, and since ¢’s identifier is unique no other
node has ¢ as its candidate. (If V' = {¢}, then path from ¢ to ¢ consists of only
one node and is a downward overlay path.)

Now consider p > 0 and assume that the induction hypothesis, namely, that
the assertion of the lemma is true in phase p — 1, holds. If ¢ is progressing in
phase p, then ¢ was progressing in phase p— 1. First, consider a node v € C(¢, p)
that is not a border node. In that case v was in C(c,p — 1), and the downward
path p from ¢ to v that existed in C(c,p— 1) is also present in C(c,p). If on the
other hand v € C(c,p) is a border node, then last_role(v,p) is passive and v
invokes join at the beginning of phase p. All active nodes w € N (b) are in the
overlay network of C(c, p) and invoke beep_depth at the beginning of phase p.
Node v sets its depth value accordingly, thus establishing the assertion at the
end of phase p. O

From the last lemma we understand that the overlay network of a progressing
candidate remains intact in the sense that all followers of ¢ are connected to ¢
via an overlay path. The reach of candidate ¢ in phase p, denoted by reach(c, p)
is the minimum length of a shortest downward overlay path from ¢ to one of
C(c,p)’s border nodes. The following Lemma states a basic property of
progressing candidates, namely, that they extend their reach in steps of at most
1. Lemma together with the fact that IDs can propagate only 1 hop at a
time (Lemma (1)) yields the following lemma.

Lemma 16. Let ¢ be a candidate in phase p. If ¢ is progressing, then reach(c,p) <
reach(c,p — 1) + 1.

24

After a candidate becomes stalled, Lemma ceases to hold. However, we
can show that a statement in the spirit of Lemma holds also for stalled
candidates. To that end, recall that a border node b of some coalition C' turns
unhappy if it cannot convince one of its neighbors. We can deduce from the
next stated Lemmas[17]and [L8| that this is the case only if the candidate of some
node v € N(b,3) is larger than b’s own candidate c: essentially, the Lemmas
and state how the spread of influence for a candidate will be halted by a
node with an higher identifier in the 3-neighborhood. Such a node v will never
accept ¢ as a candidate (due to Lcmma, and therefore ¢’s reach cannot extend
beyond some node w € N(b, 2).

Lemma 17. Letv be a node that just finished Algorithm Campaigning (id;y,(v)) .
If v is active and there is a node w € N (v,1) s.t. idoyt(w) # idout(v), then there
is a node u € N (v,3) with idgys(u) > id;y, () > idys (v).

PROOF (OF LEMMA [17]). Note that id,u:(u) > id;,(u) always holds due to
Lemma [4 Also, active nodes do not change their campaigning-identifier, i.e.,
idoyt(v) = idsn(v) We know from [3| that if w € AN (v,1) is not active or pas-
sive, the node w may only be inactive. Let us assume for contradiction that
there is no node u € N (v, 3) with id;, (u) > ideys(v) = idsn (v). Thus, we know
that for the active node v holds: idoy¢(v) = max,epr(v,3) idin(2). But this is a
contradiction due to Lemma O

Lemma 18. Letv be a node that just finished Algorithm Campaigning (id;,(v)).
If v is inactive and there is a node w € N(v,1) s.t. idyus(w) # ideus(v), then
there is a node u € N'(v,3) with idyys(u) > id;p (u) > idew: (v).

PROOF (OF LEMMA . Again, note that idyy:(u) > id;, (u) always holds with
Lemma [4] Also, inactive nodes do not change their campaigning-identifier,
e, idout(v) = id;n(v) We assume for contradiction that there is no node
u € N(v,3) with id;,(u) > idoyt(v) = idjn(v). Then for v holds idyu:(v) =
max. e (v,3) idin (2) But this implies that v is active due to Lemma a contra-
diction.

We therefore obtain from Lemmas [17] and [18] the following Lemma

Lemma 19. Let ¢ be a candidate in phase p. Denote by U the set of all unhappy
nodes in C(p,v), and for a node u by P(c,u) the set containing all downward
overlay paths from c¢ to w. If ¢ is stalled in phase p, then the following two
statements hold:

1. reach(c,p + 1) = minpey {length(p)|p € P(c,b)} + 1, and

2. for all j > p+ 2 reach(c, j) = mingey{length(p)|p € P(c,b)} + 2.

It remains to finish our study of the border nodes.
Lemma 20. Letc be a candidate in phase p. If the coalition C(v,p) is unhappy,

then it contains a border node.

25

PROOF. Let p be the first round in which C(c,p) is unhappy. Then there is
a border node b that caused C(c,p) to be unhappy in phase p. In C(¢,p — 1)
there was downward overlay path from c to b, and this path still exists in phase
p. We establish the assertion by induction, showing that in every phase p + 1,
i > 0, there is a border node in C(c,p + 7).

Assume that there is a border node b in C(c,p + i) for some ¢ > 0, and
let P denote the shortest downward overlay path from ¢ to b in C(c,p + 7).
Consider C(e,p+i+1). If b€ C(c,p+i+ 1) then we are finished. Otherwise,
there must be a node z on P that has changed depth(z,p) or last_out(x,p),
thus interrupting the path; let be the first such node on P. For every node v
it holds that the value of depth changes only if also the value of last_out does.
Thus the predecessor of 2 on P is now a border node of C(c, p), thus establishing
the statement for ¢ + 1. The assertion follows. O

By combining Lemmas [I5] and 20| we obtain the following:

Corollary 6. Let ¢ be a candidate in phase p. If C(c,p) contains border nodes,
then there is at least one downward overlay path from c to a border node.

Lemma [14] guarantees that at every border node b and in every phase p, a
beep is transmitted through the up channel at least every 9 rounds. With help
of Lemmas and [19| we conclude that this beep reaches can only be delayed
for 9 more rounds. Due to Corollary [6 a candidate whose coalition contains
borders never receives 18 consecutive rounds of silence in its up channel, and
thus never emits the termination signal through the down channel. Let z € V
be the eventually elected leader node, i.e., id(z) > id(u) for all u € V' \ {z}.
The next Lemma [2T] establishes that the coalition of z is always happy, whereas
every other coalition turns unhappy at some point.

Lemma 21. Let ¢ be a candidate in phase p. It holds that id(c) = maz,ey id(v)
if and only if C(c,p’) is happy in every phase p' > p such that ¢ is a candidate
in phase p'.

PrOOF. We show both directions of the if and only if separately, starting with
the if direction. Let ¢ denote the phase in which ¢ became unhappy, and denote
by b an unhappy border node in C(c,q). Since b is unhappy, it follows from
Lemmas [17| and [1§| that there exists a w € V with id(u) > id(c). Thus, ¢ cannot
become the leader chosen by our leader election algorithm.

For the opposite direction, recall Theorem [I] which implies that border nodes
of C(c,p’) convince their neighbors within a single execution of Campaigning.
Therefore no border node of C(c,p’) becomes unhappy, for any phase p’. This
establishes the statement. O

It follows from Lemma [T1] that after at most D invocations of Campaigning
have terminated for all nodes, the only coalition C' of the leader node z has no
border nodes. Moreover, since z was never unhappy C(z, D) contains all nodes,
and reach(c) < D. Therefore, the algorithm terminates and achieves quiescence
due to the signal that z broadcasts through the down channel. By applying the
run time Theorem [3] we obtain our main Theorem [4

26

Theorem 4. The uniform algorithm Quiescent-LE terminates after O(D logn)
rounds at every node. Every node returns the same output max,cy id(v).

6. Synchronized Wake-Up Protocol

Note that one may also study a variant of the beeping model (see, e.g., [I7])
in which only a subset S C V of the nodes wakes up in round 0. Nodes in V'\ S
are initially asleep, and wake up only if they receive a beep from one of their
neighbors. In particular, such a node is no longer considered asleep. We briefly
discuss how our algorithm can be extended to include a wake-up protocol.

Every original slot in a phase of Quiescent-LE is replaced by two slots,
where the first slot takes the role of the corresponding original slot, and in
the second slot a node is always silent. Additionally, the phase is preceded
by another two slots, referred to as wake-up slots. Consider an asleep node
u. As soon as u receives a beep, it enters an intermediate snooze state, and if
u receives a beep in the next round as well, then it turns awake. Otherwise,
snoozing nodes turn awake after receiving two beeps consecutively. A node that
just turned awake enters the protocol after the wake-up slots, thus aligning its
execution with awake neighbors. That is, the first round in which u participates
corresponds to the first original slot of Quiescent-LE. Note that in particular,
due to the balanced execution technique, node u postpones the progress of awake
neighboring nodes. Lastly, a node u that is awake beeps in both wake-up slots
whenever u starts a phase of Quiescent-LE that coincides with the beginning of
a balanced execution phase, and remains silent in the wake-up slots otherwise.

7. Anonymous Networks

Throughout the article, we have so far assumed that all nodes are equipped
with an unique identifier, where the node with the largest identifier will succeed
in our leader election protocol. We now show how to perform leader election in
anonymous networks, where nodes do not have any identifier assigned.

Observe that our methods do not rely on all nodes having pairwise disjoint
identifiers, it suffices that the largest identifier is unique. As such, we can
make use of results from Métivier, Robson, and Zemmari [26]: the authors
provide methods, where without any communication, with very high probability
(w.v.h.p)ﬂ some node v € V, |V| = n, generates a unique and largest identifier
of size O((logn)(log* n)?) [26, Proposition 6].

We thus provide a Monte Carlo leader election algorithm for anonymous
multi-hop beeping networks, by first running the algorithm of Métivier, Robson,
and Zemmari [26] to generate identifiers, followed by an execution of our deter-
ministic algorithm: its run time is O(D(logn)(log* n)?), succeeding w.v.h.p.

Sw.v.h.p: 1 —o(n=°) for any ¢ > 1

27

8. Conclusion

We described a deterministic uniform leader election algorithm in the beep-
ing model that achieves quiescence after O(Dlogn) rounds. There are three
main ingredients to our algorithm:

1. A Campaigning algorithm that propagates the locally highest identifier one
hop per invocation.

2. A technique to sequentially execute arbitrarily many algorithms in the beep-
ing model, based on a simple balanced counter approach.

3. An overlay network, based on the onion layer principle.

Our algorithm is obtained by using the sequential execution technique)
to execute the Campaigning method) multiple times, one after the other.
In its first invocation, the algorithm essentially creates a 2-hop independent set
containing at least one node. The independent nodes are potential leaders and
transmit their identifier to their neighbors. In subsequent invocations, potential
leaders correspond to clusters of nodes with the same campaigning-identifier.
When clusters touch, the cluster C' having the larger campaigning-identifier
wins, and the neighboring clusters shrink as bordering nodes join C. This yields
a non-quiescent uniform algorithm Restless-LE for leader election, where the
leader is not informed about her successful election.

If the diameter D was known to all nodes, then termination could be achieved
by stopping after the D*® invocation of Campaigning. However, we want our
algorithm to be uniform. We create an onion layer overlay network) in
order to achieve uniformity and quiescence. Potential leaders form the core of
an onion, and nodes in a cluster are layered according to their distance to the
core. Since the cluster of the eventual leader grows in each step, eventually all
nodes will be part of a single cluster. The onion layer principle can now be
used to establish a communication channel from outer layers towards the core
and vice versa. When the cluster stops growing, the leader is informed about
her successful election, in turn allowing her to issue a termination signal to all
nodes. Lastly, we explain how the algorithm can be extended to handle the
synchronous wake-up situation described in [I7] and anonymous networks.

Acknowledgements We would like to thank the anonymous reviewers of the
28th International Symposium on Distributed Computing (DISC’14) for their
helpful comments on our preliminary extended abstract [14].

References

[1] Dana Angluin. Local and global properties in networks of processors (ex-
tended abstract). In STOC, pages 82-93. 1980.

[2] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-
complexity of broadcast in multi-hop radio networks: An exponential gap
between determinism and randomization. J. Comput. Syst. Sci., 45 (1):
pages 104-126, 1992.

28

[3]

John Capetanakis. Tree algorithms for packet broadcast channels. IFEFE
Transactions on Information Theory, 25 (5): pages 505-515, 1979.

Bogdan S. Chlebus, Dariusz R. Kowalski, and Andrzej Pelc. Electing a
leader in multi-hop radio networks. In OPODIS, pages 106-120. 2012.

Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-
up problem in multihop radio networks. SIAM J. Comput., 36 (5): pages
14531471, 2007.

Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed
broadcast in radio networks of unknown topology. Theor. Comput. Sci.,
302 (1-3): pages 337-364, 2003.

Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with
beeps. In DISC, pages 148-162. 2010.

Artur Czumaj and Peter Davies. Communicating with beeps. In OPODIS,
pages 30:1-30:16. 2015.

Artur Czumaj and Peter Davies. Brief announcement: Optimal leader
election in multi-hop radio networks. In PODC, pages 47-49. 2016.

Artur Czumaj and Peter Davies. Exploiting spontaneous transmissions for
broadcasting and leader election in radio networks. In PODC, pages 3-12.
ACM, 2017.

Artur Czumaj and Peter Davies. Deterministic communication in radio
networks. SIAM J. Comput., 47 (1): pages 218-240, 2018.

Jurek Czyzowicz, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc.
Consensus and mutual exclusion in a multiple access channel. IEEE Trans.
Parallel Distrib. Syst., 22 (7): pages 1092-1104, 2011.

Roland Flury and Roger Wattenhofer. Slotted programming for sensor
networks. In IPSN, pages 24-34. 2010.

Klaus-Tycho Foerster, Jochen Seidel, and Roger Wattenhofer. Determinis-
tic leader election in multi-hop beeping networks - (extended abstract). In
DISC, pages 212-226. 2014.

Leszek Gasieniec, Andrzej Pelc, and David Peleg. The wakeup problem in
synchronous broadcast systems. SIAM J. Discrete Math., 14 (2): pages
207222, 2001.

Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in
multi-hop radio networks. In SODA, pages 748-766. 2013.

Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in
multi-hop radio networks. CoRR, abs/1210.8439v2, April 2014.

29

[18]

[19]

[20]

Seth Gilbert and Calvin C. Newport. The computational power of beeps.
In DISC, pages 31-46. 2015.

Seth Gilbert and Calvin C. Newport. Symmetry breaking with noisy pro-
cesses. In PODC), pages 273-282. 2017.

Albert G. Greenberg and Schmuel Winograd. A lower bound on the time
needed in the worst case to resolve conflicts deterministically in multiple
access channels. J. ACM, 32 (3): pages 589-596, 1985.

Jeremiah F. Hayes. An adaptive technique for local distribution. Commu-
nications, IEEE Transactions on, 26 (8): pages 1178-1186, 1978.

Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic algorithms for
the wake-up problem in single-hop radio networks. Theory Comput. Syst.,
38 (3): pages 347-367, 2005.

Dariusz R. Kowalski and Andrzej Pelc. Leader election in ad hoc radio
networks: A keen ear helps. Journal of Computer and System Sciences,
79 (7): pages 1164 — 1180, 2013.

Eyal Kushilevitz and Yishay Mansour. An Q(Dlog(N/D)) lower bound
for broadcast in radio networks. SIAM J. Comput., 27 (3): pages 702-712,
1998.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Yves Métivier, John Michael Robson, and Akka Zemmari. Analysis of fully
distributed splitting and naming probabilistic procedures and applications.
Theor. Comput. Sci., 584: pages 115-130, 2015.

Andrzej Pelc. Activating anonymous ad hoc radio networks. Distributed
Computing, 19 (5-6): pages 361-371, 2007.

Boris S. Tsybakov and V.A. Mikhailov. Free synchronous packet access in a
broadcast channel with feedback. Probl Inf Transm, 14 (4): pages 259-280,
1978.

Shailesh Vaya. Information dissemination in unknown radio networks with
large labels. Theor. Comput. Sci., 520: pages 11-26, 2014.

Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple
access channel. STAM J. Comput., 15 (2): pages 468-477, 1986.

30

Appendix A. Pseudo Code of Algorithms

Technique: Balanced-Counter from the perspective of node u
initialize counter <— 0 and state <— COUNT
for ever do
if state = COUNT then
beep in slot counter (mod 3)
L beep in slot 3

else if state = RESET-NOTIFY then
L beep in slot 4

else if state = RESET-WAIT then
beep in slot counter (mod 3)
beep in slot 5

listen in all other slots

Procedure increment:

wait for a phase p in which no beep is received in slot
counter — 1 (mod 3)

counter < counter + 1 at the end of phase p

Procedure reset:

wait for a phase p in which no beep is received in slot 5
state < RESET-NOTIFY at the end of phase p

counter < 0 at the end of phase p

wait for a phase ¢ > p in which no beep is received in slot 3
state <— RESET-WAIT at the end of phase ¢

wait for a phase r > ¢ in which no beep is received in slot 4
state < COUNT at the end of phase r

Figure A.1: The balanced counter technique.

31

Technique: Overlay Network from the perspective of node u

initialize depth < 0

for every phase p do

listen in up channel depth +1 (mod 3)

if beep received in up channel depth + 1 (mod 3) in phase p — 1
then
| beep in up channel depth (mod 3)

listen in down channel depth — 1 (mod 3)

if beep received in down channel depth — 1 (mod 3) in phase
p— 1 then
| beep in down channel depth (mod 3)

listen in all control slots

Procedure join:
i < the index € {0, 1,2} of the first control slot in which a beep
is received
| depth < i+ 1 (mod 3)
Procedure beep_depth:
L beep in control slot depth

Figure A.2: The overlay network technique.

32

Algorithm: Quiescent-LE, from the perspective of node u

initialize the overlay network technique

initialize last_role < L, last_in = id(u)

for every phase p of the overlay network technique do

> In the first slot:

execute one round of the non-quiescent leader election algorithm
from Section

> In the remaining slots use the overlay network as follows:

if the invocation of Campaigning ezecuted by u has terminated

then
o < the state of u at the end of the last Campaigning

invocation
last_role < the value of role in o
last_in < the value of id;, in o
last_out < the value of idyy; in o

if last_role = active then
L beep_depth
else if last_role = passive then
L join
if last_role # active then
| beep in up channels 0, 1, and 2

if u is a candidate then
if no beep received in up slot 1 for 18 consecutive phases
then
beep in down channel 1
L terminate after phase p + 1

else if beep received in down channel then
L terminate after phase p + 1

Figure A.3: Usage of the overlay network for the leader election algorithm.

33

Algorithm: Campaigning(id;y,)

initialize role < active and loyt < lin and ideyt < idip
campaign_longest_id

campaign_highest_id

campaign_transmit_id

return id,,¢

Procedure campaign_longest_id:

for phase p+ 1,2,...,l;n — 1 do
beep in slot 0 and slot 1
listen in slot 2

listen in slot O
if a beep was heard in slot 0 then beep in slot 1 and role < passive
else listen in slot 1
if a beep was heard in slot 1 then role < inactive and terminate and return id,,:
if role = active then beep in slot 2
else listen in slot 2
if a beep was heard in slot 2 and slot 0 then role < inactive and terminate and
return id,;
if role = passive then
repeat
listen in slot 0 and lout + lowt + 1
if a beep was heard in slot 0 then beep in slot 1
else listen in slot 1
if a beep was heard in slot 1 then role < inactive and terminate and
return id,,¢
listen in slot 2
if no beep was heard in slot 2, and no beep in slot 0 and 1 then
role < itnactive and terminate and return idy,¢
until no beep is heard in a successive slot 0 and slot 1

Procedure campaign_highest_id:

for phase p +— 1,2,...,l5y do

if role = passive then

listen in slot O

if a beep was heard in slot 0 then beep in slot 1

else listen in slot 1

if a beep was heard in slot 1 then role + inactive, terminate and return
idout

listen in slot 2

if no beep was heard in slot 2 and p = ly,yut then role < inactive and
terminate and return id,,¢

if role = active then

if at position p of id;y, is a 1 then beep in slot 0

else listen in slot 0

if at position p of idin is a I then beep in slot 1

if a beep was heard in slot 0 then beep in slot 1 and role < passive
else listen in slot 1

if a beep was heard in slot 1 then role <+ passive

if p = lout and role = active then beep in slot 2

else listen in slot 2

Procedure campaign_transmit_id:

if role = passive then id,yt + a bitstring of Iy Os

for phase p + 1,2,...,lout do

if role = active and at position p of id;n is a 1 then beep in slot 0

else listen in slot 0

if role = passive and a beep was heard in slot 0 then position p of idgy: + 1
listen in slot 1 and slot 2

Figure A.4: The Algorithm Campaigning.

34

	Introduction
	Overview
	Related Work

	Preliminaries
	Convincing Your Neighbors
	Overview of the Procedures
	Details of the Algorithm
	Convincing via Campaigning
	Proof Details
	Supporting Statements
	Construction for the Proof of Lemma 1
	Construction for the Proof of Theorem 1
	Construction for the Proof of Theorem 2

	Convincing Your Network
	Balanced Counters
	Balanced Executions
	Leader Election through Campaigning
	Proof Details
	Construction for the Proof of Lemma 9
	Construction for the Proof of Lemma 10
	Construction for the Proof of Lemma 11
	Construction for the Proof of Theorem 3

	Terminating & Achieving Quiescence
	Quiescent Leader Election
	Analysis of Quiescent-LE

	Synchronized Wake-Up Protocol
	Anonymous Networks
	Conclusion
	Pseudo Code of Algorithms

